
Philippine Computing Journal Dedicated Issue on Natural Language Processing, pages 9–20
Vol. XIII No. 1 August 2018

Developing an Automated Pipeline for Information Extraction
and Speech Classification from Floor Debate Records of the

House of Representatives of the Philippines
Carlos Alberto L. Arcenas
Ateneo de Manila University

Quezon City
carlos.arcenas@obf.ateneo.edu

Miguel N. Galace
Ateneo de Manila University

Quezon City
miguel.galace@obf.ateneo.edu

Marlene M. De Leon, Ph.D.
Ateneo de Manila University

Quezon City
mmana@ateneo.edu

ABSTRACT
A lot can be learned about members of Congress in the way they
speak and vote on bills during plenary proceedings. This paper tack-
les the problem of automating the extraction of speech and vote
data from legislative documents of the House of Representatives
of the Philippines to create a classification model for determining
votes based on given speeches. To accomplish this, a framework
was conceptualized and developed to extract relevant data from
structured documents. The framework was then applied to the of-
ficial House website to gather documents which, in turn, coursed
through automated text processing and data structuring. The re-
sulting structured data is made accessible through an API, named
the Floorreader API, to make the extracted information adaptable
for further exploration. The resulting structured data was used
to train a congressional vote classification model. Overall, 1,161
Congressional Records and 728 House Journals were sourced for
processing, resulting in the collection of 112,736 speeches across the
debate of 752 bills, paired with 1,649 votes. The classification model
developed was able to achieve performance measures in precision,
recall, and F1-score of up to 85%, 84%, and 84% respectively.

CCS CONCEPTS
• Computingmethodologies→ Information extraction; • In-
formation systems → Extraction, transformation and loading;
Data cleaning; • Applied computing → Document management
and text processing; E-government; Event-driven architectures;

KEYWORDS
Information extraction, data collection, text tagging, open data,
government analysis

1 INTRODUCTION
1.1 Context of the Study
In the year 2014, in accordance with Joint Memorandum Circu-
lar No. 2014-01 regarding the need to make government informa-
tion more accessible to the general public, the Philippine Govern-
ment launched the Open Data Philippines initiative with the goal
of heralding “transparent, accountable, and participatory gover-
nance through open government data" [1]. The site, accessible at
data.gov.ph, hosts a wealth of information, including summaries,
statistics, and visualizations on offices ranging from the Bangko
Sentral ng Pilipinas to the Commission on Filipinos Overseas. Cur-
rently, there is no data on the Congress of the Philippines available
on the site, but different legislative documents are available to the

public through the official Senate and House of Representatives
websites.

At the same time, there exists a lack of sufficient voter education
in the Philippines, with constituents basing their votes for officials
across all levels of government on superficial elements such as a
candidate’s personality and prestige over more substantive factors
such as platform and policy [15]. The general public is doing little to
educate itself, and the lack of more digestible chunks of information
on the sectors of government is doing little to alleviate the situation.
As such, in light of the upcoming midterm elections for the entire
House of Representatives and half of the Senate, the need for a
targeted voter education resource based on thewords and legislative
actions of Congress members is evident, especially towards building
a more informed electorate.

While there are many sources of information on the proceedings
of Congress, such as the reports created bymainstream news outlets,
there is no source of verbatim speeches (or transcripts) covering
whole sessions made available in a usable and machine-readable
format. Instead, any sources currently available only include certain
points of interest, such as debates on controversial bills. In fact, the
only source with this kind of comprehensive information are the
legislative documents hosted on the official website of the House
of Representatives (congress.gov.ph). However, this information is
not made available in an easy-to-digest format suitable for textual
analysis: a lot of work needs to be done to transform these long
documents originally made for print and physical reading to a
format easily used for other purposes.

1.2 Significance of the Study
As of writing, the Congress of the Philippines does not make such
information on plenary proceedings available in machine-readable
formats, such as JSON objects, XML, or even plain text. This is in
stark contrast to the accessibility afforded in more technologically-
developed countries. For instance, certain Commonwealth coun-
tries, such as the United Kingdom, Canada, and Australia, have on-
line versions of parliamentary proceedings (called Hansard) avail-
able in Extensible Markup Language (XML) form; similarly, the
United States has verbatim transcripts of debates in their houses
of Congress available through government-maintained application
programming interfaces (APIs) and other sources maintained by
non-governmental organizations. To capacitate fruitful analysis of
Philippine political discourse—especially on the national level—a
framework (and an efficient implementation of this framework)
is needed to extract and process data currently only available in
human-readable forms.

9



, ,

This study will also follow in the footsteps of other systems
aiming to organize and make sense of political information in the
country. In particular, this study will build upon a system earlier
made for documents concerning a smaller portion of government,
the Senate Blue Ribbon Committee [6]. This study will follow the
top-down approach (i.e., sourcing data directly from government
sources) in order to make what would otherwise be obscure and
inaccessible data relevant and meaningful to the average citizen.

One immediate application for such data can be the develop-
ment of a speech classification model that will be trained with a
vote-tagged speech corpus in order to predict the future votes of
representatives on bills based on their speeches before they are
even cast. The model can also be used to tag the likely votes of
representatives on bills where no voting data is provided by the
records. This will allow the general public a more intimate under-
standing of the positions of representatives across a breadth of
issues. This is valuable information that would otherwise not be
available without the development of such a classification model.

Beyond that, the API provided by this study for retrieving speech
and vote data from plenary sessions in the House aims to spawn a
host of applications that will use this data either for further research
in the sentiment analysis field or simply to create tools that will
aid voter education on the House of Representatives.

2 REVIEW OF RELATED LITERATURE
2.1 Information Extraction
With its wide purview, information extraction (IE) covers unstruc-
tured data documents of all types, with studies making use of IE
techniques to source unique entities from letters, newspaper ar-
ticles, police reports, and more. However, accurate information
extraction relies on data being sourced from documents relatively
free from error in terms of writing, and those that adhere to stan-
dards on abbreviation and other concerns [8]. Given that, many IE
studies source data from official and maintained sources, such as
police reports for crime information extraction [11], and political
speeches for stance extraction and analysis.

