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ABSTRACT 

Social networking sites have opened avenues for the expression of 

disparaging and antagonistic sentiments, proliferating hate speech. 
While technologies have been devised to address this problem, 

systems contextualized in the Philippine cyberspace are essential 

since hate speech is deeply tied to the context of a locale. This 

research sought to address this need by developing a model capable 
of automating hate speech detection. Tweets posted during the 2016 

Philippine electoral campaign was labeled as either hate- or non-

hate-containing and annotated with the target(s) of hate. Simple 

language-independent features, namely, term frequency–inverse 
document frequency (TF-IDF), term occurrence (TO), and their 

combination, were extracted. For binary classification, logistic 

regression using TF-IDF+TO and with hashtag segmentation 

performed best (F1 = 77.47%), outperforming the keyword-
matching rule-based classifier by around 6%. The feedforward 

neural network failed to outperform the best logistic regression 

model entirely but scored competitively and used fewer features. 

For multilabel classification, perceptron using TF-IDF+TO and 
with hashtag segmentation performed best (micro-F1 = 67.80%, 

macro-F1 = 61.86%), outperforming the rule-based classifier by 

15.71% and 7.25% macro- and micro-F1, respectively. The main 

contribution of this paper is a comparative investigation of different 
classifiers using simple language-independent features for 

detecting and classifying political hate speech from the Philippines. 
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1. INTRODUCTION 
In the present digital era, social networking sites have served as 

ubiquitous platforms that facilitate the widespread and rapid 
diffusion of diverse user-generated content. The advantages 

afforded by these avenues make it easy for people to engage not 

only in discourse but also in the expression of negative, offensive, 

and even discriminatory sentiments with minimal restriction of 
censorship. The emphasis of these media on speed, accessibility, 

and anonymity compounds this problem in relation to hate speech, 

which has been defined as: 

[A] bias-motivated, hostile, malicious speech aimed at a person or a 

group of people because of some of their actual or perceived innate 

characteristics. It expresses discriminatory, intimidating, disapproving, 

antagonistic, and/or prejudicial attitudes towards those characteristics, 

which include gender, race, religion, ethnicity, color, national origin, 

disability, or sexual orientation. [1] 

Although already evident in its myriad of forms throughout several 

episodes in history, its exacerbated proliferation at present can be 

ascribed to an interplay of both psychological proclivities and 

technological channels that feed these motivations. One particular 
concept to explain this phenomenon is the notion of filter bubbles 

and echo chambers [2], which breed communities of like-minded 

people to the detrimental exclusion of other viewpoints and 

opinions [3]. These exclusive digital communities are made more 
pronounced by computational algorithms with regard to narrative 

ranking, personalization settings, page recommendations, as well 

as group suggestions [4, 5].  

It is incorrect, however, to assume that abusive language exists 
solely in the digital realm. Since digital interaction allows for a 

greater degree of anonymity and a wider network of connections 

than in face-to-face communication, the fundamental psychological 

proclivities that lead to the formation of filter bubbles are 
noticeably more amplified, heightening stereotyping, polarization, 

and radicalization [6]. The rise in the number of hate crimes can be 

attributed to these same factors [7, 8].  

As a matter of fact, this is corroborated by Müller and Schwarz [9]; 
employing back-of-the-envelope regression calculations, they 

found an association between the absence of anti-refugee posts on 

the Facebook page of the right-wing party Alternative für 

Deutschland and a 9% decrease in real-world anti-refugee 
incidents. 

Given the highly-polarizing nature of political discourse, its close 

relationship with the hate speech phenomenon becomes clear. 

Focus group participants from Kosovo remarked that denigrating 
rhetoric is most commonly employed by politicians in their attempt 

to demean the opposition, marginalize certain societal segments, 

willingly incite divisive sentiments, and divert the citizens’ 

attention from pressing issues [10].  

Campaign periods especially serve as hotbeds for inflammatory 

language directed towards candidates, parties, and sectors. During 

the 2015 Nigerian general election, denigrating advertisements and 

tirades, fomenting acts of violence, persisted between the major 
political parties in the young democracy [11, 12]. Even established 

democracies struggle with this problem as is the case with the 2016 

United States presidential elections, with an uptick in misogynistic 

and sexist language beleaguering Hillary Clinton, the first female 
presidential candidate in the country [13]. These findings and cases 

are indicative of the power of hate speech as a political weapon that 

“neither promotes majoritarian democracy nor protects minority 

rights” [14]. 

