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ABSTRACT

Given a complete weighted undirected graph G with both vertex
and edge weights, the Weighted Clique Problem (WCP) is the prob-
lem of �nding a clique in G of orderm with extremal weight. A
variant of WCP is the Minimum Edge-Weighted Clique Problem
(Min-EWCP) where the vertex weights are all 0 but edge weights
≥ 0 and the problem is that of �nding the clique in G of order
m with the least weight. In this paper, the algorithm presented
by Eremin et. al. for Min-EWCP was reviewed and another al-
gorithm was presented along with its performance guarantee for
the metric and the ultrametric set of inputs. A way to determine
the performance guarantee as the strictness of the metricity is
varied through a factor σ was also shown. Furthermore, this study
presents the problem of identifying sets of commonly existing pu-
tative co-regulated, co-expressed genes, called gene clusters, as a
clique-�nding problem. A gene distance matrix was constructed
from a genome database by obtaining the distances of each pair
of genes in each genome. Finally, experimental results are shown
where approximate gene clusters are obtained from putative or-
thologous genes of the genomes E.colistrK − 12 and B.subtilis .
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1 INTRODUCTION

In this contribution, we study optimization problems related to
�nding cliques in complete graphs. Cliques have been thoroughly
studied in the area of graph theory (e .д., [14, 6, 3, 8, 23, 12, 13, 11,
18, 2, 7, 15, 16, 22]). Among these was a study [10] that presented
a general combinatorial problem called the Weighted Clique Prob-
lem (WCP). Given a complete weighted undirected graph G with
both vertex and edge weights, the Weighted Clique Problem is the
problem of �nding a clique of the graph G of order m with the
smallest (largest) weight. It was shown in the said study that both
minimum andmaximumWCPs are not approximable in the general
case. �e edge-weighted clique problem (Min-EWCP), a variant of
the WCP, was introduced in the said study, where the weights of
all vertices are assigned 0 and the basis of determining minimum-
weighted clique are the edge weights. A fast 2-approximation
algorithm was also presented in [10], however, for two important

cases of the problem, in which vertex weights are nonnegative
and edge weights either satisfy the triangle inequality (the metric
WCP) or are squared pairwise distances for a point con�guration
in Euclidean space (the quadratic Euclidean WCP).

Here we consider a slightly di�erent version of the problem mo-
tivated by the challenge of identifying sets of commonly existing
putative co-regulated, co-expressed genes, called gene clusters. In
comparative genomics, which is the �eld in biological research
wherein genomic sequences are analyzed to understand the ge-
netic elements de�ning the commonality and uniqueness among
di�erent organisms [9], one of the fundamental problems is that of
de�ning relationships between species. Among the methods used
to achieve this is gene clusters discovery. A gene cluster is a set of
closely-related genes which are arranged in close proximity with
each other, even a�er genome sequences have evolved in multiple
events such as gene duplication and gene loss. Genomic regions
with relatively similar gene content is a result of duplication and
divergence [17]. Gene clusters appear in two or more genomes
and perform related functions. Organisms containing similar gene
clusters with other species tend to share common traits. �is was
formulated as the Approximate Gene Cluster Discovery Problem
(AGCDP) and was formulated as an integer-linear programming
problem in [20]. �is was later represented as a graph in [1].

In this paper, we present the problem of �nding approximate
gene clusters as a clique-�nding problem. In Section 2, a review
of the results in the study of Eremin et. al. [10] is presented as
well as another proof approach which shows that the algorithm
presented in the study returns at most twice the cost of the optimal
solution for the metric case. Results on performance guarantees
for two input classes for the said algorithm, as well as another
algorithm for clique-�nding problem as also presented in Section 3.
In Section 4, we show the formulation of Approximate Gene Cluster
Discovery as a weighted clique problem, speci�callyMin-EWCP.
Experimental results are shown in Section 5, where approximate
gene clusters are obtained from putative orthologous genes of the
genomes E.colistrK − 12 and B.subtilis .

2 PRELIMINARIES

2.1 �eWeighted Clique Problem (WCP)

�e Weighted Clique Problem (WCP) was presented in [10] as a
general combinatorial problem. Given a complete simple weighted
undirected graph G = (V ,E,a, c ) and weight functions a : V → Q
and c : E → Q , which de�ne the vertex weights and the edge
weights respectively, the weight of the graph G is expressed as the
sum Σv ∈V av + Σe ∈Ece . Formally, it is de�ned as follows :
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De�nition 2.1 (Weighted Clique Problem (WCP) [10]). Given a
complete weighted undirected graph G = (V ,E,a, c ), where a :
V → Q and c : E → Q , and a positive integer m, �nd a com-
plete subgraph (clique) of the graphG of orderm with the smallest
(largest) weight.

A variant of WCP was further de�ned in [10] as Min-EWCP,
which is the problem of �nding the clique of orderm in theweighted
complete graph G = (V ,E,a, c ) with the smallest weight, where
ai = 0 and ci j ≥ 0. It was shown that this problem is not in APX, or
the class of NP optimization problems that allow polynomial-time
approximation algorithms with approximation ratio bounded by a
constant.

2.2 Row’s Subset of Symmetric Matrix Problem

Eremin et. al. [10] further presented the row’s subset of symmetric
matrix problem (RSSM) as a polynomial time equivalent formula-
tion of the minimum edge-weighted clique problem (Min-EWCP)
in the form of property veri�cation problem.