In nations where speech transcripts are readily available, infor-
mation retrieval becomes a trivial step in a wider study often con-
cerning textual analysis, and is often a precursor to more involved
methods of textual preprocessing, such as stemming and stop-word
removal [9] in light of a wider analysis. In places where this is not
the case, bespoke systems need to be created to extract textual data
from documents to act as a data source before extraction can begin.

Information extraction and the wider field of knowledge manage-
ment allows for other applications to emerge, such as the creation
of sentiment analysis systems. Beyond more simplistic political
discussions accessible online, certain governments make publicly
available transcripts of their legislative floor debates. One partic-
ular study took interest in the formal debate found in digitized
and catalogued records from the Congress of the United States
of the America. Using this data, they created models for analy-
sis that went beyond techniques involving simple document-level
sentiment-polarity classification by taking into account how indi-
vidual speeches are part of a wider debate or dialogue between two
or more parties [17]. This study enabled a wide gamut of further

research after they made their annotated data publicly available on-
line, furthering the goal of achieving improved and more accurate
information extraction methods.

One local study has already taken advantage of the growing
availability of digitized government data in the Philippines. In a
construction of an e-Legislation system for the Senate Blue Ribbon
Committee, two approaches to data sourcing identified in an earlier
study [13] were implemented—the “ground-up” approach, which
gathers comments made by constituents on the efficacy of the Com-
mittee in regards to the measures it attempts to put into action, and
the “top-down” approach, which involves the organization of gov-
ernment office-generated information for public dissemination—in
order to reconcile and connect actions and opinion towards better
governance [6]. Documents sourced by the latter approach were
stored in a bespoke document management system capable of stor-
ing multiple types of resources, such as invites, minutes of meetings,
memos of Senate activity, and more. These documents, once needed
for further analysis, were then queried from a relational database
and preprocessed to extract only the relevant textual information
for use in modelling and sentiment analysis. The resulting cleaned
data from the documents was then stored in another database for
archiving and quick retrieval [6].

Another local study sought to extract key information from
criminal case documents available on lawphil.net, which hosts a
composite of semi-structured texts of different styles written by
varying authors. The study adopted and modified, for their pur-
poses, a framework for information extraction called “The Generic
Information Extraction System.” The modules comprising their
method included: a text zoner, a filter, named entity recognition,
POS tagging, and more. To test their system, the researchers had 50
documents manually annotated and compared these results with
their automated method in determining relevant fields such as case
number, laws cited, and court decision. They found their system to
be fairly accurate, with measurements involving precision, recall,
and F-measure all above 90%[7].

From these studies and many others, a common thread between
IE studies can be found through their data processing and storage
mechanisms: while the specific implementation of each system
differs based on the context, the underlying principles remain the
same. Each system can be divided into two sections: the processing
and identification section, where text is extracted and entities are
named and identified, and the storage section, where the source
data is put into a document management system, and the extracted
data is put into another storage solution, often a relational database
designed to address specific queries on the data extracted [3]. These
processes were often implemented with relational databases at their
core for quick query and data processing, and built as monolithic
processing structures.

However, despite the increasing spread of techniques and ap-
plications, challenges still remain across the realm of information
extraction, especially considering the growth of documents col-
lected and eligible for further processing; in particular, these in-
volve the need to automate document conversion and scraping, and
the need for better methods of storage and retrieval [2]. Recent
developments in information technology have allowed for the ful-
fillment of these needs, including (but not limited to) the use of
serverless computing to distribute and scale conversion processes

10



, ,

across swaths of compute resources, and the emerging popularity
of document-based databases allowing for the storage of associated
and relevant metadata alongside collected documents.

2.2 Sentiment Analysis in Political Discourse
With the wealth of data provided and the polarizing opinions avail-
able, much sentiment analysis regarding political discourse has
taken place using social media. Most of this analysis, however, has
been conducted with regards to how social media shapes the po-
litical discourse. It was found that, rather than facilitating debate
and changes in view through lively discussion between opposing
sides, Twitter serves to effectively create an “echo chamber." Given
how users can decide which voices to (literally) follow, they can,
in effect, close themselves out from dissenting opinions and con-
trary voices necessary to provide a balanced view on the issue at
hand and surround themselves with amplified versions of their
own opinions [12]. Yet, at the same time, due to the democratic
nature of the platform where prominent politicians are given as
much as a platform as conventional constituents, Twitter can also
serve as a neutral ground where users from wildly different social
groups can trade ideas [10]. Another area of exploration brought
about by the evolving platform was the spread of inaccurate (often
politically-inclined) information and its effects on the discourse of
the platform as a whole [14].

In addition, political figures and their words themselves have
been the subjects of several studies, with one study using the tweets
from candidates of the 2016 United States Presidential Elections
to determine the attitude of politicians towards each other on the
unique medium, and how much they interacted with each other
[16].

Given that, there is still significant room for political discourse
analysis, especially within the realms of true person-to-person
interaction as it occurs within legislatures and across branches of
government. The effect of legislative speeches and debate have not
yet been investigated significantly as of yet—proving a significant
opening for more focused research to pioneer.

2.3 Extracting Sentiment from Congress
Transcripts

Beyond more simplistic political discussions accessible online, some
governments make transcripts of their Congress floor debates pub-
licly available online and often in machine-readable form. These
are discussions of a higher level than what can normally be found
in comments or blog posts. The language found in these debates is
often more formal and precise, and can often be much more verbose.
One particular study took interest in this kind of speech structure
and attempted to create models for their analysis that went beyond
techniques involving simple document-level sentiment-polarity
classification [17]. Rather than assembling a whole document of
speeches and running them through a classifier, the researchers
recognized the dialogical nature of the speeches, and designed mod-
els accounting for the possibility of agreement between subjects in
order to improve the accuracy of their classification. By identifying
different-speaker agreements and factoring it into their analysis,
they were able to move from 79.77% accuracy to almost 90% in their

development set. It should be noted that they also used a same-
speaker constraint—that is, the same label was attached to all the
same person’s speeches—to help them achieve such accuracy.

