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ABSTRACT

In this paper, regularized discrete versions of the L' to-
tal variation based image denoising model are solved using
split Bregman iterations. The methods use inexact solu-
tions which are effective in restoring images corrupted with
impulse noise.
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1. INTRODUCTION

Image denoising deals with the reconstruction of images that
are corrupted with high energy oscillations known as noise.
There are many mathematical types of noise, two of which
are additive Gaussian noise and impulse noise. Gaussian
noise follows a normal or Gaussian distribution. Impulse
noise affects only some pixels of the image and can manifest
as salt-and-pepper (SP) noise or random noise.

At present, there are many methods that efficiently remove
Gaussian or impulse noise. Widely researched methods for
image denoising are total variation (TV) based methods. In
the presence of Gaussian noise, there is the Rudin-Osher-
Fatemi (ROF) model [14]:

min |Vu(z)|dz + g/ﬂ(u(m)ff(x))de (1)
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on the strictly convex image domain Q C R? with Lipschitz

boundary, where the space of bounded variations BV is de-
fined by
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A good discussion on the solution of problem (1) can be
found in [4]. Numerically, the ROF model is difficult to solve
by gradient-based methods since the TV term is nondiffer-
entiable. Usually, additional regularization is imposed on
the model to make it sufficiently smooth. A recent method
to solve the ROF model is the split Bregman algorithm [7,
11]. In this method, the I and I? portions of the discretized
functional are decoupled and the problem is reduced to a
sequence of unconstrained optimization problems and Breg-
man updates. Numerical results demonstrate the Bregman
method is fast and efficient in removing Gaussian noise.

It is known that in reconstructing images corrupted with
impulse noise, the well-suited TV model is

min /Q\Vu(a:)|d:c + oz/Q|u(x)—f(a;)|d;c. (2)
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See, e.g., [3, 9]. Problem (2) is an example of an L'-regularized
optimization problem. The general form for such problems
is

m&n |®(u)| + H(u)

where |-| denotes the L'-norm, and |®(u)| and H(u) are con-
vex functions. Compared with the ROF, there is more diffi-
culty in solving problem (2) since both terms are nonsmooth.
In [3], global smoothing is implemented on the problem and
the resulting model was solved using a steepest-descent type
approach. In [5], the problem was locally smoothed and
solved by a primal-dual active set method. A decomposi-
tion strategy was proposed in [8] to handle problem (2) in
its original form.

A review of methods in handling TV models for different
noise types is in [13]. Recent hybrid algorithms that ex-
ploit the merge of numerical methods on the TV models
and technological advances further increase the quality of
restored images; see, e.g., [12].

In this paper, we formulate split Bregman algorithms to
solve regularized versions of problem (2). These versions em-
ploy local or global smoothing. Instead of the Gauss-Seidel
type method used in the split Bregman iteration for prob-
lem (1), we will use the conjugate gradient method (CGM).
A numerical study on the implementation of the algorithm
towards removing impulse noise ends the paper.

2. BREGMAN ITERATIVE ALGORITHM



The Bregman iterative algorithm was introduced in [11] as a
method for solving constrained, convex, minimization prob-
lems of the form

arg min J(u) s.t. H(u) =0, (3)

u

where J and H are convex and nonnegative functions. This
algorithm is similar to the augmented Lagrangian method.
A key concept in the Bregman algorithm is the Bregman
distance associated with the function J at the point v,

D (u,v) = J(u) = J(v) = ({p,u — v),

where p € 9J(v), the subdifferential of J at v. Essentially,
the Bregman distance is the comparison of the value J(u)
with the tangent J(v) 4+ ( p,u — v ) [6]. We have the
following properties of the Bregman distance:

3. DY(u,v) > D%(w,v) when w is on the line segment
between u and v

4. D (u,v) = —DY(v, u).

Based on properties (1)-(3), the Bregman distance gives a
measure of closeness between two points; but with property
(4) and the fact that it does not satisfy the triangle inequal-
ity, DY, cannot be considered as distance in the usual sense.