De�nition 2.2 (Row’s subset of symmetric matrix problem (RSSM)

[10]). Given a symmetricn xnmatrixW = (wi j ) with nonnegative
entries and wii = 0, a positive integerm and a positive number
D, determine whether the set of rows ofW contains a subset C of
cardinalitym such that

F (C ) =
1
2

∑
i ∈C

∑
j ∈C

wi j ≤ D

�e following polynomial-time algorithm was presented in the
said study as a solution to RSSM, and consequently to Min-EWCP,
which we will refer to here as Algorithm A :

Algorithm A
Step 1. For each j = 1, ...,n, �nd a set Bj that consists of indices of
m smallest entries in the jth row ofW including the index j itself.
De�ne S (Bj ) =

∑
i ∈Bj wi j .

Step 2. Denote by k∗ the value j for which S (Bj ) takes the mini-
mum value S∗ = S (B∗) =

∑
i ∈B∗ wik∗ .

Take C = B∗ as an approximate solution of RSSM.

Each approximation algorithm has an inherent weakness. In
the case of Algorithm A, one could note that it makes use of only
m− 1 edges in its prediction of the

(m
2
)
edges in anm-clique. In the

process it actually ignores
(m−1

2
)
edges - edges which may have

the least weights.
If we letW be the adjacency matrix representation of a complete

graph G, then it is a symmetric n x n matrix W = (wi j ) with
nonnegative entries and wii = 0. For a given vertex vi , the row
corresponding to it inW contains entries that represent weights
of edges incident to vi , with ith entry having the value 0. �ese
entries are therefore the weights of the star having vi as the hub.

Given a positive integerm, them − 1 vertices corresponding to
them − 1 entries in the ith row with the lowest non-zero values
make up the minimum weighted (m − 1)-star, i.e. the (m − 1)-star
whose edges have the least total weight and having vi as the hub.

Step 2 of Algorithm A clearly approximates minimum-weighted
m-clique as it determines the minimum-weighted (m − 1)-star by
selecting the vertices Bj corresponding to the jth row, of which the
sum of them least entries, S (Bj ), are also the least across all rows.

3 AN ALGORITHM FOR MIN-EWCP

In this section we present Algorithm B, an alternative algorithm
forMin-EWCP.

3.1 Algorithm De�nition

It was shown in the previous section that Algorithm A clearly
approximates minimum-weighted m-clique by determining the
minimum-weighted m − 1-star. However, the point of interest
of Algorithm B is not in �nding the jth row for which S (Bj ) is
minimum. �is algorithm is more concerned that the set of vertices
corresponding to the lowest entries in each row appear not just
in one row but most frequently appearing as the lowest entries
across all rows. �is algorithm takes such a case as an indicator of
an optimal solution.

Given an m-clique, each of the vertices v0,v1,v2, ...,vm−1 is
actually a hub of a m − 1-star. �e set of m vertices that most
frequently corresponds to the m entries in a row with the least
value across all rows are most probably the same set of vertices
that make up the minimum-weightedm-clique.

We now therefore present Algorithm B as a polynomial-time
algorithm solution to Min-EWCP:

Algorithm B
Step 1. For each j = 1, ...,n, �nd a set Bj that consists of indices of
m smallest entries in the jth row ofW including the index j itself.
De�ne S (Bj ) =

∑
i ∈Bj wi j .

Step 2. Denote by B∗ the set(s) of indices (vertices) Bj which
appear(s) with the highest frequency r , across all then rows. In case
more than one set of vertices appear with the highest frequency,
the one with the smallest total weight is selected.

Take C = B∗ as an approximate solution.

�e more number of times a set of vertices corresponds to the
minimum entries across the rows, the more likely it is to be the
vertex set of the minimum-weightedm-clique. If the same set of
vertices B∗ appears across all rows, then for sure B∗ is the optimal
clique. Now in the case that all the Bj ’s returned per row all have
the frequency 1, that is, the set of indices for the minimum entries
per row are unique, then the one with the minimum weight is
chosen (similar to that of Algorithm A).

In Algorithms B, if a vertex set B∗ correspond to the minimum
weighted (m− 1)-star in r rows, then

r∑
i=1

(m− i ) are considered and

only
(m−r

2
)
are not considered.

3.2 Performance guarantee for the Metric Case

We now show that Algorithm B has a performance guarantee of
returning less than twice the optimal result for the metric set of
inputs.
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Theorem 3.1. Algorithm B is a 2 −O ( 1m )-approximation algo-

rithm for the metric case of Min-EWCP that runs in O (n2)

Proof. SinceW is an n x n-matrix, which the algorithm tra-
verses only once, it is easy to see that the algorithm runs in O (n2).
Checking the vertex set with the maximum frequency also takes
O (n2). �erefore the whole algorithm is still inO (n2). Furthermore,
we recall that given a complete graphG with positive edge weights,
we de�ne cost (G ) as the sum of all the edges in G. We de�ne Q as
the optimal clique or them-clique inG of minimum weight and we
let Q ′ be them-clique returned by Algorithm B. We de�ne Q∗ as
the (m−1)-star inG with minimumweight or cost. We further note
that Algorithm B in its approximation of the minimum weighted
m-clique, selects the vertex sets corresponding to them smallest
entries in each row (entries on the diagonal of the adjacency matrix
are 0 and are included), and chooses the set that has the highest
frequency among the chosen vertices. �us, cost (Q ′) ≤ β · cost (Q ),
where β is the approximation ratio for Algorithm B.

