
Philippine Computing Journal Dedicated Issue on Natural Language Processing, pages 18–23
Vol. XI No. 1 August 2016

Towards an Extended Hybrid N-gram Grammar Checker

Algorithm Applied in Filipino
Matthew Phillip Go
De la Salle University

2401 Taft Avenue,
Manila, Philippines

matthew_phillip_go@dlsu.edu.ph

Allan Borra
De la Salle University

2401 Taft Avenue,
Manila, Philippines

allan.borra@dlsu.edu.ph

ABSTRACT

In this research, we discuss an extension to an existing hybrid n-

gram grammar checking algorithm (Tsao & Wible, 2009) to

increase the coverage of the grammatical errors that such

approach can solve. This extended approach is applied in the

Filipino language where specific error types are present. The

existing algorithm uses words, lemmas, and part-of-speech (pos)

tags to create rules and correct grammar errors and suggest

possible correction. It is also limited to just errors that can be

corrected by replacing a word with another word. The proposed

extension allows the grammar checker to suggest more

corrections such as: insert a missing word, delete an

unnecessary word, correct a word’s spelling, unmerge a word,

and merge two words where the last two are specific correction

types in Filipino. Preliminary results showing the capability of

the extended algorithm in detecting and correcting errors are

included in this paper.

Categories and Subject Descriptors

I.2.7 [Natural Language Processing]: Language parsing and

understanding

General Terms

Algorithms, Experimentation, Languages

Keywords

Grammar Checking, Hybrid N-grams, Filipino

1. INTRODUCTION
The use of n-grams as grammar rules have been used in several

researches: [1], [2], [3] and others. The approach described in

[3] – referred to as the Lexbar algorithm in this paper, has

shown promise in detecting grammar errors with a relatively

simpler algorithm – using hybrid n-gram rules as compared with

other grammar checker algorithms. It also covers a relatively

broader range of lexical error detection and correction. This

approach is also different with the algorithm of existing

grammar checker systems in Filipino such that this uses

grammatically correct texts as source for grammar rules while

others such as Panuring Pampanitikan [4]and LanguageTool for

Filipino [5] uses erroneous texts and mal-grammar as rules.

The Lexbar algorithm showed its capability in suggesting

corrections using substitution despite the same hybrid n-gram

rule can correct other error types. In fact, the authors hinted in

their paper of a possibility of using these rules for errors

correctable by insertion and deletion suggestions. The Ed1t

system [1] also has its own version of hybrid n-gram rules in

suggesting corrections to substitute, insert, or delete word/s

anchoring their rules on specific collocations.

There have also been several documents compiling the different

grammatical errors that occur in different languages. The

Cambridge Learner Corpus [6] lists different error types present

in the English Language such as: wrong form, missing words,

and unnecessary words. These errors may also occur in different

languages including Filipino. There are also error types that are

unique in the Filipino language because of its own linguistic

phenomena as discussed in Wikapedia [7]. These documents are

used to understand the different error types that exists in the

target language and how the algorithm should be extended to

cover them.

This research aims to widen the coverage of the Lexbar

algorithm to detect more error types in Filipino aside from

substitution-correctable errors such as: spelling errors,

unnecessary words, missing words, incorrectly merged words,

and incorrectly unmerged words. The first three error types are

errors common in most languages whereas the last two are error

types specific to the Filipino language. Section 2 discusses

related works. Section 3 explains a summary of the original

Lexbar algorithm. Section 4 presents the error types to be

captured by the extended Lexbar algorithm. Section 5 discusses

the modifications and extensions done to the Lexbar algorithm.

Section 6 shows the preliminary results of the extended

algorithm. This paper ends with the conclusion and future

works.

2. RELATED WORKS
The Cambridge Learner Corpus [6] is a 16-million word corpus

comprised of English examination scripts containing different

types of errors in the English language written by learners of

English. The Cambridge University Press coded, defined, and

categorized these errors along with other information including

the students’ profile. The corpus serves some of these purposes:

automate some of the exam checking work, correlate errors with

the students’ mother tongue, and others. The general error types

defined in the corpus are wrong word form, missing word,

word/s need replacement, unnecessary word, and wrongly

derived word. They also defined pronoun, determiner, noun,

and verbs agreement errors. Other error types include:

compound errors, spelling errors, incorrect verb inflection, and

others.