The main Bregman iteration problem is defined as

u**! = arg min D’}k (u, u®) 4 yH (u) (4)

u
with Lagrange multiplier v > 0, and p* € 8J(u*) [6]. At
each iteration the algorithm solves an unconstrained, con-
vex minimization problem. The solution u**! satisfies the
optimality condition

0e A(J(W ) —JWr)— < p" " —uF > yHW))
which leads to the result
p" —AVH@@W ™) e aJ@rt. (5)

Since p**! € 9J(u**1), we can simply take pFt! = pF —
vV H (u**1) assuming H is differentiable. The Bregman al-
gorithm is presented as follows [6]:

Algorithm 1 Bregman Iterative Algorithm

e Initialize. Set k=0, u’ =0, p° € 8J(u°)

e while not convergent

w1 = arg min D’}k (u, u") 4+ v H (u)

pk+l pk _ ’yVH(ukJrl)

In principle, when u® # 0, one can start with a different
value for p” as long as it is a subgradient of J(ug). However,

the computations involved make these initial values imprac-
tical [11].

The Bregman algorithm aims to solve problem (3) by attain-
ing a u such that H(u) is minimized leading towards satis-
fying the constraint H(u) = 0. As the Bregman distance
is minimized, the minimum of J(u) is obtained. Formally
stating these, we have the following convergence properties
of the algorithm [2, 6, 7]:

THEOREM 1. Let J and H be convex, nonnegative func-
tions where H is differentiable. If solutions to problem (4)
exist, then

1. There is decrease in Bregman distance: D% (u,u**1)

DY (u,u*) at every iteration.

IA

uk+1)

IN

2. There is monotonic decrease in H, i.e., H(
H(u").

3. The method converges to a minimizer u* of H, with

HE) < o+ 2

and k — oo.

Constrained optimization problems of the form

ran{J(u) : Au=0b} (6)

can be solved efficiently by Bregman method, where H(u) =
Au—b. The problem is first transformed to an unconstrained
problem with a quadratic penalty term:

. A
mumJ(u) + §||Au—b\|§ (7)

where A\ — oo so that the original constraint is enforced.
When A is a linear operator, the Bregman iteration is

uFTt = argminJ(u) + 3 || Au — 0¥ |3
u

(8)
L =pF 4 b — Auk.

where b, initialized at b, is the auxiliary variable responsible
for adding the error in the constraint back to the right hand
side [11, 16]. In practice, the exact value of u need not be
solved for at each iteration, therefore resulting in quicker
iterations. The error resulting from low accuracy in the
solution is handled by the algorithm’s error forgetting nature
[16]: when w is inexactly solved for within a tolerance level,
then it takes two iterations k 4+ 1 and k 4 2, with & > m for
some m, for the algorithm to reach a solution.

3. SPLIT BREGMAN METHOD FOR TV DE-
NOISING

One of the best applications of Bregman iterations is on
TV denoising. Suppose an image is corrupted with white
noise. A popular model for reconstruction is the anisotropic
problem

. o 2
Inin |Vou| + [ Vyu| + 5”“ fliz (9)



where | - | is the I*-norm, f € R", and V, and V,, are finite
difference matrices in the horizontal and vertical directions,
respectively. Substituting d, for V,u and dy for Vyu, prob-
lem (9) becomes the constrained problem

min |d| 4 [dy| + §llu— f|3
s.t.  dz = Vzu and dy = Vyu.