It has already been established before that

1
m − 1 ·

(
m

2

)
·

m−1∑
i=1

w ′i ≤ cost (Q ),

m

2 · cost (Q
∗) ≤ cost (Q ).

Without loss of generality we assume that the vertices involved
with Q are also the set of vertices which represent the minimum
entries for the said rows in Min-EWCP, making it indeed the opti-
mal clique. We note that of the (m − 1)-stars in Q , of which there
arem, none would have a cost lower than that of Q∗. �erefore, at
best there will bem minimum weighted (m − 1)-stars in G and all
of them are in Q , that is, each of them vertices in Q is a hub of a
minimum weighted (m − 1)-star in G.

Now, for the upper-bound on cost (Q ′), we note that the cost
of Q ′ is actually the sum of the cost of Q∗ and the cost of the
remaining edges in Q ′ but not in Q∗ is expressed as:

cost (Q ′) =
e∑
i=1

w ′i =
m−1∑
i=1

w ′i +
e∑

i=m
w ′i ,

where e =
(m
2
)
andm ≥ 3.

Here, in the usual case, cost (Q∗) is taken from the cost of the
optimal (m − 1)-star Q∗, while cost of each of the remaining edges
E(Q ′ \ Q∗) is at most double of that of an edge in Q∗ because of
the metricity property. However, since the solution returned by
the algorithm is the set of vertices V (Q∗) which correspond to
the minimum entries in r row(s), if a set of index vertices appears
once, i.e. r=1, then we have m − 1 optimal edges, and then we
predict at worst double cost for

(m−1
2

)
edges. If r=2, thenm − 2 is

added to the optimal edges, since one of the edges is already shared
with the �rst set, and thus we havem − 1 +m − 2 optimal edges.
�is makes the sum of the weights of the optimal edges equal to

cost (Q∗ )
m−1 ·

r∑
i=1

(m − i ), for a vertex set with frequency equal to r .

For the remaining
(m−r

2
)
edges in Q ′, each one is assigned at most

double of that of an edge in Q∗. �us, if a set vertices appears with
the highest frequency r across all the rows, then

cost (Q ′) =
cost (Q∗ )
m−1 ·

[
r∑
i=1

(m − i ) + 2 ·
(m−r

2
)]
.

�erefore,

β ≥
cost (Q ′)
cost (Q ) =

cost (Q∗ )
m−1 ·

[
r∑
i=1

(m−i )+2·(m−r2 )
]

m
2 cost (Q

∗ )

≥ 2
m (m−1) ·

[
rm −

r (r+1)
2 +

2[(m−r )2−(m−r )]
2

]

≥ 2 − 2r
m−1 +

r (r+1)
m (m−1)

≥ 2 −O ( 1m )

�us, Algorithm B is a 2 −O ( 1m )-approximation algorithm for
the metric case of Min-EWCP.

�

We further note that when r =m, then β = 1. �is means that
if all the m vertices of an m-clique are the hubs of m minimum
weighted (m−1)-stars, then thatm-clique is the minimumweighted
m-clique in G.

3.3 Performance guarantee for the Ultrametric

Case

We now show performance guarantee of Algorithm B in another
case of inputs, speci�cally, the ultrametric case of inputs.

Theorem 3.2. AlgorithmB is a 1+O ( 1t )-approximation algorithm

for ultrametric case of Min-EWCP.

Proof. When considering ultrametric weight functionw (i.e.,
for any distinct verticesa,b, c ∈ V ′,w (a,b) ≤ max (w (b, c ),w (c,a))),
we note the following:

In obtaining the performance guarantee of Algorithm B for
the ultrametric case of inputs, we wish to obtain α for which
cost (Q ′) ≤ α · cost (Q ). Intuitively, necessary for this is deter-
mining and describing the instance when di�erence between the
costs of Q ′ and Q is the greatest.

To describe such instance, we note that cost (Q ′) ≤ cost (Q∗) +
e∑

i=m
w ′i , and cost (Q ) ≤ cost (QA ) +

e∑
i=m

wi , where, by de�nition,

QA is a (m − 1)-star, such that cost (Q∗) < cost (QA ), even if
cost (Q ) ≤ cost (Q ′). For Q∗ to be chosen as the (m − 1)-star in
G of minimum weight, it is because though it has (m − 2) edges
that have relatively larger weight, say b, it has an edge that has a
very small weight, say a, making the cost (Q∗) still the least among
the (m − 1)-stars. �e same, however, cannot be said about Q ′.
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We note that
e∑

i=m
w ′i makes use of edges that are part of Q∗, as is

shown in Figure 2, but because of the ultrametric property, each of
the edges in Q ′ but not in Q∗, i.e. E (Q ′ \Q∗) = w ′5,w

′
6, ...,w

′
9,w

′
10,

will assume the weight value of the higher-weighted edge between
the two edges it forms a triangle with. Since each of the edges in
E (Q ′ \Q∗), i.e. the non-dashed edges, would have to be from be-
tween the dashed edges (i.e. edges inQ∗), then

e∑
i=m

w ′i =
(m−r

2
)
· b.