The Wikapedia [7] is written by the Presidential

Communications Development and Strategic Planning Office of

18

the Philippines aimed to improve the usage of the Filipino

language. It has identified several grammatical errors that

Filipino writers may incorrectly write. The document also

contains spelling, morphology and other types of rules to discuss

why words should be spelled/ written in a certain way. Some of

these errors are listed in Table 1.

Error Type Incorrect Usage Correct Usage

ng vs nang kumain nang

pansit

tumakbo ng

mabilis

kumain ng pansit

tumakbo nang

mabilis

d/rin kumagat rin kumagat din

usage of hyphen nangiwan

pagibig

nang-iwan

pag-ibig

usage of spaces mag mahal

nalang

bahag hari

magmahal

na lang

bahaghari

maaari vs maari Maaari na siya

ngayon

Maari (maraming

ari) na siya

ngayon

morpo-ponema kababaehan

pangbayad

kababaihan

pambayad

+in/hin lutuhin lutuin

Table 1: Filipino errors from Wikapedia

Ed1t [1] is a grammar checker system that also uses hybrid n-

gram rules. Although slightly similar to Lexbar, there are

differences on the structure of the hybrid n-grams of the two

systems. EdIt has more specific rules tackling a smaller subset of

errors which was reflected on their hybrid n-grams which is

mostly composed of words and only one token is a part-of-

speech tag (e.g. play ~ role in V-ing1, hear from PRON2). EdIt’s

rules are also anchored at certain collocations (e.g. play ~ role,

look forward). In error detection, it matches collocations found

in the input sentence (if any) against the rules with their

respective collocations. Ed1t also showed its capability of

suggesting insertion and deletion in correcting some grammar

errors. It also uses a weighted Levenshtein edit distance in

ranking its suggestions.

3. LEXBAR ALGORITHM
The Lexbar algorithm uses hybrid of words, lemmas, and pos

tags to come up with grammar rules used for error detection and

correction. These rules are produced by exhaustively generating

all possible hybrid n-gram sequences from a training corpora

followed by a subset pruning which discards other rules that did

not meet a set frequency threshold. The pruning checks each

potential hybrid n-gram rule to statistically determine whether a

token slot should be frozen or is freely substitutable. Take the n-

gram from my point of view. This can be represented in many

1 V-ing is the POS tag for verbs (V) with the suffix –ing

in the CLAWS5 tagset.
2 PRON stands for a pronoun

possible hybrid ways including: (1) from [dps]3 point of view,

and (2) from my point of view. Using the frequency threshold

and occurrences of n-gram sequences such as: from his point of

view and from her point of view. The algorithm can derive that

the second slot is substitutable and the hybrid n-gram (1) is

retained. However, the word from in the n-gram from my point

of view will be declared as frozen because it is not freely

substitutable by other prepositions such as in, on, etc. Unlike

EdIt, the hybrid n-grams of Lexbar do not limit the number of

tokens that can freely substitutable. The n-gram rule from [dps]

point of view can now be used to detect that the phrase from its

point of view as grammatically correct and the phrase from she

point of view as erroneous.

The Lexbar algorithm only focused on errors that can be

corrected by replacing an incorrect word with a correct one –

substitution. This involves a series of steps before coming up

with one suggestion outputted to the user:

1. Tag the user input string with its pos and lemma. They

used the CLAWS5 tagset in tagging.

2. Search hybrid n-gram rules similar to the n-grams in

the input string.

3. Compute the Levenshtein edit distance between the

rule and the input, if edit distance = 1, produce a

suggestion based on a rule.

4. Assume u is a token in the rule and v is its counterpart

in the input. Prioritize suggestions based on set rules:

Rule 1: If u and v are both word-forms and are

different word-forms of the same lemma (for example

enjoyed and enjoying), given distance α.

Rule 2: If u and v are both members of CLAWS5 POS

and their rough POS are the same, given distance β.

Rule 3: If u and v are both function words, give

distance γ.

Rule 4: If u and v are both content word, give distance

δ.

5. Output suggestion with the highest prioritization.

Prioritization is set as α<β and γ<δ. These

prioritization/ edit distance adjustments allow the

algorithm to suggest pay attention to instead of focus

attention on when given the incorrect input pay

attention on because to and on are function words

while pay and focus are content words.