In the Philippines, however, systematic quantitative and qualitative 

investigations on this matter have been exiguous. While the country 

is a signatory in international treaties, such as the 1965 International 
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Convention on Elimination on All Forms of Racial Discrimination 

and 1976 International Convention on Civil and Political Rights, 
there is no existing legal mechanism that explicitly and specifically 

penalizes hate speech [15]. The closest provisions in relation to 

contemptuous language would be the libel and oral defamation 

articles in the Revised Penal Code [16]. Nevertheless, a proposed 
Magna Carta for Philippine Internet Freedom (which includes a 

section on hate speech) and Hate Speech Act have been introduced 

in the upper and lower chambers, respectively [15, 17]. 

These considerations all point out to the undesirability of continued 
hate speech proliferation, which makes it imperative to enact 

counteractions; a possible solution would be the development of 

technological interventions. Hate speech detection is an active 

research topic in the domain of natural language processing (NLP), 
a subfield of artificial intelligence that is concerned with enabling 

computers to understand and analyze human language. Existing 

technologies have explored the building of classifiers based on 

classic feature extraction [18, 19, 20], which hinges on manual 
feature engineering for use of the classifier, and deep learning 

algorithms [21, 22], which attempt to mimic the human brain 

through the use of multiple stacked layers.  

Research endeavors in the Philippines, however, have been limited. 
Most of the systems were developed by foreign researchers; their 

dataset, as well as the underlying frameworks and assumptions, 

may not be reflective of the culture and context of hate speech in 

the country’s cyberspace.  

This study seeks to contribute to the filling of this gap through the 

development of a model that can automate hate speech detection 

and classification in Philippine election-related tweets. The role of 

the microblogging site Twitter as a platform for the expression of 
support and hate during the 2016 Philippine presidential election 

has been supported in news reports and systematic studies [23, 24]. 

Thus, the particular question addressed in this paper is: Can existing 

techniques in language processing and machine learning be applied 
to detect hate speech in the Philippine election context? 

Specifically, this research aims to: 

 Review existing NLP methods employed in hate speech 

detection and classification, alongside techniques that can 

be utilized to extract features from hate-containing tweets; 

 Analyze the targets of hate as seen in tweets posted during 

the campaign period for the 2016 Philippine presidential 

election; 

 Implement hate speech detection and classification models 

following (1) rule-based, (2) machine learning, and (3) deep 
learning approaches; and 

 Evaluate and compare the performance of the built models.  

2. RELATED WORKS 
The earliest work on the detection of hate speech, then defined as 

abusive messages or flames, appeared in 1997 with the prototype 

system Smokey developed by Spertus [25]. Employing a decision 
tree generator to identify linguistic rules associated with flaming, 

the system managed to correctly classify 64% of the flames and 

98% of the non-flames. Among the features considered were the 

use of second-person pronouns to begin a sentence, noun phrases 
as appositions to second-person pronouns, imperative commands, 

and tag questions implying condescension.  

Succeeding works have further explored the use of both classical 

feature extraction and deep learning [26]. While the former requires 
manual feature engineering, i.e., choosing features and translating 

them into vectors that will be used by the classifier, the latter takes 

inspiration from the neural connections in the biological brain and 
utilizes neural networks to automate feature learning. Schmidt and 

Wiegand [27] enumerated and surveyed the following key features 

that can be extracted for use in hate speech detection: simple 

surface features, word generalizations, sentiment analysis, lexical 
resources, linguistic features, knowledge-based features, meta-

information, and multimodal information.  

Simple surface features include bag of words and n-grams; notably, 

because hate speech often contains non-canonical spellings marked 
by omissions or amalgamations of symbols and alphanumeric 

characters in a single string (e.g., “t@ng1n@ m0 gagu,” which 

gives “tangina mo gago” upon spelling correction), character-level 

approaches may be necessary to capture similarity to the canonical 
spelling. This is supported by the findings of Mehdad and Tetrault 

[28]: recurrent neural network language model and support vector 

machine with naïve Bayes features using token n-grams were 

bested by their character-level counterparts by seven and three F1-
points, respectively. The effectiveness of character n-grams was 

also supported in a study conducted by Nobata et al. [29]. 