�erefore, cost (Q ′) = a + b ·

[
r∑
i=1

(m − i ) − 1
]
+ b ·

(m−1
2

)

Figure 1: �e instance where α is greatest where cost (Q ′) ≤
α · cost (Q )

On the other hand, in describing such instance for Q , since
cost (Q ) ≤ cost (QA ) +

e∑
i=m

wi , where cost (Q∗) < cost (QA ), then

given that a is a very small positive value, we can let cost (Q∗) =
cost (QA ) + a. For the edges that are not in QA, without loss
of generality, if we let w1 ≤ w2 ≤ w3 ≤ ... ≤ wm−1, where
wi ∈ E (QA ), then because of the ultrametric property,

e∑
i=m

wi =

w2 (1) +w3 (2) +w4 (3) + ...+ ≤ wm−1 (m − 2).

Since larger weighted edges would be chosen more o�en to be in
E (Q\QA ), i.e. wi for t ≤ i ≤ e , consequently making cost (Q ) larger,
then clearly the instance when cost (Q ) is minimum is when all the
edges in Q are all of equal weight, say c . �us, cost (Q ) =

(m
2
)
· c

as shown in Figure 1 , where c = cost (QA )+a
m−1 =

2a+(m−2) ·b
m−1 .

�erefore,

cost (Q ′) =
a+b ·[

r∑
i=1

(m−i )−1]+b ·(m−12 )

2a+(m−2)·b
m−1 ·(m2 )

· cost (Q )

= a+b ·[(m2 )−1]
2a+b ·(m−2) ·m2

· cost (Q )

= (1 + ϵ ) · cost (Q )

where ϵ = b (m−2)−2a (m−1)
bm (m−2)+2am

Figure 2: �e weights of the edges of Q∗ are used to provide

variable upper bounds on the remaining edges of the solu-

tion Q ′ for t = 5

We further note that ϵ ≈ 1
m as a → 0.

�erefore, Algorithm B is a 1+O ( 1m )-approximation algorithm
for the ultrametric case of Min-EWCP.

�

3.4 Varying the strictness of the metricity

through a given factor σ
We introduce a variable σ in analyzing Algorithm B as a means of
tightening or relaxing the metric property.

Theorem 3.3. If for any distinct vertices a,b, c, ∈ V , w (a,b) ≤
σ (w (b, c )+w (c,a)), then Algorithm B is a σ +O ( 1m )-approximation

algorithm for Min-EWCP.

Proof. �e triangle inequality states that for any distinct ver-
tices a,b, c, ∈ V ,w (a,b) ≤ w (b, c ) +w (c,a). We observe the e�ect
if w (a,b) ≤ σ (w (b, c ) + w (c,a)). It has already been established
that

cost (Q ) ≤ cost (Q ′)
e∑
i=1

wi ≤
e∑
i=1

w ′i

≤
t−1∑
i=1

w ′i +
e∑
i=t

w ′i

≤ cost (Q∗) +
e∑
i=t

w ′i

and that what is being approximated here is
e∑
i=t

w ′i . Applying the

proposed bounds on the third side of the triangle, the weights of
each of the

(t−1
2

)
remaining edges may be computed as follows for

1 ≤ p < q ≤ t − 1

cost (v ′p ,v
′
q ) ≤ σ (cost (v ′t ,v

′
p ) + cost (v

′
t ,v
′
q ))

≤ σ (w ′p +w
′
q )

As has already been shown, each of the verticesv ′1,v
′
2,v
′
3, ...,v

′
t−1

in the (t − 1)-clique, by de�nition, is adjacent to t − 2 vertices in
the (t − 1)-clique as is illustrated in Figure 2 for t = 5.
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Hence
cost (Q ′) =

cost (Q∗ )
m−1 · [

r∑
i=1

(m − i ) + σ ·
(m−r

2
)
].

�erefore,

β ≥
cost (Q ′)
cost (Q ) =

cost (Q∗ )
m−1 ·[

r∑
i=1

(m−i )+σ ·(m−r2 )]
m
2 cost (Q

∗ )

≥ 2
m (m−1) · [rm −

r (r+1)
2 +

σ [(m−r )2−(m−r )]
2 ]

≥
σ ·m (m−1)
m (m−1) +

σ (r 2−2mr+r )−(r 2−2mr+r )
m (m−1)

≥ σ +
r (σ−1) (r−2m−1)

m (m−1)

≥ σ +O ( 1m )

�erefore, applying the property for any distinct verticesa,b, c, ∈
V ,w (a,b) ≤ σ (w (b, c )+w (c,a)) will make Algorithm B aσ+O ( 1m )-
approximation algorithm for Min-EWCP.

�

3.5 On Returning a Set of Cliques

�ough a signi�cant part of this study is concerned with extending
the results on Min-EWCP, it was also mentioned at the onset that
this study is motivated by the problem of identifying approximate
gene clusters. Correspondence can be made between genes and
nodes, while co-expression value between two genes can be repre-
sented by weights placed on edges joining a pair of vertices. �us,
the greater the association between a pair vertices, the smaller the
distance between them, the smaller the weight of the edge joining
them. A data structure containing the values of the associations
across all possible pairs of genes would be an adjacency matrix of
a complete undirected graph.