This study was able to spawn a whole host of other researches
after they made their annotated data publicly available online. Their
example is one of the driving forces behind this study’s push to
provide a public API for making its extracted data accessible to
others. One such research leveraging the data of the aforementioned
study tested the person-and-time-dependency of the classifiers
trained in the data set by attempting to classify data from House
speeches through training on speeches in the Senate and vice versa
[5]. What they found is that some of the classifiers could indeed be
generalizable to a fair degree of accuracy, but were largely time-
dependent. This indicates that sentiment analysis in a political
setting can be performed fairly reliably even when tested across
both legs of the bicameral legislature.

Another study using the same data attempted to build upon the
first research’s idea of different-speaker agreements by examining
disagreements instead [4]. What they found is that incorporating
label-disagreement information into their models on top of the label-
agreement improved the classification accuracy of the sentiment
models even further than if they had just observed the agreement
labeling. This opens the path for exploring additional dimensions
beyond the speech contents itself in determining the polarity or
predicted vote of speeches.

3 METHODOLOGY
In order to extract speech and vote data from legislative docu-
ments of the House—as was posed by the first question of this
research—section 3.1 describes an integrated pipeline developed for
converting structured documents to a digitized form. Within the
context of the wider study, as shown in Figure 1, this requirement
covers the ‘Data Collection’, ‘Information Extraction’, and ’API’
portions as shown.

Figure 1: Framework of the wider study being conducted.
The system described in this paper covers the "Data collec-
tion" and "Preprocessing" portions of the wider study.

To address the question on the creation of a classification model,
section 3.2 of this study covers the development of a model to clas-
sify and predict a vote from the collected speech and vote data.
More specifically, this model was used to determine either an af-
firmative or negative vote for representatives on bills given their
speeches. As shown in Figure 1, this requirement covers the ‘Model
Development’ portion of the study.

11



, ,

3.1 Integrated Pipeline
The ‘Data Collection’ and ‘Information Extraction’ portions were
combined into an integrated pipeline so that the collected docu-
ments are automatically coursed through information extraction
without further involvement on the part of the researchers. This
integration was implemented using Amazon Web Services (AWS)
Lambda platform, which allows for serverless function deployment,
allowing for automated execution based on triggers such as new
file additions, and effectively removing the need for server mainte-
nance.

3.1.1 Data Collection. In order to collect the CRs and HJs avail-
able as PDF files on the official House website—and to easily source
future days in Congress for processing and storage—a document
scraper was created to automate the process of downloading the
documents for further processing. The scraper used for data col-
lection was created in Python with the use of the Beautiful Soup
package. Beautiful Soup is an HTML parser that makes it possible
to dig into the elements on a webpage and extract them for any
specific use. In this case, the download links of all the CRs and HJs
are isolated and compiled to allow for automatic batch downloading
of all the files. The scraper was deployed as a serverless function
on AWS Lambda, which facilitated daily execution (akin to a Cron
job). Through this function, 1,161 Congressional Records and 728
House Journals were collected for further use in the study.

In order to organize and differentiate between the files for CRs
and HJs, a naming system was devised so that each document type
followed a different convention for the file name. The documents
were stored in separate AWS Simple Storage Service (S3) buckets
for further use and archiving purposes.

3.1.2 Document Conversion and Preprocessing. While the publicly-
available documents contain all the necessary information for fur-
ther data analysis, having it in PDF format does not allow for easy
extraction. Furthermore, considering the structural complexity of
a PDF document used in the formatting and design of the needed
body text, a significant amount of unnecessary document features
needs to be removed in order to get to the raw textual data.

A document conversion step was implemented to extract the
useful textual elements from the document—and to exclude any
unnecessary graphical flourishes, such as ornate line separators
and multi-column text flows. This portion of the workflow was
implemented in Node.JS to take advantage of the pdf2json package
for text extraction from PDF documents, and in Python for text
filtering and cleaning.

The document conversion step works to extract all written con-
tent from the page, including the body text, headers, and auxiliary
information, into a format suitable for processing while still being
readable by human eyes. This was accomplished through either the
use of text extraction packages, if the PDF was created from another
electronic source, or through optical character recognition other-
wise. Lastly, the converted text was filtered for any occurrences of
ornamental headers or any other unnecessary information before
being passed on to the information extraction portion.

3.1.3 Speech and Vote Data Extraction. Much like the document
conversion and preprocessing steps, the implementation of this par-
ticular step is specific to each document type. However, the overall
process follows a general structure applicable to all documents.

The extraction process leverages the orderly structure of the
document as present in its textual features. Figure 2 shows a sample
structure of a typical document processed in this study. The CRs
and HJs consistently demarcate each section of the document with
headers, each describing different portions of sessions in Congress.
Examples include the resumption and adjournment of sessions, the
consideration of certain bills and measures, and the different types
of voting to pass these bills. The predictable structure of the docu-
ment was instrumental in the formulation of regular expressions
that could parse through the volumes of text automatically and
section them accordingly. Any further processing from this point
onward is specific to the certain use case envisioned by the user.

Figure 2: Sample body text from Congressional Records.

In line with the language’s emerging popularity in the field of
natural language processing and in the wider data analysis scene,
the preprocessing portions in this implementation were written in
Python. Both the header removal and the section extraction por-
tion pass the raw body text through a series of regular expressions
(regexes) to separate the raw text into the sections based on the dif-
ferent headers found, and to filter out any unnecessary information,
such as any remaining artifacts after the PDF-to-text conversion
process. Formalized language was filtered in a similar way. Text
from the section extraction portion passed through another series
of speech pattern regexes to mark off the routine portions of debate.

