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ABSTRACT
Multiplicative noise that commonly appears in digital med-
ical imaging is removed using a total variation model pre-
sented in the article of Del Rosario and Neri (2017). We
present here details on the theoretical analyses on the deriva-
tion of the model and its solution.
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1. INTRODUCTION
In digital image restoration, variational models have proven
to be effective in reconstructing images corrupted with noise.
In the seminal paper of Rudin, Osher, and Fatemi [10], ad-
ditive Gaussian noise was effectively removed using a total
variation model with L2 fidelity term. Their model is

min
u∈BV(Ω)

1
2

∫
Ω

(u−d)2 +α

∫
Ω

|∇u| (1)

where d is the observed image, Ω is a closed rectangular
region with Lipschitz continuous boundary, BV denotes the
space of functions of bounded variations, and ∇ is the differ-
ence operator. Since then, numerous research papers have
improved on the ROF model to handle even simultaneous
noise removal and blur removal. For outlier noise or impulse
noise, Nikolova [9] has shown that the variational model
with L1 norm on the fidelity term is more suitable for fil-
tering.

Compared to additive noise removal, only a few vari-
ational approaches have been proposed that focus in han-
dling multiplicative noise. This is a more complex noise
model commonly appearing in various imaging applications

such as laser images, microscopic images, ultrasound im-
ages, synthetic aperture radar (SAR) images, etc. One of
the first is a nonconvex total variation model with a fitting
term derived from a maximum a posteriori estimator intro-
duced in [2] by Aubert and Aujol (AA). They implemented
a gradient-descent method to solve their model. Dong and
Zeng [6] extended the AA model by adding a quadratic penalty
term to ensure convexity. A primal-dual method proposed in
[4] was applied to solve their model.

In [5], a modified version of Dong and Zeng’s convex
variational model for the multiplictive noise removal prob-
lem was presented. This paper is an expanded version of that
paper, and herein we show proofs of theorems given in [5].

2. NONCONVEX MODEL
In the formulation of the model, the assumption is that the
original image u has been corrupted by some multiplicative
noise η that follows a gamma distribution with mean equal
to one. Given the multiplicative noise model f = uη , we
consider f , u, and η as instances of random variables F ,U
and N .

It is assumed that U follows a Gibbs prior i.e.

PU (u) =
1
Z

e−γϕ(u) (2)

where Z is a normalizing constant, γ is a free parameter and
ϕ is a non-negative function.

Further, N is an independent and identically distributed
noise which follows a gamma distribution with the probabil-
ity density function (pdf) given by

PN (η) =
1

θ KΓ(K)
η

K−1e−η/θ , η > 0 (3)

where Γ is the usual gamma function, and θ and K denote
the scale and shape parameters, respectively.

It is known that the mean of η is Kθ and the variance
is Kθ 2 [7]. Assuming the mean equals one, the variance is
1
K

. The pdf in (3) becomes
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PN (η) =
K(K)

Γ(K)
η

K−1e−Kη , η > 0. (4)

From a statistical perspective, the problem of finding
the most likely image u given the noisy image f , is equiv-
alent to the problem of maximizing the probability density
function (pdf) PU |F (u| f ) or the MAP estimation problem
given by

maxPU |F (u| f ) = maxPU (u)PF |U ( f |u). (5)

Taking the negative log likelihood, (5) becomes the
minimization problem

min(− logPU (u)− logPF |U ( f |u)). (6)

The first term in (6) can easily be computed from (2)
while the second term can be solved from (4) by a standard

pdf property, PF |U ( f |u) =
(

1
u

)
PN

(
f
u

)
. It follows that

PF |U ( f |u) = K(K)

uKΓ(K)
f K−1e

(−K f
u

)
.

Hence, over the discretized image,

− logPU (u) − logPF |U ( f |u)

= ∑
s∈S

(
γϕ(U (s))+K

(
logU (s)+

F (s)
U (s)

))
where S is the set of pixels in the image.

In the continuous case, this amounts to∫
Ω

ϕ(u)+
K
γ

∫
Ω

(
logu+

f
u

)
where Ω denotes the image domain. Setting ϕ(u) = |∇u|,
the variation model of Aubert and Aujol (AA) is obtained
[2],

min
u∈S(Ω)

E(u) =
∫

Ω

|∇u|+λ

∫
Ω

(
logu+

f
u

)
(7)

where S(Ω) = {u ∈ BV (Ω),u > 0} and f > 0 in L∞(Ω) =
{ f :

∫
Ω
| f |∞ < ∞} [2]. The closure of S is denoted by S̄.