4. ERROR TYPES
The original Lexbar algorithm only focused on errors that can be

corrected by substitution. However, it is observed that there are

more error types that people commit especially in the Filipino

language: spelling errors, missing words, unnecessary words,

incorrectly merged words, and incorrectly unmerged words. The

error types that the extended Lexbar algorithm aim to solve is as

follows.

3 [dps] is the tag of possessive determine form in the

CLAWS5 tagset.

19

4.1 Substitution – correctable errors
Multiple types of errors are under this general error type. The

original Lexbar algorithm is able to detect these types of errors

and provide potential corrections. Some of these error types are:

incorrect preposition usage, affix usage errors, wrong word

used, and others. Examples of these errors are seen in Table 2.

Error Type Incorrect Correct

Incorrect
Preposition

para kay
Amerikano

pupunta kay
Marie

para sa
Amerikano

pupunta kina
Marie

Affix Usage
Errors

nagligo ako
kanina

aalis kahapon

naligo ako kanina

umalis kahapon

Wrong Word
Used

mula nang
mawala ang

matulog ikaw

mula ng mawala
ang

matulog ka

Table 2: Subsitution-Correctable errors

4.2 Spelling Errors
This error might be the most common error type in text writing.

A sample misspelled word in Filipino would be panget which is

supposed to be spelled as pangit. Word errors that require

hyphens between characters (ex. tagaMarikina -> taga-Marikina)

also belong in this error type. See Table 3 for other examples.

These types of errors are unhandled by the original Lexbar

algorithm based from its defined prioritization rules. If a word is

misspelled, the original algorithm will not be able assign its

lemma and pos tag, thus leading it to be neither a function nor a

content word. Because of this, the original algorithm will either

not be able to handle this error at all or suggest a word

replacement just based on the words or pos tags in the adjacent

slots.

Mispelled Word Correct Spelling

nag-mahal nagmahal

umi-ibig umiibig

parepareho pare-pareho

gamu-gamo gamugamo

lipat-bahay lipatbahay

pwede puwede

lalake lalaki

Table 3: Spelling Errors

4.3 Missing Words
This error type can be corrected by an insertion suggestion

which the old Lexbar algorithm did not have. Consider the

example Nagsasaya ang nanay at tatay.. The word mga should

be inserted after the word ang for the sentence to be

grammatically correct in the determiner – noun plurality

agreement. See Table 4 for other examples of this error type.

Error Correct

para bayan para sa bayan

Nagsasaya ang nanay at

tatay

Nagsasaya ang mga nanay

at tatay

Hunyo 1 2005 Hunyo 1, 2005

ukol balita ukol sa balita

Table 4: Missing Words Examples

4.4 Unnecessary Words
This error type can be corrected using a deletion suggestion

which the old Lexbar algorithm did not have. Consider the

example Pumunta sila mo sa perya. The word mo is considered

unnecessary and should be suggested to be deleted. See Table 5

for other examples.

Error Correct

ang mga mga bata ang mga bata

Matapos ang laro,, Matapos ang laro,

magandang na babae magandang babae
Table 5: Unnecessary Words Examples

4.5 Incorrectly Merged Words
This error type maybe uncommon in the English language but is

seen in Filipino, as defined in Wikapedia. Refer to Table 6 for

example of these errors.

Error Correct

palang pa lang

nanaman na naman,

parin pa rin

masmasaya mas masaya

bahaykubo bahay kubo

Table 6: Incorrectly Merged Words Examples

4.6 Incorrectly Unmerged Words
This error type may also be specific to the Filipino language.

Usually, errors of this type are found in compound words that

writers think should be separated but is actually combined.

Combination can either be the removal of the space character

between words or adding a hyphen between words. See Table 7

for examples.

Error Correct

pa lang palang

halo halo halo-halo,

bagong buhay bagong-buhay

batas militar batas-militar

Table 7: Incorrectly Unmerged Words Examples

5. THE EXTENDED LEXBAR

ALGORITHM
The extended algorithm focuses on using the hybrid n-gram

rules from the old Lexbar algorithm in capturing more error

types and providing potential corrections seen in the Filipino

language.

There are also small adjustments in the weights (edit distance

values) in the prioritization ranking of the substitution function

20

to include prioritizations of other suggestions: change word/s’

spellings, insert word/s, delete word/s, unmerge word/s, and

merge a phrase as a single word. In the old Lexbar algorithm,

they used an edit distance of 1 for all the errors and used a

prioritization comparison between content words vs function

words, and pos level. For this implementation, we incorporated

the prioritization with the edit distance value. See Table 8 for

the edit distance values. It should be noted that the edit distance

values are only arbitrary and is only used to prioritize how the

suggestions are sorted out. The threshold of edit distance = 1

before outputting a suggestion is retained similar to the Lexbar

algorithm. If multiple rules are below the threshold, the

suggestions with the least edit distance will be the one to be

outputted.