3.1.4 Data Storage. In contrast to other studies involving infor-
mation extraction that stored processed data in a relational (i.e.,
fully-structured) database [6, 17], the extracted votes and speeches
are stored in a non-relational (i.e., semi-structured) database. In
the case of this study, each speech segment is stored as a separate
fragment, accompanied with the relevant metadata, including the
specific document the speech can be found in, the bill the fragment
is addressing, the speaker of the fragment, and, if available, the vote
of the speaker on the bill. The semi-structured database was used as

12



, ,

different speeches and votes were found to have varying amounts
of information (i.e., some speeches having votes while some did
not). Instead of using a fully-structured database, which would ne-
cessitate adapting to the type of data with the biggest amount of in-
formation, the lack of definite schema of semi-structured databases
makes the data storage process much easier, by removing the re-
quirement of having to deal with default values or incompatible
rows.

3.2 API
Given the wealth of information provided by the integrated pipeline
in converting the CRs and HJs to a machine-readable format, an API
was developed. Through the API, named the Floorreader API for
how it "reads" discussions from the House floor, other applications
may have access and use the converted plain-text and structured
speech-vote data, and adapt it (as this study did with structuring
data according to speeches and votes) to their own needs.

3.3 Speech Classification Model
To develop the model for classifying speeches according to the
possible votes of representatives on bills, the speech and vote data
collected from the 13th through the 16th Congress were paired to-
gether to facilitate a supervised learning methodology. This meant
vote data were treated as target labels on which their corresponding
speeches were trained. But because the data collected for use in
the development of the model had a large imbalance between the
number of samples available per each class, two primary models
were developed for the task of classifying the speeches. Model A
was developed to be representative of the actual dataset and trained
with the imbalance included from the beginning, while Model B
was trained on an equalized subset of the data. In order to feed the
raw speech data into a classifier, the text was converted into numer-
ical values using a term frequencyâĂŞinverse document frequency
(tf–idf) vectorizer, which bases its conversion on how often a word
appears in a document, prioritizing rarer words (such as “move” and
“motion”), over more common ones (such as “Speaker” and “more”).
Classification was then performed using Stochastic Gradient De-
scent, a class of linear support vector machine algorithm. The whole
operation was tested and validated with ten-fold cross-validation
to maximize the dataset and also to prevent over-fitting on any
particular block of the data. Different features characterizing the
speeches were added to the procedure afterwards to determine if
they would have any bearing on the results in terms of performance.

The models were then evaluated using precision, recall, and F1-
score. These performance metrics were chosen over the accuracy
metric to gauge classification performance in order to lessen the
effects of the large class imbalance in the collected data. Accuracy,
when used as a performance measure in such situations, can be
misleading because “classifiers” that consistently predict in one
direction will be determined to be superior to classifiers that do
otherwise as long as the data is skewed in the same direction. Com-
pared to accuracy, the precision, recall, and F1-score metrics are
less susceptible to this type of error.

4 RESULTS AND DISCUSSION
This chapter contains a discussion of the implementation of the
pipeline and creation of the predictive model outlined in the study.
In addition, the results of the predictive model are detailed and
explained in this chapter.

4.1 Integrated Pipeline
The implementation of the framework described in this study was
able to scrape and collect documents from the 13th Congress, be-
ginning in 2006, through to the 16th Congress. The scraper was
also found to function correctly with documents from the current-
as-of-writing 17th Congress. This eleven-year span of document
collection covered the extent of the electronic archives available
on the congress.gov.ph website. In total, 112,736 speech units were
collected in the debate of 752 bills, with 1,649 votes cast, with each
of the speech segments labelled by the members’ respective votes
if available. From data collection to storage, the entire workflow
covered by the pipeline has been measured to take, on average,
around five seconds to complete.

4.1.1 Data Collection. The web scraper for legislative docu-
ments was able to collect all the CRs and HJs made available on the
House website, summing up to 1,161 CRs and 728 HJs. Some difficul-
ties were found in consistently determining the new file names for
documents from earlier Congresses, namely the 13th through the
15th Congresses, as they did not have as much information in their
original file names as later Congresses had. The scraper was later
written to resolve this issue by extracting the missing information
from the contents of the documents themselves for these particular
files.

4.1.2 Document Conversion and Preprocessing. For the docu-
ment conversion and preprocessing step, the implementation was
able to accurately extract speeches from CRs and vote records from
HJs, and was also able to extract information from the Senate coun-
terpart of the HJ, the Journal of the Senate, without substantial
modification. This demonstrates the versatility of the framework in
allowing for other similarly structured documents to be processed
in a single implementation.

With the framework implementation, any headers included in
future (or past) documents that are not currently covered by the
implementation’s pattern-matching system would require code re-
visions to handle these cases. In addition, any new information
introduced in the documents other than what was considered dur-
ing the implementation would also be cause for a rewrite of the
information extraction portion. For instance, from the 13th to 16th
Congress, nominal voting records (i.e., votes of Congress members
recorded) were omitted from the CRs, only to be introduced inline
in the documents of the 17th Congress. This addition would neces-
sitate rewriting some processing code to take into consideration
these new pieces of textual information so as not to mix it up with
other kinds of information extraction.

While some of these errors can be attributed to incomplete or
incorrect implementation of the framework, it was found that there
were many inconsistencies and errors in the documents themselves.

13



, ,

For instance, the spellings of “affirmative”, “negative”, and “ab-
stention”—critical in parsing the votes of politicians of bills under-
going nominal voting—were often mangled throughout the HJs,
with over 100 errors found across discussions of more than 166 bills
from the 13th through the 16th Congresses. While these kinds of
errors should be addressed at the level of authorship to improve
the quality of documents for all users, any implementation of this
framework should still be able to account for any errors that may
arise out of negligence on the part of the data source. The study
addressed these errors by correcting the typos in the source text
file used for preprocessing.