As was done in problem (7), penalty function terms are
added to the objective:

. o A A
win do |+ |dy | + 5 = F13+ 5 lds — Foul3+ 5 ldy — Vyull3
The resulting Bregman iteration is
(W dz ™ dg ) = arg min [do| +|dy| + 5 llu — £II3
U,dg,dy

+3llds — Vaou — b33

JF%”dy - Vyu— bZH%
(10)

BT =0k 4 (Vaul - dith)

(11)

bt =0k + (Vyuftt —aith)

The main minimization problem results in an expression
where the variables v and d are directly interacting. To
solve problem (10), Goldstein and Osher [7] introduced the
split Bregman algorithm. This technique is similar to the al-
ternating direction method where the main problem is split
into two subproblems, and minimized with respect to u and
d separately. Firstly,

wk = argmuin %||uff||§+%Hdﬁfvzufbﬁﬂg

+3 lldy — Vyu — by 3.

(12)
Then the second subproblem is solved:
di = arg min|d, | + S de — Voulr Tt — k13,
dS‘H = argrr;in|dy\ + %de — Vyuk'H — b’;H%

The solution to problem (12) satisfies the optimality condi-
tion

(ol — MM = af + AV, (d’; - bﬁ) AV, (d’; - b’;) (13)

where A = —V V. A fast algorithm to get approximate
solutions to system (13) is the Gauss-Seidel method:
Gri = e (b Fuln g ul i el
k k k k
i1y~ deigtdyi 1 —dyi;

k k k k @
i1y b =y Ty g) ot fis

k+1 ik
Us 5 = ¢ij

The solutions d*T* and d';“ can be obtained as

ditt = shrink (Vou" ™ 4+ b5, 1)

[ EEDY

Ayt = shrink (Vyu"tt by, §)

where for v > 0,
v—7, VE ('77 OO)

shrink(v,y) = ¢ 0, v € [—7,7]
v+, vE(—00,—Y).

Another model for TV denoising is the isotropic model

min >~ \/(Vow? + (V,w)? + Sllu—fI3 - (15)

Similar to the splitting of the I* and I?> components of the
anisotropic problem leading to problem (10), the split Breg-
man problem for problem (15) is

miny,a,.d, [(de, dy)ll2 + §llu = fl3 + 3llde — Vou — ball3

+%||dy —Vyu — by”%
(16)
where d, ~ V,u, dy = Vyu, and

(da, dy)lla =D yJd2 5 +d2 ;.
i,

The iterative solution for u is the same as in the anisotropic
problem, namely,

k1 ik
Ui = P

The d-solution can be obtained using a generalized shrinkage
formula [15]

k k
k+1 _ Vazu“+b k 1
dgy —%max(s fX,O)
k k
k+1  _ Vyu'+by k 1
d, = ——r—‘max (s - % 0)

with

5" = \/\Vzu’“ +0E12 + |Vyuk + b2

4. SPLIT BREGMAN ITERATIONS FOR REG-

ULARIZED ' TV MODEL

The TV denoising models with 1% fidelity term worked par-
ticularly well in removing additive Gaussian noise. Numer-
ical tests, e.g. in [7, 11] demonstrate the capability of Split
Bregman iteration in producing good image reconstructions
at a fast rate. A type of noise more common in applica-
tions is impulse noise, such as salt-and-pepper (SP) noise
or random-valued (RV) noise. A model more suited to this
type of noise is the L' TV model [3, 9]

uer}rgl%/n(m /Q|Vu(x)|dx + oz/Q lu(z) — f(z)|de.  (17)
This model has the capability of recovering original im-
age pixels, making it suitable for removing outlier or im-
pulse noise [9]. However, the L'-problem is nondifferen-
tiable. Direct methods like the gradient method and the
Newton method cannot be applied. Moreover, the problem
is not strictly convex, and hence, the solution is not unique.
The discrete anisotropic analogue of problem (19) is

min |Vyul + |Vyu| + O‘Z lui — fil.
i



Utilizing the Bregman method on this model results in the
main minimization problem

arg minldy| + |dy| + 32, [ui = fil + §llde — Vau — b33

u,dg,dy

+%||dy - Vyu — blzj”g
(18)
As the d subproblem and b update do not deal with the
model’s fidelity term, their respective subproblem and up-
date remain the same as in equations (11) and (14). The u
subproblem, on the other hand, will be altered in the fidelity
term. It becomes

u:argngnazi |lus — fil + %”dz —Vzu—bg’ZHg

(19)
+%de = Vyu— bl;“%

This subproblem poses difficulty since the first term is non-
differentiable. There are two approaches to remedy the fi-
delity term’s non-differentiability, namely, global regulariza-
tion and local regularization.