As seen in the edit distance weights table, some error types are

given lower edit distance and will be prioritized over others. The

reasoning behind these weights is that some suggestions have

less edits to perform than others. Also, although most

suggestions are potential corrections, some suggestions would

have less change in context in the phrase. For example, given

the input phrase umupo sa upuang. , possible suggestions would

include: (1) remove g from upuang, and (2) insert bakal

between upuan and period (.). The suggestion (1) will be

outputted because it has less edits needed and also has less

change in context than suggestion (2). Another basis for the edit

distance values is that some error types are more obvious to

have been committed by the user and the more appropriate error

type should be suggested to fix it. For example, given the input

naglaro sa labs ang mga bata, different suggestions can be

produced, including (a) spelling correction of the word labs to

labas or (b) replace labs with a noun. By following the spell

checking threshold algorithm, the system assumes that the user

just committed a spelling error than a word error so a spelling

correction is outputted as the suggestion.

Error Type ED Error Type ED

Error in Word

Form

0.6 Wrong Word

Both Content

(C) Words

0.85

Spelling Error 0.65 Wrong Word

Both Function

(F) Words

0.9

Incorrectly

Merged

0.7 Wrong Word –

(C) to (F) or

vice-versa

0.95

Incorrectly

Unmerged

0.7 Missing Word 1.0

Wrong Word

Same POS Tag

0.8 Unnecessary

Word

1.0

Table 8: Handled Error Types

A prototype was designed to re-implement the existing functions

in the old Lexbar algorithm and include the additional functions

to capture the different error types discussed in this paper. For

all cases, the algorithm checks if all slots, except 1-2 of them,

are equal. Slots are defined as the tokens in the input n-gram

and their respective tokens in the rule n-gram. In this context,

slots are considered equal if the words are equal or if the pos

tags are equal if the slot in the rule n-gram is not frozen. Error

detection approaches is shown in the succeeding texts.

In locating for a spelling error, rules should be of the same size

as the input n-gram. All slots except one slot in the rule and one

slot in the input n-gram are expected to be equal with their

counterparts. The word in the unequal input slot is compared

against a dictionary of words having the same pos tag as the

unequal slot in the rule. A character Levenshtein edit distance is

used. The edit distance threshold used is based from [8]. One

edit for words up to four characters, two edits for words up to

twelve characters, and three edits for longer words. If it is below

the threshold, a suggestion to use the word in the rule slot will

be produced. For example, given the input kumakan siya ng

saging, it will be compared against the rule n-gram [VBTR]

[PRO] ng [NNC]4 where the word kumakain is an instance of

the pos [VBTR]. Since it satisfy the character edit distance

threshold, a spelling correction is outputted to change kumakan

to kumakain.

In locating incorrectly merged words, rules used are one token

more than the input n-gram. All slots except two consecutive

slots in the rule and one slot in the input should be equal with

their counterparts. These unequal slots will then be checked. If a

concatenation of the rule slots, either by removing the space of

replacing it with a hyphen, is equal to the word in the input slot,

then the algorithm suggests that the word in the input slot to be

split into two words – the words in the rule slots. For example, if

the input n-gram has the one slot parin, and respective two slots

in the rule n-gram pa rin, since the combination of the two slots

by removal of space equates to the word in the input n-gram

slot, then the word parin is flagged as incorrectly merged which

should be unmerged.

In locating incorrectly unmerged words, rules used are one

token less than the input n-gram. All slots except one slot in the

rule and two consecutive slots in the input should be equal with

their counterparts. These unequal slots will then be checked. If

the concatenation of the two input words, either by removing the

space of replacing it with a hyphen, is equal to the word in the

rule slot, then the algorithm will suggest the two words to be

merged as a single word – the word in the rule slot. For

example, if the input n-gram has the two slots pinaka mabilis,

and the rule n-gram has the slot pinakamabilis, since the

combination of the input slots by removal of space equates to

the rule slot, then the input slots are flagged as incorrectly

unmerged words and should be merged.