Aside from typographical errors, the documents publicly acces-
sible from the online archives of Congress are laid out in many
different formats, with each successive Congress introducing its
own minor changes. These modifications, while appearing as mi-
nor changes in the print version, were a cause for errors in text
extraction.

Journals from the 13th and 16th Congresses provide significant
examples for this phenomenon. Some of the first journals in the
13th Congress were typeset in a monospaced font, allowing for
relatively easy text extraction. However, later journals were typeset
in conventional serif and sans-serif fonts, which, while allowing
for a more pleasurable reading experience, complicate information
extraction and can cause inaccurate information to be returned.

For instance, the justified bill titles in recent journals may lead
text extraction methods (text-based and OCR alike) to believe there
are extra spaces within the titles themselves, instead of just being
a feature of the typography (e.g., “AN ACT” becoming “A N A C
T”, as shown in Figure 3). This can also go the opposite way: on
several occasions votes could not be parsed as the sans-serif font
would appear to clump all names of politicians together.

Figure 3: Inconsistent spacing in documents, as shown here,
can result in inaccurate text extraction.

In essence, while the core structure of the document remained
constant (i.e., section header in all caps, body text following, bounded
by another section header) the content of the PDF was inconsistent.
The study addressed these errors by fixing the spacing of text in
the source text file used for preprocessing.

4.1.3 Speech and Vote Data Extraction. The implementation of
the information extraction step follows the process outlined in
Figure 4, and makes use of the inherent structure present in both
CRs and HJs for efficient data extraction.

Firstly, the documents are sectioned according to the bill under
discussion. Both CRs and HJs are structured according to the flow
of sessions in the HoR, with each section signified by a unique

header type. These headers, outlined in Table 1 for CRs and Table 2,
mark the portions of the document which contain significant data
for extraction.

Table 1: Relevant features from the Congressional Records
and their purpose

Feature Purpose

CONSIDERATION OF H.B. NO. [] Marks the start of
debate on a certain bill

SUSPENSION OF CONSIDERATION
OF H.B. NO. []

Marks the end of
debate on a certain bill

All other sections Removed from the
document

Table 2: Relevant features from theHouse Journals and their
purpose

Feature Purpose
RESULT OF THE VOTING ON THE
APPROVAL ON THIRD READING OF
CERTAIN HOUSE BILLS

Marks sections for vote
extraction

APPROVAL ON THIRD READING OF
HOUSE BILL
APPROVAL ON THIRD READING OF
CERTAIN HOUSE BILLS
APPROVAL ON THIRD READING OF
CERTAIN MEASURES
APPROVAL ON THIRD READING OF
CERTAIN BILLS

All other sections Removed from the
document

The speeches made by a Congress member—that is, everything
they say during the period marked by the section headers—are
grouped together. After filtering, the resulting speech data is la-
beled with the way each of the Congress members voted, in the
affirmative or negative, for the respective bills. For example, if a
certain Representative Dela Cruz were to make several speeches
under the consideration of House Bill No. 2018, which he voted
in the negative for, all speeches made by him regarding that bill
would be tagged as being “negative”. This is reasonable because, al-
though his position on the bill might have changed throughout the
discussion, the totality of his speeches should ultimately amount
to the single encapsulating vote he cast at the end of the debate
[17]. Therefore, his vote can be used to fairly represent the overall
stance of the sum of his speeches.

4.1.4 Data Storage. While AWS S3 buckets were used for the
storage of scraped documents and the text files resulting from the
document preprocessing portion, the use of a full-fledged database
system was necessary for the extracted vote and speech data. AWS’
NoSQL-based DynamoDB service was used to store the processed
and combined speech and vote data.

14



, ,

Figure 4: Diagram of information extraction workflow.

As DynamoDB tables do not require fixed schema—only needing
primary sort and range keys for object sorting and automatic table
partitioning, respectively—the study was able to store different
amounts and types of data per speech, depending on how much
information was available in both the CRs and HJs.

This format was also created in consideration of the storage
needs of the DynamoDB database-as-a-service, part of the Amazon
Web Services platform. DynamoDB’s key-value-oriented structure
fit well with how the study aims to serve the extracted data in
the API. It is further reinforced by its tight integration with AWS
Lambda, which allowed for swift reads and writes to the database,
and its ability to scale for periods of high input (e.g., insertion
of new data) and output (e.g., queries via the API). An example
of the schema in action can be seen through how a speech with
corresponding vote was stored in the manner specified in Figure 5.

Figure 5: Sample return values for an API call for a single
speech and accompanying vote.

4.1.5 Integrated Pipeline Automation. As was mentioned in the
methodology, the whole process described in sections 4.1.1 to 4.1.4
has been automated through the use of AWS Lambda—a server-
less computing platform powered by Amazon Web Services. The
platform afforded the ability to write each segment of the implemen-
tation in a specific environment catered to the segment’s end goal,
without having to maintain shared environments throughout the
whole project.The Lambda platform allowed the study to use differ-
ent languages and packages for each step of the information pipeline

in isolation, without having to consider any cross-functional de-
pendencies.

A graphical overview of the entire pipeline is provided in Figure
6. Note that each function (shown as the octagonal figures labelled
with the Greek letter “lambda”) corresponds to a different portion
of the pipeline, indicated in the bold text next to each function.

Through AWS Lambda, once any new CR or HJ is uploaded to
the House website, the entire data extraction procedure detailed
in this study is triggered automatically. A fresh batch of uploads
on their website can immediately and effortlessly be transformed
into machine-readable speech and vote data, accessible via the
Floorreader API and instantly ready for further processing on the
part of any end user. The whole pipeline is put into operation
without the need for anymaintenance on the part of the researchers.

4.1.6 API Design. A working version of this implementation is
available at api.floorreader.ph, with access granted upon request.
The extracted data will be retrievable in JSON format through this
URL. Speech data is structured as speeches made by representatives
grouped by bill. The Floorreader API returns an array of bills dis-
cussed under single CRs structured as shown below. This example
and the examples that follow have been truncated in the interest of
space.