A solution u∗ to (7) should satisfy the Euler-Lagrange
equations ∇T ∇u

|∇u|
+λ

(
u− f

u2

)
= 0, if |∇u| 6= 0

∇u = 0, otherwise

The fitting (second) term in (7) is nonconvex. However, un-
der sufficient conditions, the existence and uniqueness of the
solution can be ensured. A gradient-descent method was im-
plemented in [2] to generate iterative solutions to problem
(7).

3. CONVEX MODEL
To overcome the nonconvexity of the AA model, Dong and
Zeng [6] proposed a new convex model by adding a quadratic
penalty term based on statistical properties of the multiplica-

tive gamma noise. A random variable Y =
1
√

η
was consid-

ered. Given that E(η) = 1, the following properties were
derived:

1. The mean values of Y and Y 2 are E(Y )=

√
KΓ

(
K− 1

2

)
Γ(K)

and E(Y 2) =
K

K−1
, respectively.

2. lim
K→+∞

E((Y −1)2) = 0

Since f = uη , then Y =

√
u
f

. A quadratic penalty term

based on property 2 was introduced to (7) resulting in the
new model given by

min
u∈S̄(Ω)

λ

∫
Ω

|∇u|+
∫

Ω

(
logu+

f
u

)
+α

∫
Ω

(√
u
f
−1
)2

(8)
with a penalty parameter α > 0. We refer to model (8) as the
DZ model.

Problem (8) is strictly convex whenever α ≥ 2
√

6
9

.
This convexity leads to uniqueness of the solution, and it
makes (8) a suitable convex approximation of the noncon-
vex AA model (7). Dong and Zeng applied the primal-dual
method proposed in [4] to generate iterative solutions to their
model.

4. PROPOSED MODEL
We construct a modified version of Dong and Zeng’s model

based on the random variable Y =
1
η

. For such a variable Y,

we obtain several results.

THEOREM 1. The mean values of Y and Y 2 are E(Y ) =
K

K−1
and E(Y 2) =

K2Γ(K−2)
Γ(K)

, respectively.

PROOF. Recall the pdf of η given by PN (η) in (3) and
the assumption that the mean of η is 1, i.e., Kθ = 1. Since Y

is a function of the random variable N , i.e., Y = g(η) =
1
η

,

the expectation of Y is given by

E(Y ) =
∫ +∞

−∞

g(η)PN (η).

We then get

E(Y ) =
∫ +∞

0

1
η

1
θ KΓ(K)

η
K−1e−η/θ dη .
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Based on the property of the Gamma distribution∫ +∞

0

1
θ KΓ(K)

η
K−1e−η/θ dη = 1, K > 0 and θ > 0

and Γ(K +1) = KΓ(K) for any K > 0, we obtain

E(Y ) =
Γ(K−1)
θΓ(K)

∫ +∞

0

1
θ K−1Γ(K−1)

η
K−2e−η/θ dη

=
K

K−1

when K > 1. Similarly,

E(Y 2) =
∫ +∞

0

1
η2

1
θ KΓ(K)

η
K−1e−η/θ dη

=
Γ(K−2)
θ 2Γ(K)

∫ +∞

0

1
θ K−2Γ(K−2)

η
K−3e−η/θ dη

=
K2Γ(K−2)

Γ(K)
.

Using Theorem 1 and the definition of the gamma func-
tion, we obtain the limit result.

THEOREM 2. lim
K→+∞

E((Y −1)2) = 0.

PROOF. From Theorem 1, we readily have

E((Y −1)2) = E(Y 2)−2E(Y )+E(1)

=
K2Γ(K−2)

Γ(K)
− 2K

K−1
+1.

Based on the property of the Gamma function [1],

lim
K→+∞

Γ(K +α)

Γ(K)Kα
= 1, α ∈ R

and taking α =−2, we can obtain

lim
K→+∞

K2Γ(K−2)
Γ(K)

− 2K
K−1

+1 = 1−2+1 = 0.

Since f = uη , then Y =
1
η

=
u
f

. From Theorem 2,

we obtain a new quadratic penalty term resulting to our pro-
posed model given by

min
u∈S̄(Ω)

E(u) = λ

∫
|∇u|+

∫ (
logu+

f
u

)
+α

∫ ( u
f
−1
)2

.