�e output of Min-EWCP would be therefore be a clique repre-
senting a set of highly identical gene groups across a set of genomes
which will be a candidate gene cluster. In practice, however, ex-
perts are more concerned with obtaining not just one candidate
gene cluster but a set of candidate gene clusters, which can then
be validated by experiments.

For this, a modi�ed version of Algorithm B can be made - one
that does not return only one solution but returns a list of candi-
date solutions that satisfy a metric. �e algorithm can be modi�ed
to allow the selection ofm-cliques whose total edge-weights, as
approximated using the weight of the (m− 1)-star, does not exceed
a given threshold r . A slight modi�cation can thus be made on
Algorithm B that would select all those vertex sets satisfying the
above condition. �e outputs will be the candidate gene clusters.
�is would be the preference of many bioinformaticians and sys-
tems biologists since the candidate gene clusters returned would
still have be veri�ed by biochemists and molecular biologists.

With this, the modi�ed Algorithm B would provide a list of
approximate gene clusters. Since Algorithm B runs in O (n2), then
this modi�ed version will run in O (n2) + n = O (n2).

4 FORMULATION OF APPROXIMATE GENE

CLUSTER DISCOVERY AS MIN-EWCP

At this point we construct a complete graph GK from the set of
genomesGD. We �rst identify the vertex set. SinceGK , is complete,
we will then only need to describe the edge weights. �e gene
distance matrix that is constructed will be the adjacency matrix
representation of GK . In a previous study [21], approximate gene
clusters were obtained using minimum weight t-partite cliques.
In this study, they are identi�ed by determining the minimum
edge-weighted cliques (Min-EWCP).

4.1 �e Vertices of GK

LetGD be the set of d genomes, that is,GD = {G1,G2, ...,Gd }. Let
U = {д1,д2, ...,дn } be the set of all homologous genes in GD. �e
vertex set of GK = V (GK ) = U . Since GK is a complete graph,
every pair of nodes (дi ,дj ) in U , where i , j, is an edge in GK .
�us |E (GK ) | =

(n
2
)
.

4.2 �eWeights of the Edges in GK

We note that in a given genomeGi , the position of a given vertex дj
is denoted by pi (дj ).We also note that in gene cluster models that
do not allow the duplication of genes in a genome, then |pi (дp ) −
pi (дq ) | simply means the distance between the genes дp and дq in
the genome Gi . However, for gene cluster models that allow the
multiple occurrences of genes in a genome, the distance |pi (дp ) −
pi (дq ) | means the shortest distance between any occurrence of дp
and дq in the genome Gi .

�e weights of the edges in GK are obtained by the following
algorithm:

Algorithm 1 Building the distance matrix of the complete
weighted graph GK

Input: �e set of genomes GD, the set of homologous genes U
and the complete graph GK

Output: �e distance matrix ofGK
0: wt (дp, дq ) ← 0, for every edge (дp, дq ) ∈ GK
0: for each genome G i ∈ G where 1 ≤ i ≤ m do

0: for each pair (дp, дq ) ∈ U , s.t. 1 ≤ p < q ≤ n do

0: if дp and дq are both ∈ G i
then

0: wt (дp, дq ) ← wt (дp, дq ) + |pi (дp ) − pi (дq ) |
0: wt (дq, дp ) ← wt (дq, дp ) + |pi (дp ) − pi (дq ) |
0: else

0: if either дp or дq ∈ G i
then

0: wt (дp, дq ) ← lenдth (G i ) − 1
0: wt (дq, дp ) ← lenдth (G i ) − 1
0: else

0: wt (дp, дq ) ← lenдth (G i )

0: wt (дq, дp ) ← lenдth (G i )
=0

�e resulting complete graph GK now stores the cumulative
distances between each pair of genes across all genomes. �is
summary data provides a good basis where di�erent algorithms
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con be performed to obtain gene clusters. For example, hier-
archical agglomerative clustering can be performed to form a
dendrogram and then �nd gene groups. Hierarchical agglomera-
tive clustering was performed using h�ps://github.com/lbehnke/
hierarchical-clustering-java. �e resulting dendrogram, as well as
the resulting gene clusters, can be found here : h�ps://drive.google.
com/drive/u/0/folders/1ZnsCS7RwbIkI3KOnnxDow epEmSXI5Rh.

�e approach used in this study for �nding gene clusters, how-
ever, was that of �ndingm-cliques, in the complete graph GK .

Theorem 4.1. �e problem of �nding approximate gene clusters of

sizem inGD is equivalent to the Minimum Edge-Weighted Clique

Problem

Proof. By de�nition, a gene cluster is a set of closely-related
genes which are arranged in close proximity with each other across
two or more genomes, even a�er genome sequences have evolved
in multiple events such as gene duplication and gene loss [17].

With the above construction of the complete weighted graphGK
as having the vertex set V (GK ) = U = {д1,д2, ...,дn } as the set of
all homologous genes inGD, and the edges weights of each pair of
nodes inGK as the sum of the distances between the corresponding
genes across GD as obtained by Algorithm 1, �nding them-clique
in the complete edge-weighted graph GK of minimum weight will
return the set ofm genes that appear closest to each other across
genomes, which is precisely how an approximate gene cluster has
been de�ned.