Vote data, as shown in Figure 7, is structured simply as a set of
lists composed of the affirmative, negative, and abstention votes
on a certain bill, with each representative’s name included on the
appropriate list corresponding to their vote. This data is available
only for bills being voted on Third Reading. Similarly, speech data
for a single speaker, also shown in Figure 7, is composed of a list
containing all the speeches a certain member made on a single bill.
It must be noted that the speech data is not returned with the vote
data even if it is present in the database.

4.1.7 Data Structuring for Classification Model. As the wider
project focused on relating representatives’ speeches in bill debates
to their corresponding votes for bills on their Third Reading, data
from both the internal CR and HJ APIs were condensed into a
structure that can be directly used to correlate the two. Effectively,

15



, ,

Figure 6: Overall structure of the information extraction pipeline as deployed on AWS Lambda as a series of connected server-
less functions, with accompanying storage buckets for documents and database for extracted speech and vote data.

vote and speech data were joined on a specific Bill and Member ID
to obtain a document as in Figure 8.

This specific format groups speeches by congress number, the
house bill being addressed and the representative making the re-
marks. Their eventual vote (or lack thereof) on the bill’s third and
final reading in the House, if the bill has made it to that stage, is
included in the data.

4.2 Model Development
4.2.1 Speech Vectorization Process. The raw speeches were first

tokenized through a count vectorizer, which essentially converted
textual data (word occurrences) into numerical feature vectors.
These were then put through a tf–idf transformer to intelligently
account for the presence of words against the length and breadth
of the speeches. This was done to normalize the average count of
words in longer speeches as compared to those in shorter ones
(term frequency) and to decrease the relative importance of words
occurring in many speeches as opposed to those occurring in only
a few (inverse document frequency). Doing so would help reduce
the impact of words falling under parliamentary language, which
are recurring but unnecessary. From there, classification was per-
formed with Stochastic Gradient Descent (SGD), a type of linear
support vector machine. SGD was chosen for its time efficiency and
performance over other classification algorithms commonly used
in textual analysis.

4.2.2 Performance of Model A. Table 3 shows the confusion
matrix of Model A, which was trained on the complete dataset
of 1,645 speeches. Abstain, affirmative, and negative votes were
all components of the data comprising this model. The returned
performance scores of the model can be seen in Table 4.

Table 3: Confusion matrix of Model A.

Predicted
Abstain Affirmative Negative Total

Abstain 0 33 0 33

Ac
tu
al Affirmative 1 1484 0 1485

Negative 0 127 0 127
Total 1 1644 0 1645

Table 4: Performance scores of Model A.

Precision Recall F1-score Support
Abstain 0.00 0.00 0.00 33

Affirmative 0.90 1.00 0.95 1485
Negative 0.00 0.00 0.00 127

Avg / Total 0.81 0.90 0.86 1645

The raw averages of the performance scores of Model A render
good percentages at 81% average precision, 90% recall, and 86% F1-
score. These numbers, however, cannot be interpreted without first
taking into account the considerably uneven distribution of classes.
Only 8% (127) of the total speeches produced by the extraction
pipeline had negative votes. Meanwhile, 90% were affirmative (1485)
and 2% abstain (33). Because of this, the model was trained with
a large skew towards classifying in the affirmative. This had all
but one of the speeches being categorized by the model in the
affirmative as well, resulting in very high accuracy, but no speech
being classified correctly in the abstain or negative classes.

4.2.3 Performance of Model B. The confusion matrix of Model
B, under which the uneven vote distribution was equalized, can be

16



, ,

Figure 7: Sample return values for a Floorreader API call
for all speeches and votes on a single arbitrary bill that has
passed Third Reading.

Figure 8: Sample values returned for classifier training.

seen in Table 5. Meanwhile, the performance of Model B can be
seen in Table 6.

Table 5: Confusion matrix of Model B.

Predicted
Affirmative Negative Total

Actual Affirmative 96 31 127
Negative 9 118 127
Total 105 149 254

Table 6: Performances scores of Model B.

Precision Recall F1-score Support
Affirmative 0.91 0.76 0.83 127

Negative 0.79 0.93 0.86 127
Avg / Total 0.85 0.84 0.84 254

Given the 127 speeches in the corpus tagged with a negative vote,
a random set of 127 speeches was also taken from the affirmative
set to create a balanced cluster on which to train. The 33 speeches
tagged as “abstain” were discarded. Speech tokenization for this
model was also slightly adjusted by disregarding a list of basic
English and Filipino stop words and also by incorporating bigrams
into the feature vectorization on top of just having the unigrams
initially.

Model B produced far more promising results. Although its av-
erage recall and F1-score dipped slightly, the model’s average pre-
cision went up to 85%. More importantly, it was able to classify
speeches into the negative class with scores of 79%, 93%, and 86%
for precision, recall, and F1-score respectively, compared to the
zeroes across the board for these three metrics for Model A.

4.2.4 Prominent Classification Features. Because Model B was
able to distinguish between speeches resulting in affirmative and
negative votes, it became useful to analyze the top feature coeffi-
cients of the classification. These are measures of the importance
of each feature, which in this case are words, in the classification
of a speech towards a specific category. The higher the absolute
value of the coefficient, the stronger it correlates with its particular
class. Shown in Figure 9 are the top 20 n-gram features for speeches
classified in the affirmative and negative classes. Positive values on
the right are those belonging to the affirmative class while negative
values on the left are for the negative class.

Noteworthy in the chart for affirmative features was the large
occurrence of words falling under parliamentary language—mainly,
the very high coefficient of the unigram move. This would make it
appear as though representatives voting in the affirmative are not
much interested in actual debate, but more with simply moving the
proceedings forward.