4.1 Global smoothing
Problem (19) can be sufficiently smoothened by introducing
a small parameter ¢ to the fidelity term. The result is the
globally regularized problem

min Jg(u)

where

Ja(u) == ay, /(ui — fi)? + e+ 3lldz — Vou — 0313
JF%de - Vyu— blyj”%
(20)
Solving for the argument minimizer u is numerically difficult
since u cannot be easily separated as it was in the model
with {2 fidelity term. We opt to solve for u through iterative
means, specifically, the CGM. Differentiating Jg, we get

9 — _o(ui—fi) T o )
Bu; JG (U) \/m + A (vxl((Vzu)z dzz + bzz)

where for a matrix D, D; is the it" row. With u and f as
column vectors, the gradient Fg is equal to

Fo = ap(u—f)+\ (VI(qu —d+b)+ V] (Vyu—d+ b))
(21)

where the diagonal matrix ¢ has diagonal entries
1

A sufficient smoothing of the u-subproblem can be made on
kinks of the function, and not necessarily on the entire do-
main. This can be achieved via a local smoothing approach.

4.2 Local smoothing

When ¢ is close to zero, the globally regularized model could
encounter ill-conditioning at kinks in the solution. An al-
ternative approach is to use local regularization. A local
smoothing of the I' model is made by replacing the fidelity

term with a lower approximation, i.e., the u-subproblem be-
comes

min Jp(u) = 0 5, @) + o X, [ui — fil + 3de — Vau — 0|

+3ldy = Vyu — b3
(22)
where the Huber function ¢ is defined by

= fil =3, i |us— fil >y
d(ui) = { Llui — fi|?, otherwise ’
Y

for v > 0. The index ¢ is said to belong to the active set A
if |u; — fi| > . It is well-known that ¢ is differentiable and
that its minimizer equals that of the original fidelity term.
The derivative of ¢ is given by

5 o(ui — fi), if lui — fi| >~

p(wi) = 0, if lui — fil = (23)
Ou; %(uz — fi), otherwise

with o(-) as the sign function. The gradient of the locally
smoothed Jy, is

Fr = a®(u) + A (vl(vzu —d+b)+ V] (Vyu—d+ b))
(24)
where ®(u); = 0p(u;).

In both the globally and locally smoothed u-subproblems
(20) and (22), we obtain the solution using CGM. We apply
an inexact stepsize obtained using Armijo rule. We refer the
reader to [1, 10] for details of this rule. The split Bregman
algorithm with CGM for removing impulse noise is presented
below. The method uses either derivatives (21) or (24) in the
gradient evaluation of the CGM for the globally regularized
problem or locally regularized problem, respectively.

Algorithm 2 Split Bregman method on L1TV denoising
(SBL1)

while |[u* —u*"!|2 > tol do

Solve for u*** by CGM using (21) or (24) in the
gradient approximation

Solve for d**! using (14):

ditt = shrink (Vou*t + b5, 1)
ditt = shrink (VyuFt 4+ 05, 1)

bk+l

Solve for using (11):

Wit = b 4 (Veubt! — dbth)

B = (V- i)

end while

In the next section, we discuss numerical results of the al-
gorithm. We denote as SBGS the method using (21) and
SBLS the method using (24).