Although simple surface features have the advantage of being 

computationally inexpensive, classifiers based solely on these are 
restricted to capturing only crude textual features. One way to 

address this is through the introduction of word generalization, 

which can be done via methods such as topic modeling and 

embeddings. Latent Dirichlet allocation (LDA) was used by Xiang 
et al. [30] to generate topical features, yielding a 5.4%-increase in 

the number of true positive detections as compared to keyword 

matching. Different variations of embeddings, including word [31] 

and paragraph [32], have been experimented on as well.  

The affect and polarity of a statement are the foci of sentiment 

analysis. This proves to be a viable approach since hateful content 

can be taken as a form of intense negative sentiment although it is 

necessary to avoid conflating the two, thus leading to multi-step 
classification approaches as employed by Sood, Churchill, and 

Antin [33]. The use of lexical resources or compiled dictionaries of 

keywords that signal different forms of hate, such as the Insulting 

and Abusing Language Dictionary [34] and the dictionary of hate 
verbs built by Gitari et al. [35] and seeded from an initial list of six 

verbs (discriminate, loot, riot, beat, kill, and evict), can also help in 

building classifiers based on sentiment analysis or keyword 

matching. 

Linguistic features have also been employed as an augmentation to 

surface-level features as is the case with the study conducted by Xu 

et al. [36], which considered three sets of feature representations 

(unigrams, unigrams and bigrams, and part-of-speech-colored 

unigrams and bigrams) and four classifiers (naïve Bayes, linear- 

and radial basis function-kernelled support vector machine, and 

maximum entropy-equivalent logistic regression). However, it was 

found that part-of-speech tagging failed to significantly contribute 
to increase in performance. Additionally, typed dependencies have 

been integrated to infer relationships between words and possibly 

glean the sociological “us vs. them” divide associated with hate 

speech [37, 38].  

The last three features mentioned by Schmidt and Wiegand [27] 

account for elements beyond content, i.e., beyond the given textual 

data. However, due to the expensiveness and difficulty of taking 
context into account, there are markedly fewer related studies. An 

example of a knowledge base is BullySpace [39]. Anchored on the 

extant semantic network ConceptNet and matrix AnalogySpace, it 
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is capable of detecting insults directed towards the lesbian, gay, 

bisexual, and transsexual community which, outside any presumed 
context, may be read as entirely innocuous. A significant limitation 

of such knowledge bases is their specificity to particular subgroups.  

Social networking platforms have also made it possible for meta-

information, or data about data, to be easily retrieved and analyzed 
for its predictive power although this comes with the hurdle of 

possibly crawling inauthentic personal information supplied by a 

user. Dadvar et al. [40] found that supplementing content-based 

with cyberbullying-indicative and user-based features (activity 
history and age of the user) yielded better precision, recall, and F1-

scores than when user-based features are omitted. Waseem and 

Hovy [41] investigated the addition of demographic information 

and reported that the combination of 2- to 4-grams and gender 
registered the highest F1 at 73.89%. 

A multimodal information approach capitalizes on the intersection 

of text, audio, image, and video dimensions in posts circulating on 

social media. The research of Hosseinmardi et al. [42], which 

focused on Instagram, showed that images and metadata contribute 

to cyberbullying detection as evinced in the built maximum entropy 

classifier registering recall and precision scores of 76% and 62%, 

respectively. A similar hybrid approach, coupled with the usage of 
LDA for caption topic generation and a pre-trained convolutional 

neural network (CNN) for image processing, was also employed by 

Zhong et al. [43]. 