4.2.5 Experimentation with the Dataset and Model. To try to
improve the performance of the Model B, different experiments
were conducted to add more features to aid the classification. Titles
of the bills and their corresponding category (formally known as
the bill’s “referral”), for example, were scraped from the Congress

17



, ,

Figure 9: Prominent n-gram features in the affirmative and negative classes.

website to serve as supplementary features on top of the words
found in the speeches. However, as some bills documented in the
records did not appear on the website, the corpus of 127 speeches for
each class was constrained even further to those speeches having
a bill title and referral. This about halved the whole cluster for
training and validating and so did as much to hurt performance
as it did help it. Other attempts to add more dimensions did not
appreciably affect performance.

4.2.6 Political Analysis of Uneven Vote Distribution. The heavy
skew towards affirmative votes in the passing of bills can be taken to
mean many things. For example, it is possible that hotly-contested
bills rarely ever reach the third reading and are shelved. When
these bills are reintroduced, they may have been changed to ad-
dress the concerns of the representatives that had initially voted in
the negative. It is also possible that most bills going through the
lower house of Congress do not warrant much debate in the first
place–bills having inconsequential effects (e.g., the renaming of
schools or the declaration of public holidays). Or perhaps even—
quite unfortunately—that members of the House of Representatives
simply pass bills on order from those in higher seats of power.

5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion
In summary, this paper was able to outline and implement a system
for the extraction of relevant text from floor debate records of the
House of Representatives of the Philippines, while at the same time
laying the foundations for a framework to extract information from
a wider set of documents throughout government. The framework
involved breaking down the structure of the PDF files and the text
itself to get the raw information, while using textual features to
section the information into usable data that can be structured for
further analysis.

The implemented pipeline was able to accurately process and
convert almost two thousand records and journals from the House

of Representatives, from the 13th up to the 16th Congress and
beyond with minimal modification, and was open to processing
documents from other branches of government, such as congres-
sional records and journals from the Senate.

The study was also able to provide an API for retrieving speech
and vote data from the above corpus. It is hoped that the informa-
tion made available through the Floorreader API is used to create
applications that help make analyses of political debates more rele-
vant, and make legislative data itself more accessible to the average
Filipino citizen. For instance, the speeches made available here
could be used without further analysis to visualize the activity of
politicians in debates, showing how often a politician speaks regard-
ing certain topics or bill referrals. On another note, the vote data
can be coupled with more information on the bills themselves (such
as their titles, referrals, and actual body text) to provide readers
with better insights as to how politicians vote on salient measures,
and whether their representatives really do represent their views,
hopefully leading voters to make more informed decisions.

The study was also able to develop a model for classifying the
speeches of representatives made in the debate of bills as being
either those that would lead to an affirmative vote for or a negative
vote against a bill. The model achieved solid performance scores
of 85% in precision and 84% in recall and F1-score on the extracted
speech and vote corpus, as calculated by the scikit-learn Python
package. However, this was managed only after equalizing the
dataset to account for the greatly uneven distribution of negative
and positive votes. A model trained on a real-world distribution
only managed to classify speeches in the affirmative and will prove
almost useless.

5.2 Recommendations
Given how this study focused on the development of the frame-
work and an initial implementation of the information extraction
pipeline and development of the predictive model, there are many

18



, ,

opportunities for further research. Possible improvements leading
to further studies are detailed in this section.

5.2.1 Integrated Pipeline. Modifications to the integrated pipeline
can be made on any portion of the framework to enhance perfor-
mance or to improve the accuracy of the extracted information.

Print Document Collection: A limitation stated earlier in the
study concerned the lack of digitized versions of CRs and HJs from
congresses earlier than the 11th Congress. Existing technologies
such as optical character recognition can be combined with me-
chanical technologies for handling the paper documents to create a
fully-automated system for creating digital versions of documents.
Interested researchers could use or build upon existing mechanical
book scanners, and work in tandem with the Library of the House
of Representatives to adapt these systems to the different shapes
and sizes of the CRs and HJs in their archives.

Expanded Information Extraction: While this study focused
mainly on the extraction of speech and vote data from the CRs
and the HJs, there remains a lot of data that can be retrieved from
these documents. These include the attendance of the representa-
tives, the bill names and their referrals (so as to remove the need
to extract them from the HoR website), correspondence with the
Senate, and privilege speeches that happen outside the bounds of
conventional debate. This information can be used not only to po-
tentially improve the model, but also to expand the information
provided in the Floorreader API, and make this data available for
other researchers to use.

Improved Document Preprocessing and Section Extraction:
While the regex-based implementation of the pipeline has suf-

ficed for the purposes of the wider investigation, it is clear that
a better method involving the graphical organization of the doc-
uments in the analysis would greatly enhance the efficiency and
reliability of the pipeline.

With the pipeline implementation, any headers included in fu-
ture (or past) documents that are not currently covered by the
implementation’s pattern-matching system would require code re-
visions to handle these cases. In addition, any new information
introduced in the documents other than what was considered dur-
ing the implementation would also be cause for a rewrite of the
information extraction portion. For instance, from the 13th to 16th
Congress, nominal voting records (i.e., votes of Congress members
recorded) were omitted from the CRs, only to be introduced inline
in the documents of the 17th Congress. This addition would neces-
sitate rewriting some processing code to take into consideration
these new pieces of textual information so as not to mix it up with
other kinds of information extraction.

A more optimized implementation would take advantage of com-
puter vision and artificial intelligence to recognize and detect use-
ful elements of documents—instead of pushing all extracted text
through a series of regexes, as was done in the implementation
of the framework in this paper, filtering and segmentation can be
done based on the graphical organization of the text, and would
greatly reduce the number of assumptions made in the structure of
the document.