S. NUMERICAL RESULTS

Numerical implementations of the split Bregman algorithm
(SBL1) on two TV models for salt-and-pepper noise and



random-valued noise were conducted. The method was coded
in MATLAB, and run in a machine with a speed of 2.93 GHz
and with 2 GB of RAM. For both SBGS and SBLS meth-
ods for SP noise, we initially used a maximum number of
¢ =100 CGM iterations, and kmax = 20 outer iterations of
SBL1. We observed that within five to seven iterations, the
reconstructions were already good enough, yet the method
still took a long time to terminate. In later tests, we ap-
plied a decreasing number of CGM iterations, specifically,
we set ¢ = round(M/log(e + k)), where k is the outer iter-
ation number and M >> 1. In our tests, we set M = 30.
To determine the efficiency of the method, we use the peak
signal-to-noise ratio (PSNR) defined as

>, 2557
ij \"t] 1]

where f is the original image and u is the reconstructed
image from the noisy image f on the 8-bit display. A higher
PSNR signifies more noise is removed.

We also consider the image residual, which is the error of
the reconstructed image from the original clean image. The
smaller this value, the closer the reconstruction is to the
original image.

For termination, we used the same stopping criteria in [7],
i.e., when the condition |[u*f — w*~1||/||u*|| < tolerance is
met. In our tests, tolerance = 1075, The initial image solu-
tion is u® = 0.

(b) SP noise

(¢) RV noise

Figure 1: (a) original image; (b) and (c) are images
with 20% SP noise and 20% RV noise, respectively

Our first test image is the 256 x 256 Figure 1(a), with 20%
SP noise (figure 1(b)). It was observed in [7] that good
results are obtained by setting A = 2a. In this example, the
parameter values we used are o = 1.75 and A\ = 3.5. For all
test cases, we have v = 107°, and the global regularization
parameter is e = 10~°. Reconstructions of SBL1 using global
and local smoothing are shown in figures 2(a) and 2(b) after

at most 180 iterations, respectively. It is observed that the
reconstructions are nearly the same in both methods as per
PSNR values and image residual values (see Table 1).

The image with 20% RV noise is shown in figure (1(c)).
The parameter values used are « = 1.75 and A = 3.5 De-
noised images are in figures 3(a) and 3(b). For both types of
noise, the denoising capabilities of both regularization mod-
els are well displayed, with nearly equivalent PSNR values,
as shown in Table 1. The main difference in the two methods
is the computing time: it took longer for SBLS to converge
than SBGS. This slow behavior of SBLS is symptomatic,
largely due to the additional step of determining the indices
in the active set A.

(a) SBGS

(b) SBLS

Figure 2: Reconstruction of images with 20% SP
noise using SBGS and SBLS, respectively

F

(a) SBGS (b) SBLS

Figure 3: Reconstruction of images with 20% RV
noise using SBGS and SBLS, respectively

SP Noise RV Noise
PSNR | Res | Time | PSNR | Res | Time
SBLS | 25.46 | 13.63 | 79.19 | 25.87 | 13.03 | 78.16
SBGS | 25.42 | 13.72 | 45.44 | 25.80 | 13.13 | 46.96

Table 1: Awverage running time (Time), resulting
PSNR, and image residual (Res) of the split Breg-
man methods for global smoothing (SBGS) and local
smoothing (SBLS) on the image with 20% noise

The next example is a figure with 30% SP noise and 30% RV
noise (see figures 4(b) and 4(c)). The parameter values are
a = 1.55 and A = 3.1 in removing both SP and RV noise.
The reconstructed images are figure 5(a) and figure 5(b) for
SP noise, and figures 6(a) and 6(b) for RV noise. Table 2
shows PSNRs, image residuals, and computer running times
of the methods for the different noises.