�us, the problem of �nding approximate gene clusters of size
m in GD is equivalent to the Minimum Edge-Weighted Cliqe
Problem or the problem of �nding them-clique in the complete
edge-weighted graph GK of minimum weight

�

�e time complexity of building the graph GK is O (n2) if there
are a total of n genes. On the other hand, the cost of assigning
the weights to the edges of GK is O (dkn2), where k is the average
length of each genome.

5 EXPERIMENTAL RESULTS

5.1 Source of Data

�e dataset is composed of 1406 putative orthologous genes of
the genomes E. coli str. K-12 and B. subtilis. �e genes are named
based on the gene symbols of E. coli str. K-12. Genes that are
non-orthologs were labeled as 0 as they are not of interest for the
problem.

�e orthologous genes were determined using an automated
pairwise genome comparison technique. �e pairwise comparison
of two genomes is modeled as a weighted bipartite graph-matching
problem. �e weights of the edges are identi�ed using the Smith-
Waterman algorithm and PAM120 matrix. �e gene corresponding
to the nodes of the best matching edges of the bipartite graphs are
taken as orthologs, and are deleted from the further consideration
[4]. �e genomes of E. coli str K-12 and B. subtilis were extracted
from Genbank in .gbk �le format [5].

A gene without a known functionality has been referred to as
Genome name: orf.index, where index is the ordering of the protein
coding region.

5.2 Clusters shown in [4] from the genomes of

Escherichia Coli and Bacillus Subtilis

Bansal de�ned a gene-group < γ1I ,γ1J ,γ1K , ... > as a cluster of
genes of at least two distinct genes in close proximity with each
other [5]. A gene-group < γ1M ,γ1N ,γ1P , ... > in genome 2 is
ordered if it complies with the following conditions [5] upon map-
ping it to its corresponding gene group in genome 1: [M < N <
P when I < J < K , or ] and [M > N > P when I > J > K].

On the other hand, a gene-group in genome 1 is unordered if
the following conditions hold [5]: [(M > N when I < J ) or (N >
P when J < K )] and [(M < N when I > J ) or (N < P when J >
K )] and [(M , N and I = J ) or (N , P and J = K )].

�e putative gene-groups shown in [4] were identi�ed by �nd-
ing the non-empty intersection set with more than one element
between groups of neighboring genes from the genomes E. coli str.
K-12 and B. subtilis from the .gbk �le extracted from Genbank [5].

Bansal presented 142 E. coli ordered gene-groups with gene
cluster sizes equal to 2, 3, 4, 5, and 10. Out of the 142 gene-groups,
60 gene clusters contain non-orthologous genes. Only 82 ordered
gene groups composed of orthologs are of interest in this study.

Bansal also presented 28 unordered gene-groups with gene clus-
ter sizes equal to 3, 4, 5, 7, 8 and 9. For this study, we did not include
the gene cluster = 27 as it is obviously way bigger the the other
sizes . Out of these 28 gene-groups, 8 gene-groups contained non-
orthologous genes as can be seen in Table 1. Only 20 unordered
gene groups composed of orthologs are of interest in this study.

Bansal’s Ordered and
Unordered Gene Groups

size ordered unordered combined
2 118 3 121
3 17 15 32
4 5 5 10
5 1 1 2
6 0 1 1
7 0 1 1
8 0 1 1
9 0 1 1
10 1 0 1

Total 142 28 170
Non

-orthologs 60 8 68
Orthologs

only 82 20 102

Table 1: Bansal’s Gene Groups from the genomes E. coli str.
K-12 and B. subtilis
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�ese gene-groups were mapped on a standard template of
metabolic pathway taken from Kegg database. �e set of gene-
groups acting as pathway seeds are summarized in [5]. A complete
list of Bansal’s gene-groups can be found in h�p://www.cs.kent.
edu/∼arvind/intellibio/database/gene-groups/ecoli-bsub gr.html

5.3 Resulting Gene Clusters when Algorithm A
and Algorithm B were applied on the

Distance Matrix GK from genomes of E.

coli str K-12 and B. subtilis

Since those involved in gene cluster discovery are more concerned
with obtaining not just one candidate gene cluster but a set of
candidate gene clusters, implementations of both Algorithm A and
Algorithm B in python were modi�ed accordingly. Instead of re-
turning the one clique(cluster), a sorted list of candidate clusters
was provided by each algorithm. For Algorithm A, the list is sorted
in ascending order according to the approximated weight of the
candidate cluster. For Algorithm B, the list is sorted in descend-
ing order according to the frequency of a candidate cluster. Both
lists were cross-checked with the list of candidate gene clusters of
Bansal.
It is important to note that since both are approximation algo-
rithms, it would be possible that there are clusters discovered by
Bansal that would not be returned by the algorithms. Furthermore,
performance guarantees are not applicable since the weights be-
tween genes are not metric in nature. Intuitively, however, the
gene clusters of Bansal are expected to be those on top of each list.
It is interesting to note that the set of clusters of Bansal that are
in the list returned by Algorithm A are also the same set in the
list returned by Algorithm B. �is is true for both ordered and
unordered clusters.