Adding in machine learning techniques would also open up
the framework to not only new documents (so as to build a fully
functioning system capable of extracting relevant text from all

Figure 10: Unique formats often emerge in these documents
that can easily be detected with more advanced algorithms.

levels of government), but also modifications of existing documents.
New formats or additions (such as the inclusion of vote information
in the CRs starting in the current-as-of-writing 17th Congress,
or the induction of new House members, as shown in Figure 10)
would easily be recognized and organized in a manner suiting
the information, without the need to manually program for each
possible configuration of the document, especially formats created
for one-off or infrequent occurrences, such as the listing of House
members at the start of each new Congress.

5.2.2 Stance Extraction Model. Although the study was not able
to expand dimensionality useful to the improvement of the model
beyond the features extracted from speeches, adding features for
the specific voting member and authors of the bill being voted on
(or their respective partylists) can be used to expose the partylines
along which representatives vote. Such information is available on
the House website and can easily be scraped just as the legislative
documents were for this study.

To further verify the efficacy of themodel, it is also recommended
that it be tested on a yet-to-be-seen corpus of data—the 17th Con-
gress, which is still ongoing as of writing. Since it has not concluded,
it was not included in the initial testing and validation of the classi-
fication model. However, it may serve as an additional verification
step to further legitimize the applicability of the model.

ACKNOWLEDGMENTS
The authors would like to express their sincere thanks to Dr. Mar-
lene M. De Leon of the Social Computing Science Laboratory (SCSL)
of the Ateneo de Manila University for her invaluable guidance
throughout the development of this thesis, from the initial concep-
tion to the final output. This project would not have been possible
without her ever-present support.

The authors would like to thank Dr. Andrei Coronel of the De-
partment of Information Systems and Computer Science and Dr.
Maria Regina Justina Estuar of the SCSL for their assistance in the
development of this framework and implementation, and for their
guidance in helping form the wider project of analyzing political
discourse in the Philippine House of Representatives.

19



, ,

The authors would also like to extend their gratitude to Beatrice
Adajar for her assistance in developing one of the scrapers used for
extracting information from the House of Representatives website.

Lastly, the authors would like to thank the librarians of the
Library of the Senate of the Philippines for their assistance in nav-
igating the journals and records of the Senate, and for helping
determine the feasibility of the study with regards to the resources
available for that branch of Congress.

REFERENCES
[1] 2014. Open Data Philippines Action Plan 2014-2016. (2014).

http://data.gov.ph/sites/default/files/Open%20Data%20Philippines%20Action%
20Plan%202014-2016.pdf

[2] Flora Amato, Francesco Colace, Luca Greco, Vincenzo Moscato, and Antonio
Picariello. [n. d.]. Multimedia data integration and processing for E-government.
([n. d.]).

[3] F Amato, A Mazzeo, V Moscato, and A Picariello. 2009. Information extraction
from multimedia documents for e-government applications. In Information
Systems: People, Organizations, Institutions, and Technologies. Springer, 101–108.

[4] Mohit Bansal, Claire Cardie, and Lillian Lee. 2008. The Power Of Negative Think-
ing: Exploiting Label Disagreement In The Min-Cut Classification Framework.
In Proceedings of COLING: Companion volume: Posters. 15–18.

[5] Stefan Kaufmann Bei Yu and Daniel Diermeier. 2007. Ideology Classifiers for
Political Speech. (2007).

[6] Allan Borra, Charibeth Cheng, Rachel E. O. Roxas, and Sherwin Ona. 2011. Infor-
mation Extraction and Opinion Organization for an e-Legislation Framework for
the Philippine Senate. In Proceedings of the 2011 Conference on Human Language
Technology for Development. 196–204.

[7] T. T. Cheng, J. L. Cua, M. D. Tan, K. G. Yao, and R. E. Roxas. 2009. Information
extraction from legal documents. In 2009 Eighth International Symposium on
Natural Language Processing. 157–162. https://doi.org/10.1109/SNLP.2009.5340925

[8] Jim Cowie and Wendy Lehnert. 1996. Information extraction. Commun. ACM 39,
1 (1996), 80–91.

[9] MatthewGentzkow and JesseM Shapiro. 2010. What drivesmedia slant? Evidence
from US daily newspapers. Econometrica 78, 1 (2010), 35–71.

[10] D King, Ramirez-Cano D, F Greaves, I Vlaev, S Beales, and A Darzi. 2013. Twitter
and the health reforms in the English National Health Service. Health Pollicy 110
(2013), 291–297.

[11] Chih Hao Ku, Alicia Iriberri, and Gondy Leroy. 2008. Natural language process-
ing and e-Government: crime information extraction from heterogeneous data
sources. In Proceedings of the 2008 international conference on Digital government
research. Digital Government Society of North America, 162–170.

[12] D LycariÃčo and M.A dos Santos. 2016. Bridging semantic and social network
analyses: the case of the hashtag precisamosfalarsobreaborto (we need to talk
about abortion) on Twitter. Information, Communication Society 20, 3 (2016),
368–385.

[13] Ann Macintosh. 2008. E-democracy and e-participation research in Europe. In
Digital Government. Springer, 85–102.

[14] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno Gonçalves, Snehal Patil,
Alessandro Flammini, and Filippo Menczer. 2011. Truthy: mapping the spread of
astroturf in microblog streams. In Proceedings of the 20th international conference
companion on World wide web. ACM, 249–252.

[15] Citizen-Voters Education Secretariat. 2005. Workshop Planning on Citizen Voters’
Education. (2005). Institute for Electoral and Political Reform, Retrieved October
31, 2017 from http://www.iper.org.ph/CER/citizenvoterseducation/resources/ac-
workplanning.html.

[16] Q Simms. 2016. Twitter predicted the results of the Presidential Primaries. Could
it predict the general election, too? (2016). ParseHub, Retrieved October 1,
2017 from https://blog.parsehub.com/what-27000-tweets-can-tell-you-about-the-
presidential-primaries/.

[17] Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get Out The Vote: Determining Sup-
port Or Opposition From Congressional Floor-Debate Transcripts. In Proceedings
of EMNLP. 327–335.

20