In locating missing words, rules used are one token more than

the input n-gram. All slots except one slot in the rule n-gram are

expected to be equal with their counterparts. Additionally, the

single unequal slot is not supposed to be the first or the last slot

in the rule n-gram. The word in that unequal slot will be

suggested to be inserted to the input n-gram. For example, given

the input bumili pagkain with POS tags [VBTS] [NNC], the

algorithm will compare this against the rules and sees that the

rule [VBTS] ng [NNC] is applicable. Using this rule, it can

immediately suggest that there is a missing ng token which

should be inserted.

In locating unnecessary words, rules used are one token less

than the input n-gram. All slots except one slot in the input n-

gram are expected to be equal with their counterparts.

Additionally, the single unequal slot is not supposed to be the

4 VBTR = imperfective verb, PRO = singular pronoun, NNC =

common noun

21

first or the last slot in the rule n-gram. The word in that unequal

slot will be suggested to be removed from the input n-gram. For

example, given the input kumain ng ng kanin with the pos tags

[VBTS] [CCB] [CCB] [NNC], the algorithm will use the rule

[VBTS] ng [NNC] to suggest that there is an unnecessary ng

token which should be deleted.

In the old Lexbar algorithm, some suggestions contain pos-level

suggestions (ex. should be ‘look forward to [V-ing]’ instead of

‘look forward to [V]), the extended Lexbar algorithm was also

improved in this function by having a dictionary of words

mapped with their respective pos tags and lemmas to provide

words as suggestions instead of just pos tags to users. This is a

very important feature of the algorithm as it will be very difficult

for the users to know what the correct word would be if only the

pos tag is outputted as the suggestion. For example, given the

erroneous input: kumilos ng mabilis, if the algorithm outputs the

suggestion ‘Replace ng with [CCB]’, they would not

immediately know that it should be the word nang.

Additionally, there are many words that have the pos tag [CCB]

such as: upang, gayundin, palibhasa. By outputting word level

suggestions such as: ‘Replace ng with nang’, the user would no

longer need to think about the correct word.

A small corpora consisting of 4900 words tagged using the Rabo

[9] tagset was used as the initial training dataset. The word

sequences are retrieved from the Tagalog version of The Little

Prince by Antoine de Saint-Exupery and the Wikapedia (2015)

booklet. The book The Little Prince was already tagged as it was

used in the research by Alcantara (2007). The Wikapedia

sentences were tagged by a Filipino linguist from De la Salle

University- Manila. Respective lemmas of each word in the

dataset were also tagged accordingly done by the Filipino

linguist and aid of a Filipino dictionary.

6. EXPERIMENTAL RESULTS AND

ANALYSIS
A prototype of this algorithm is developed and tested using

artificial errors based on common mistakes in Filipino as listed

in the Wikapedia (2015) booklet.

Table 9 shows the sample inputs containing errors that the

extended algorithm was able to detect and provide correct

suggestions of different types: substitution, insertion deletion,

merging, and unmerging. The rules, trained using the initial

training dataset, with the use of pos tags, are able to correctly

detect errors and provide suggestions for phrases that even

contain words that were never encountered in the training data.

Despite its ability to correct errors, there are some observed

limitations in the discussed approach. One is that the rules are

derived from the corpus used as training data. This means that

the corpus should be larger and large enough to cover all

possible word and pos tag sequences to capture most of the error

types. For instance, the training data used are mostly simple

sentences which mean that only sequences found in simple

sentences will be used to check for grammar errors and it is

possible that there will be incorrect error detection when

checking on compound sentences or complex sentences.

Another limitation is that the rules are heavily dependent on the

pos tagset in a given language. For example, the corpus used has

the words noon, kanina, kahapon, bukas, ngayon, and other

time-related adverbs pos-grouped as RBW. Based on the

implementation of the hybrid rule generation, it is likely that the

algorithm will generate a hybrid rule VBTS5 RBW sa from

instances like: kumain kanina sa, pumunta noon sa, and naglaro

kahapon sa. This will also let the algorithm to recognize the

phrase nagluto bukas as syntactically correct, which should not

be the case because there is a disagreement with the perfective

verb (VBTS) and the word bukas because it is a contemplative

adverb.