Bansal’s Ordered and Bansal’s Gene Groups
Unordered Gene Groups in Algo A and Algo B

ord unord comb size ord unord comb
66 2 68 2 44 1 45
11 12 23 3 8 7 15
4 4 8 4 4 3 7
0 1 1 5 0 1 1
0 1 1 7 0 1 1
1 0 1 10 1 0 1
82 20 102 Total 57 13 70

Table 2: Bansal’s Gene Clusters and the outputs from Algo-

rithms A and B

Out of the 102 gene clusters discovered by Bansal, 70 of these
were returned by Algorithm A and Algorithm B as can be seen in
Table 2. �is is 68.63% of the gene clusters discovered by Bansal.
Entries for gene cluster sizes equal to 6,8 and 9 were removed since
such clusters contained non-orthologs. Both algorithms are ap-
proximation algorithms and their outputs are only approximates,
that is for a gene cluster of sizem, only (m − 1) weights between
genes were considered of the

(m
2
)
possible weights that need to be

considered. Just like any other approximation algorithm, this was
done by the featured algorithms to avoid combinatorial computa-
tional explosion.

However when it comes to those clusters of Bansal that were
also discovered by the algorithms, such clusters were on top of
both lists as was expected. We would like to note that for each
cluster sizem and n, where n > m, there are

(n
m

)
possible clusters.

In this case, where n, or the number of genes, is 1,369, Algorithm A
and Algorithm B returned a maximum of 1,369 approximate gene
clusters which were sorted in such a manner where the returned
clusters with ideal scores were on top of the list.

Tables 3 and 4 show the results for Algorithm A and Algorithm
B, respectively, wherem = cluster size,A is list of clusters returned
by Algorithm A, B is list of clusters returned by Algorithm B and
Z is list of clusters returned by Bansal.

minimum maximum average
size weight(A) weight(A) |A ∩ Z | weight(A ∩ Z )
2 1 283 45 4.22
3 4 605 15 9.07
4 8 992 7 12.43
5 12 1,407 1 22.00
7 24 2,261 1 26.00
10 50 3,565 1 100.00
Table 3: Metrics from the Output of Algorithm A

Out of
(1,369
m

)
possible clusters, for each cluster size m, Algo-

rithm A returned a list of 1,369 clusters sorted in ascending order
according to weight. �e basis is them minimum entries for each
row. �e second and third columns of Table 3 show the weights of
the gene clusters at the top and the bo�om of that list, respectively.
�e space is not su�cient to list the actual clusters with their cor-
responding weights, but clearly the gene clusters of Bansal that are
in these sorted lists are relatively on the top part of each list as the
average weight of these clusters is relatively near the minimum
weight, for each cluster size. For instance, form = 4, the minimum
weight is 8 and the maximum weight is 992, but the average weight
of gene clusters of Bansal which are in the list is only 12.43.

minimum maximum average
size freq(B) freq(B) |B ∩ Z | freq(B ∩ Z )
2 1 2 45 1.98
3 1 3 15 2.93
4 1 4 7 4.00
5 1 5 1 5.00
7 1 7 1 7.00
10 1 10 1 10.00
Table 4: Metrics from the Output of Algorithm B

Instead of gene cluster weights, Algorithm B returned a list clus-
ters sorted in descending order according to the frequency of each
gene cluster in the list of 1,369 candidate clusters. As is seen in
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Table 4, the maximum frequency of a gene cluster of sizem is also
m and the minimum is 1. Clearly, the average frequency of the
gene clusters of Bansal for each cluster sizem is practically equal
tom.

�ese experimental results show that many of the gene clusters
discovered by Bansal in his study are also the gene clusters cor-
responding to the approximate minimum edge-weighted cliques
derived from the complete graphGK constructed from accumulated
gene-gene distances across genome.

One advantage of using Algorithm B, however, is that since
frequency values are limited, they can be considered as a way of
”clustering” the candidate gene clusters. Candidate gene clusters
can be partitioned intom groups, since there arem possible fre-
quency values, fromm,m− 1,m− 2, … down to 1. In this particular
study, the gene clusters of Bansal were generally part of the top
cluster for each value ofm. With the exception of the case when
m = 2 andm = 3, where in both cases only 1 of the gene clusters
fell into the second to the highest frequency, all of the gene clusters
of Bansal were in groups with the highest frequency.

6 CONCLUSION

�eWeighted Clique Problem (WCP) is the problem of �nding a
clique of the graph G of orderm with the smallest (largest) weight.
A variant of WCP is the Minimum Edge-Weighted Clique Problem
(MIN-EWCP) where the vertex weights are all 0 and the problem
is that of �nding the clique of the graph G of order m with the
least weight. In this study, we presented the problem of identify-
ing sets of commonly existing putative co-regulated, co-expressed
genes, called gene clusters, as a clique-�nding problem, speci�-
cally MIN-EWCP. Initially, the algorithm used for �nding gene
clusters, which is clique-�nding algorithm presented by Eremin
et. al., was reviewed and results on performance guarantees for
two input classes for the said algorithm was presented. Another
algorithm was presented along with its approximation ratio for
the metric case. �e formulation of the problem as a gene cluster
discovery problem was then presented with the construction of
a gene distance matrix from a genome database by obtaining the
distances of each pair of genes in each genome. It was then shown
that the problem of �nding approximate gene clusters of sizem in
GD is equivalent to the Minimum Edge-Weighted Cliqe Prob-
lem. Finally, experimental results were shown where approximate
gene clusters are obtained from putative orthologous genes of the
genomes E.colistrK − 12 and B.subtilis . �ese results show that
many of the gene clusters discovered by Bansal in his study are
also the gene clusters corresponding to the approximate minimum
edge-weighted cliques derived by the algorithms. It is hoped that
implementations of the featured approximation algorithms would
be helpful to biologists, biochemists and clinicians to narrow down
the long list of possible gene clusters of interest which they are to
further explore for biological signi�cance.