(9)

Although (9) is nondifferentiable because of the TV
functional, the model is convex for a specific range of α, as
the next theorem would show.

THEOREM 3. If α >
1

54
, then (9) is strictly convex.

PROOF. With t ∈ R+ and a fixed α , we define a function
g as

g(t) = log t +
1
t
+α(t−1)2.

The first derivative of g is

g′(t) = t−1− t−2 +2α(t−1)

and the second derivative is given by

g′′(t) =−t−2 +2t−3 +2α.

We want to show that g′′(t)≥ 0, t ∈ R+, for some val-
ues of α . Note that the third derivative of g is

g(3)(t) = 2t−3−6t−4

and the root is t = 3 which implies that t = 3 is a critical
point of g′′(t). At t = 3,

g(4)(t) =−6t−4 +24t−5 > 0

i.e. t = 3 is a minimum of g′′(t).

Thus, at t = 3, g′′ reaches its unique minimum, g′′(3)=
−1+54α

27
. It follows that if α ≥ 1

54
, g′′ ≥ 0, i.e., g is con-

vex. Moreover, strict convexity of g follows when α >
1

54
.

By letting t =
u
f

, we deduce that the second and third

terms of E(u) in (9) is strictly convex. Since the TV func-
tional is convex, it also follows that E(u) in (9) is strictly

convex if α >
1
54

Furthermore, based on the convexity of

S̄(Ω), we conclude that our proposed model (9) is strictly
convex.

This condition for convexity of our proposed model (9)
is more relaxed compared to that for Dong and Zeng’s model
(8).

5. EXISTENCE AND UNIQUENESS OF
A SOLUTION

We can conclude by Theorem 3 that with a suitable α , (9)
is a convex approximization of the nonconvex AA model
(7). A solution u∗ to (9) should satisfy the Euler-Lagrange
equations λ ∇T ∇u

|∇u|
+

u− f
u2 +2α

(
u− f

f 2

)
= 0, if |∇u| 6= 0

∇u = 0, otherwise

We now prove the existence and uniqueness of a so-
lution to (9). Recall that a function f is in L∞(Ω) if it is
essentially bounded, i.e., if ‖ f‖∞ = maxi | fi|< ∞.
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THEOREM 4. Let f be in L∞(Ω) with infΩ f > 0; then
the model (9) has a solution u∗ in BV (Ω) satisfying

0 < inf
Ω

f ≤ u∗ ≤ sup
Ω

f .

PROOF. The structure of the proof closely follows that of

Theorem 3.6 in [6] with the term
√

u
f

replaced by
u
f

.

We denote c1 := infΩ f and c2 := supΩ f . Let

E(u) = λ

∫
|∇u|+

∫ (
logu+

f
u

)
+α

∫ ( u
f
−1
)2

and

G(u) :=
∫

Ω

(
logu+

f
u

)
+α

∫
Ω

(
u
f
−1
)2

.

From the proof of Theorem 3.6 in [6], for fixed x ∈ Ω, we
have

E(u)≥
∫

Ω

(1+ log f ) .

Thus, E(u) is bounded from below, and we can consider a
minimizing sequence {un} ∈ S̄(Ω). Fixing x ∈ Ω, it can be
easily shown that

g(t) := log t +
f (x)

t
+α

(
t

f (x)
−1
)2

is decreasing if t ∈ [0, f (x)) and increasing if t ∈ ( f (x),+∞).
It follows that one always has g(min(t,M)) ≤ g(t), if M ≥
f (x). Therefore, we have

G(inf(u,c2))≤ G(u).

Moreover, we have
∫

Ω
|∇ inf(u,c2)| ≤

∫
Ω
|∇u| (see Lemma 1

in section 4.3 of [8]) and we get E(inf(u,c2))≤ E(u). In the
same way, we get E(sup(u,c1)) ≤ E(u). Hence, we can as-
sume that 0≤ c1 ≤ un ≤ c2. This implies that un is bounded
in L1(Ω).

Since {un} is a minimizing sequence, it follows that
E(un) is bounded. Furthermore,

∫
Ω
|∇un| is bounded, and

{un} is bounded in BV (Ω). Thus, there exists a subsequence
{unk}which converges strongly in L1(Ω) to some u∗ ∈BV (Ω),
and {∇unk} converges weakly as a measure to ∇u∗. Since
S̄(Ω) is closed and convex, and by the lower semicontinu-
ity of the TV term and Fatou’s Lemma, we get that u∗ is a
solution to model (9) and necessarily, 0 < c1 ≤ u∗ ≤ c2.