Input Error Type Suggestion

kikunsinti ang

babae

Spelling Error kinukunsinti

instead of

kikunsinti

nanalo premyo Missing Word insert ng after

nanalo

materyal para na

sa

Unnecessary

Word

delete na after

para

papunta palang Incorrectly

merged

replace palang

with pa lang

pa ano na? Incorrectly

unmerged

replace pa ano

with paano

tinaka ako sa Wrong Word

Form

substitute tinaka

with nagtaka

para kay bata Wrong Word substitute kay

with sa

kumain nang

kanin

Wrong Word substitute nang

with ng

magbagong

buhay ka

Incorrectly

unmerged

replace

magbagong

buhay with

magbagong-

buhay

siya palang

naman

Incorrectly

merged

replace palang

with pa lang

ganun parin Incorrectly

merged

replace parin

with pa rin

Table 9: Experimental Results

Another limitation is that the extended algorithm will most

likely not be able to handle the common mistake in Filipino in

using the words raw/daw, rito/dito, and rin/din6. This is because

the approach does not mind the word spellings when deriving its

hybrid rules. Instances such as: may aso rin, and may pating

din, will lead to system to generate the hybrid rule may NNC

RBI7 since the words rin and din are in the same pos-group. This

will lead the algorithm to ignore the character-agreement error

in the phrase may ahas rin and see it as syntactically correct.

7. FUTURE WORKS & SUMMARY
There are different areas of improvements in this extended

Lexbar algorithm. Larger corpus should be collected and tagged

for training data building. This will allow more words and pos

sequences to be detected as grammatically correct or flag

specific errors from incorrect sequences. Larger test data should

5 VBTS is the Rabo pos tag for perfective verbs.
6 See page 5 of the Wikapedia [7] booklet.

7 NNC is the Rabo pos tag for common nouns and RBI for

enclitics.

22

also be collected to quantitatively test the performance of the

algorithm. Additionally, reviewing other Filipino tagsets or

using a modified version of the Rabo tagset that has more

specific pos-groups may be done to address the problems caused

of the general pos-groups in the Rabo tagset. Explorations on

the usage of semantic role labels, as suggested by [3] may also

be an area of improvement.

In summary, we discuss an ongoing work in extending the

Lexbar algorithm to cover more error types in Filipino while the

simplicity in design of the original Lexbar algorithm is still

retained. This extended approach may be susceptible to slower

response time, especially that there are now more functions

included and has more rules as training data size increases.

Improvements and evaluations will be performed in addressing

this matter.

8. REFERENCES
[1] Huang, C., Chen M.H , Huang, S.T. Chang, J. (2011), EdIt:

a broad-coverage grammar checker using pattern grammar,

, Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies: Systems Demonstrations, p.26-31.

[2] Nazar, R. & Renau, I. (2012). Google Books N-gram

Corpus used as a Grammar Checker. Proceedings of the

EACL 2012 Workshop on Computational Linguistics and

Writing, p. 27–34.

[3] Tsao, N.L. & Wible, D. (2009) A Method for Unsupervised

Broad-Coverage Lexical Error Detection and Correction.

Proceedings of the NAACL HLT Workshop on Innovative

Use of NLP for Building Educational Applications, p. 51-

54.

[4] Jasa, M., Justin O. Palisoc, and Martee M. Villa. (2007).

Panuring Pampanitikan (PanPam): A Sentence Syntax and

Semantic Based Grammar Checker for Filipino.

Undergraduate Thesis. De La Salle University, Manila.

[5] Oco, N. and Allan Borra. (2011). A Grammar Checker for

Tagalog using LanguageTool. Proceedings of the 9th

Workshop on Asian Language Resources Collocated with

IJCNLP 2011.

[6] Nicholls D. (1999). The Cambridge Learner Corpus – error

coding and analysis for lexicography and ELT. Cambridge

University Press.

[7] Wikapedia (2015), Manila: Lexmedia Digital Corporation.

[8] Whitelaw, C., Hutchinson, B., Chung, G., Ellis, G. (2009),

Using the Web for Language Independent Spellchecking

and Autocorrection. Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Processing, p.

890–899.

[9] Rabo, V. (2004). TPOST: A template-based, n-gram part-

of-speech tagger for Tagalog. Graduate Thesis. De La Salle

University, Manila.

[10] Alcantara, D. (2008). Probabilistic Approach to

Constituent Structure Induction for Filipino. Graduate

Thesis. De la Salle University, Manila

23

	Towards an Extended Hybrid N-gram Grammar Checker Algorithm Applied in Filipino