ACKNOWLEDGEMENTS

G. Solano is supported by the Engineering Research and Develop-
ment for Technology (ERDT) Scholarship Program of the Depart-
ment of Science and Technology(DOST) and the Doctoral Sand-
wich Scholarship Program of the Commission on Higher Education
(CHEd) Philippines.

REFERENCES

[1] J. A. Aborot, H. Adorna, J. B. Clemente, B. K. de Jesus and G. Solano. Search
for a Star: Approximate Gene Cluster Discovery Problem (AGCDP) as a Graph
Problem. Philippine Computing Journal, vol.7 no.2 (2012)

[2] B. Alidaee, F. Glover, G. K. H. W. Solving the maximum edge weight clique
problem via unconstrained quadratic programming. Eur. J. Oper. Res. 181, 2
(2007), 592-597.

[3] J. G. Augustson, and J. Minker. An Analysis of Some Graph �eoretical Cluster
Techniques. Journal of the ACM (JACM), vol. 17, no. 4, pp. 571-588, October
(1970)

[4] A. K. Bansal, An automated comparative analysis of 17 complete microbial
genomes, Bioinformatics, vol. 15, no.11. pp.900-908 (1999)

[5] A. K. Bansal, A framework of automated reconstruction of microbial metabolic
pathways, in Bio-Informatics and Biomedical Engineering, 2000. Proceedings.
IEEE International Symposium on, pp. 184-190, IEEE, (2000)

[6] E. Bierstone. Cliques and Generalized Cliques in a Finite Linear Graph. Unpub-
lished Report, (1960s)

[7] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. �e maximum clique problem.
In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 4. Kluwer Academic Publishers, (1999)

[8] C. Bron and J. Kerbosch. Finding All Cliques in an Undirected Graph. Communi-
cations of the ACM, vol. 16, pp. 575-577(1973)

[9] J. R. Brown, Comparative genomics: basic and applied research, CRC Press (2007)
[10] I.I. Eremin, E. Kh. Gimadi, A. V. Kel’manov, A. V. Pyatkin, and M. Yu. Khachai,

2-Approximation algorithm for �nding a clique with minimumweight of vertices
and edges, Proc. Steklov Inst. Math. 284(Suppl. 1), S87-S95 (2014)

[11] E.K. Gimadi, A.V. Kel’manov, A. V. Pyatkin, and M. Yu Khachai.E�cient algo-
rithms with performance guarantees for some problems of �nding several cliques
in a complete undirected weighted graph. Proc. Steklov Inst. Math. 289(Suppl 1)
88. (2015)

[12] O. Goldschmidt, D.S. Hochbaum, C. Hurkens, G. Yu. Approximation algorithms
for the k-clique covering problem. SIAM Journal on Discrete Mathematics. v.9
n.3, p.492-509, (1996)

[13] R. Gupta, J. Walrand and O. Goldschmidt. Maximal cliques in unit disk graphs:
Polynomial approximation. In Proceedings INOC (2005)

[14] F. Harary, and I. C. Ross. A Procedure for Clique Detection Using the Group
Matrix. Sociometry, vol. 20, pp. 205-215. (1957)

[15] J. Hastad, Clique is hard to approximate within n1−ϵ , Acta Math. 182 (1), 105-142
(1999)

[16] D. Kumlander, A new exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring and a backtrack search. In: Proc. 5th Int.
Conf. on Modelling, Computation and Optimization in Information Systems and
Management Sciences. pp. 202-208 (2004)

[17] J. Lawrence, Je�rey, Sel�sh operons: the evolutionary impact of gene clustering
in prokaryotes and eukaryotes, Current opinion in genetics & development,
Elsevier, vol. 9 . no. 6, pp. 642–648, (1999)

[18] G. He, J. Liu and C. Zhao, Approximation algorithms for some graph partitioning
problems, Journal of Graph Algorithms and Applications, vol. 4, no. 2, pp. 1-11
(2000)

[19] W. Pullan, Approximating the maximum vertex/edge weighted clique using local
search, J. Heuristics, vol. 14, no. 2, pp. 117-134 (2008)

[20] S. Rahmann, G. Klau, Integer Linear Programming Techniques for Discover-
ing Approximate Gene Clusters, Bioinformatics Algorithms, Techniques and
Applications, Wiley-Interscience (2008)

[21] G. Solano, G. Blin, M. Ra�not, J. Caro, A Clique Finding Algorithm for the Ap-
proximate Gene Cluster Discovery Problem,�eory and Practice of Computation,
pp. 72-88 (2018)

[22] M. Sorensen M, New facets and a branch-and-cut algorithm for the weighted
clique problem. European J. Oper. Res., 154:57-70 (2004)

[23] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa.A New Algorithm for Gener-
ating all the Maximal Independent Sets. SIAM Journal of Computing, vol. 6, pp.
505-517 (1977)

8


	PCJ Vol13 no2 2019 Edited
	PCJ 2 Ms 18-001