COROLLARY 5. If α >
1

54
, the solution of (9) is unique.

PROOF. Uniqueness follows directly as a consequence of
the strict convexity of the model (9).

6. PRIMAL-DUAL METHOD
The iterative solution method we implement is based on the
primal-dual method proposed by Chambolle and Pock in
[4]. This algorithm, which was also used by Dong and Zeng
[6], is suitable for nonsmooth convex optimization problems
wherein the primal and dual formulations of a problem are
combined. We first formulate the primal-dual problem asso-
ciated with (9). We rewrite the TV functional in (9) as:

‖∇u‖= max
‖p‖∞≤1

〈p,∇u〉=− max
‖p‖∞≤1

〈divp,u〉. (10)

which is a consequence of the Cauchy- Schwarz inequality.

Substituting (10) to (9), we can obtain the following
primal-dual discretized formulation:

min
u∈X

max
p∈Y

J(u, p) := G(u)−λ 〈u,divp〉 (11)

where p is the corresponding dual variable, div =−∇T and

G(u) = ∑
u∈S

(
logu+

f
u

)
+α

(
u
f
−1
)2

,

X = {u ∈ Rn : us ≥ 0 for s ∈ S},

S = {1, ...,n} is the set of pixels in the image,

Y = {q ∈ R2s : ||q||∞ ≤ 1}, and

||q||∞ = maxi∈S |
√

q2
i +q2

i+n|

Note that the saddle-point problem in (11) is equivalent
to interchanging the max and min functionals, i.e.,

max
p∈Y

min
u∈X

J(u, p) := G(u)−λ 〈u,divp〉. (12)

We now apply the primal-dual method proposed in [4]
to solve (12). This method was shown to be convergent.

The maximization problem in (13) and the minimiza-
tion problem in (14) can be interpreted as an alternating
primal-dual proximal point method where in a quadratic penalty
term is added to force the new updates to be close to the pre-
vious ones. The equation in (15) corresponds to a simple
linear extrapolation based on the new and previous updates
which can be seen as an approximate extragradient step.

The maximization problem (13) can be solved directly
with a gradient-ascent direction where the update solution is
given by

pk+1
i = pk

i +λσ(∇ūk)i for i = 1, ...,2n. (16)
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Algorithm 1

1. Initialize k = 0,u0, ū0 = u0, and p0 = (0, ...,0). Fix
σ ,τ .

2. Calculate pk+1 and uk+1 from

pk+1 = argmax
p∈Y

λ 〈ūk,divp〉− 1
2σ
‖p− pk‖2

2, (13)

uk+1 = argmin
u∈X

G(u)−λ 〈u,divpk+1〉+ 1
2τ
‖u−uk‖2

2,

(14)

ūk+1 = 2uk+1−uk (15)

3. Stop; or set k = k+1 and go to Step 2.

To ensure that the dual variable p stays feasible, a pro-
jection step is applied to (16), i.e.,

pk+1
i = π1

(
pk

i +λσ(∇ūk)i

)
for i = 1, ...,2n, (17)

where π1 is the projection onto the l2-normed unit ball, i.e.,

π1(qi) =
q(i)

max(1, |q(i)|)
, and

π1(qn+1) =
q(n+i)

max(1, |q(i)|)
for i = 1, ...,n,

with |q(i)|=
√

q2
i +q2

i+n.

On the other hand, the minimization problem in (14),

argmin
u∈X

G(u)−λ 〈u,divpk+1〉+ 1
2τ
||u−uk||22 := T (u) (18)

can be easily solved by a gradient-descent method. The di-
rection of descent is given by

δu = −∇T (u)

= −u− f
u2 −2α

(
u− f

f 2

)
+λ divpk+1− 1

τ

(
u−uk)

and the update solution is of the form

uk+1 = uk+t
(

f −u
u2 −2α

(
u− f

f 2

)
+λdivpk+1− 1

τ

(
u−uk

))
with a suitable steplength t. In our numerical experiments,
we employ the Armijo rule to come up with a good, although
inexact, steplength t.