Next, we present PSNR plots for both locally regularized
and globally regularized models for different values of «,



SP Noise RV Noise
PSNR | Res | Time | PSNR | Res | Time
SBLS 31.00 | 7.21 | 83.12 | 32.26 | 6.24 | 80.49
SBGS | 30.79 | 7.39 | 51.26 | 31.95 | 6.46 | 52.84

Table 2: A comparison of resulting values of the split
Bregman methods on the image with 30% noise

(a) Original image

(b) SP noise

(¢) RV noise

Figure 4: Images (b) and (c) are images with 30%
SP noise and 30% RV noise, respectively

specifically, a takes values from 1 to 3 with 0.05 increments.
The test image has 20% salt-and-pepper noise. Figure 7(a)
shows a quadratic trend in the PSNR values of the glob-
ally regularized model, with the highest PSNR value 26.417
achieved at a = 2. The plot for PSNR values of the locally
regularized model, in Figure 7(b), has a more zigzag pat-
tern. The highest PSNR value 25.9345 occurs at o = 1.3.
Still, it can be observed that in general, the PSNR values
tend to decrease beyond o = 1.3.

As mentioned earlier, the SBL1 method yields good results
within a few outer iterations. It was observed in [7] that
the split Bregman method does not need to solve the u-
subproblem to full convergence. The method converges to
a minimizer even if inexact iterative methods are used for
each subproblem. This observation is verified by comparing
results of SBL1 with 30 CGM iterations and with 50 CGM
iterations. The test image with 10% SP noise is in figure
(8(b)), and the restored images are figures 8(c) and 8(d).

Finally, we compared the performance of SBL1 on the reg-
ularized variation models with the primal-dual algorithm
(PDA) in [5]. Note that the PDA solves a version of the
" variation model where both fidelity and TV terms are
locally regularized. We apply the same regularizing param-
eter value of 107° for both terms; « is 1.5. In our tests, we
generated eight noisy images of test image 1 (the camera-
man) with the same level of noise, i.e., randomly chosen 20%
of the pixels have salt-and-pepper noise or random valued
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(a) SBGS

Figure 5: Reconstructions of images with 30% SP
noise

Cape
b

e X

| 64

(a) SBGS (b) SBLS

Figure 6: Reconstructions of images with 30% RV
noise

noise. Since the PDA employs second-order information,
naturally it would require less iterations to converge than
first order methods such as the steepest descent method or
conjugate gradient method. In the controlled experiments,
we used 60 iterations for the PDA and the split Bregman
methods. Table 3 shows average values of the methods for
PSNR and running time.

SP Noise RV Noise
PSNR | Time | PSNR | Time
SBLS | 25.05 | 32.40 | 25.22 | 31.48
SBGS | 25.00 | 21.60 | 25.17 | 20.59
PDA 25.40 | 45.41 | 25.79 | 45.04

Table 3: A comparison of PSNR values and running
times of the split Bregman methods and PDA on an
image with 20% noise

In this case, the PDA gave the better PSNR values, but
those of SBGS and SBLS are close enough at less time us-
age. These results demonstrate the efficiency of the Breg-
man methods in providing good image restorations. Figures
9(b)-9(d) show sample reconstructions of the two methods.

6. CONCLUSION AND RECOMMENDATIONS

In this paper, we implemented the split Bregman method
on restoring images with impulse noise. Whereas in the
work of Goldstein and Osher [7] the variation model has a
12 fidelity term that is better suited for additive Gaussian
noise, here we used a I' norm for restoring essential image
features. Two regularized models for the fidelity term of the
L' TV model were uitlized leading to two versions of the
method. Using CGM in solving the resulting u-subproblems,
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we numerically demonstrate the speed and efficiency of the
split Bregman methods in removing salt-and-pepper noise
and random-valued noise. The methods converged even with
inexact solutions from the CGM.

A further extension of this research is to consider the ap-
plication of a primal-dual scheme that employ the Bregman
iterations on the ! regularized problem, as was done for the
I? regularized problem in [17].
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(a) Original (a) Noisy image

b) Noi
(b) Noisy (b) Restored image by SBLS

(d) 50 CGM iterations
(d) Restored image by PDA

Figure 8: (a) Original image; (b) image with 10%
SP noise; (c) and (d), restored image with 30 CGM Figure 9: Image reconstructions of different meth-
iterations and 50 CGM iterations, respectively ods.
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