The gradient-descent method is first order in nature
since it only requires the evaluation of the objective function
T (uk) and gradient ∇T (uk) values. Although it is very sim-
ple to implement and only requires low memory, its conver-
gence is slow. For better convergence, second order meth-
ods, in particular, Newton’s method can be employed. This

involves the Hessian H =∇2T in the selection of the descent
direction.

For the Newton’s method, the direction of descent is

δuk =−H−1
∇T (uk), (19)

given that H is positive-definite.

Since explicitly solving for the inverse of H in (19) is
computationally expensive, it is more convenient to obtain
the Newton step δuk from solving the system

Hδuk =−∇T (uk). (20)

using preconditioned conjugate gradient (PCG) method, for
instance (cf. [3]).

We now obtain a Newton step δu for the minimization
problem in (18) from solving the system (20). Note that

∇T =
u− f

u2 +2α

(
u− f

f 2

)
−λ divpk+1 +

1
τ

(
u−uk

)
(21)

and

H = ∇
2T =

2 f −u
u3 +

2α

f 2 +
1
τ
. (22)

with H, positive-definite for u ∈ X .

Applying the update solution (17) for (13) and the up-
date solution for (14) obtained from the Newton step di-
cussed above, we can now derive the specific primal-dual
algorithm based on Algorithm 1 to solve (12). The algo-
rithm is summarized as follows in Algorithm 2.

Algorithm 2

1. Initialize k = 0,u0, ū0 = u0, and p0 = (0, ...,0). Fix
σ ,τ .

2. Calculate the update solution of pk+1 from (17)

3. Compute the descent direction δuk by solving

Hδuk =−∇T (uk)

from (21) and (22).

4. Choose a step length t.

5. Calculate the update solution

uk+1 = uk + tδuk

6. Calculate the update solution

ūk+1 = 2uk+1−uk

7. Stop; or set k = k+1 and go to Step 2.

Convergence of this primal-dual method proposed by
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Chambolle and Pock, which we have employed to solve our
proposed model, was shown in [4].

7. NUMERICS
We demonstrate by the following numerical study the ca-
pability of the proposed model (9) in reconstructing images
with multiplicative noise.

All the implementations are perfomed using MATLAB
R2011a. We set the same parameter values λ = 1 and α = 1
for the DZ model and our proposed model. Quality of re-
sults of the two models are compared by means of the resid-
ual norm and peak signal-to-noise ratio (PSNR) value. The
residual norm and PSNR value are computed by the equa-
tions

RN = ‖g−h‖2

and

PSNR = 20log10

(
1√

MSE

)

where MSE =
1
n2 ∑

n−1
0 ∑

n−1
0 (g(i, j)−h(i, j))2 indicates the

mean-squared error with n = number of pixels, g as the orig-
inal image and h as the restored image. Note that a lower
residual norm and higher PSNR value indicate that the qual-
ity of the restored image is better.

The primal-dual algorithm is stopped when the value
of the objection function has no relative decrease, i.e., when

E(uk)−E(uk+1)

E(uk)
< ε. (23)

We set ε = 1e−5.

The test images are 256×256 gray level images, shown
in Figure 1). The multiplicative gamma noise is generated
by the MATLAB built-in function gamrnd.

The results for the implementations of the primal-dual
method for the two models are shown in Figures 3 and 4.

Both primal-dual method implementations of the DZ
model and our proposed model performed well and displayed
good restoration results, in terms of noise removal and detail
preservation. The restoration results of DZ displayed over-
smoothening of some image details. Meanwhile, we can ob-
serve that although noise relics are present in our restoration
results, oversmoothing was least manifested.

We can also observe that our model has a better quali-
tative performance compared to DZ. Table 1 shows the resid-
ual norms (ResNorm), PSNR values and number of itera-
tions (Iter) for the two models. The primal-dual method
implementation of our model outperforms that of DZ, since
lower residual norms, higher PSNR values and lower num-
ber of iterations can be observed from our restoration results.

(a) Cameraman

(b) Peppers

Figure 1: Original Images

8. CONCLUSION
In this paper, theoretical features of the variation model in
[5] were analysed. Mean values for the random variable
Y = 1/η are derived and the strict convexity of the model
was discussed. In addition, the model was shown to admit
a unique solution. Further research could dwell on dealing
with noise with mean not equal to one. The stopping rule
can also be enhanced by considering Karush-Kuhn-Tucker
conditions.
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