For deep learning, Zhang and Luo [26] noted that the most widely-
used architectures in researches are recurrent neural network, 

usually long short-term memory (LSTM) and CNN. Zimmerman, 

Fox, and Kruschwitz [44] combined CNN and word embeddings, 

outperforming the original best method by Waseem and Hovy [41]. 
Introducing a novel hybrid approach, Zhang, Robinson, and Tepper 

[45] designed a CNN+GRU (gated recurrent unit) architecture, 

which had the advantage of having a faster training time and 

yielding better generalizability compared to the usual LSTM. 
Feedforward neural network (deep multilayer perceptron) has also 

been employed. Polignano and Basile [46] integrated this as part of 

an ensemble in HanSEL, an Italian hate speech detection system, 

and achieved cross-validation F1 scores of 80.34% and 71.02% for 
Facebook sentences and Twitter posts, respectively. 

Despite these existing technologies, hate speech detection remains 
a challenge. The definition of hate speech itself is problematic [47]; 

while a lax set of criteria may lead to several unidentified instances, 

a scrupulous one may come into conflict with the legally-enshrined 

freedom of expressing dissenting opinions. The annotation process 
itself is a difficult task, as evidenced by Ross et al. [48] reporting 

that even having a set definition failed to substantially increase 

reliability, which was already very low (with Krippendorff’s alpha 

ranging from 0.18 to 0.29).  

Context and domain-specific knowledge also play an important role 

in determining whether a given text is hateful or not, especially 
when vituperative intent is masked using sarcasm, humor, and code 

words. Furthermore, the Filipino language poses an interesting case 

in relation to textual analysis in general and hate speech detection 

in particular. Besides its speakers’ knowledge of English and one 
or more local languages [49] leading to frequent code-switching, 

Filipino is also characterized by a rich and complex morphology 

that allows for a dynamically-expanding vocabulary [50]. These 
aforementioned challenges present several NLP opportunities for 

the improvement of hate speech recognition in online spaces, with 

special attention given on national and local languages and dialects.  

3. METHODOLOGY 
The research process consisted of the following phases: data 

collection, tweet labeling, data preprocessing, feature extraction, 
classifier building, and performance evaluation. An overview of the 

methodology is shown in Figure 1.  

 

Figure 1. Overview of the Research Process 

3.1 Data Collection 
The dataset used in this study was a subset of the corpus 1,696,613 

tweets crawled by Andrade et al. [24] and posted from November 

2015 to May 2016 during the campaign period for the Philippine 
presidential election. They were culled based on the presence of 

candidate names (e.g., Binay, Duterte, Poe, Roxas, and Santiago) 

and election-related hashtags (e.g., #Halalan2016, #Eleksyon2016, 

and #PiliPinas2016).  

3.2 Tweet Labeling 
Two levels of data annotation were done: (1) labeling the tweets as 

either hate- or non-hate-containing and (2) labeling hate-containing 

tweets with the target(s) of hate. Hence, the first level is binary 

whereas the second is multilabel. 

For the first level of annotation, the general definition used was the 

one given by Cohen-Almagor [1] and quoted in the introduction of 

this paper. To promote inter-annotator reliability, this definition 

was expounded through a set of guidelines, partially derived from 
the definition of an offensive tweet by Waseem and Hovy [41]. 

In particular, a tweet was considered hate-containing if it met at 

least one of the criteria enumerated below: 

 

 It contained a profane word, a slur, or an epithet used in a 

discriminatory, intimidating, disapproving, antagonistic, 

and/or prejudicial manner.  

 Its meaning or intent was ambiguous due to lack of context 

or sparsity of words, but the tweet contained a profane 

word, a slur, or an epithet. 

 It expressed dissent or criticism directed towards a group or 

individual in a discriminatory, intimidating, disapproving, 

antagonistic manner. This criterion holds regardless of the 

veracity or the plausibility of the claim, and/or the presence 

of an accompanying argument to support or explain it. 
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 It contained a stereotype, generalization, or characterization 

of a group or individual in a discriminatory, intimidating, 

disapproving, antagonistic, and/or prejudicial manner. 

 It defended a discriminatory, intimidating, disapproving, 

antagonistic, and/or prejudicial stereotype, generalization, 

or characterization. 

 It sought to silence a group or individual. 

 It promoted hate speech or violent crimes. 

 It contained a screen name or shows support for a hashtag 

that is deemed discriminatory, intimidating, disapproving, 

antagonistic, and/or prejudicial. 

Additional guidelines for labeling are as follows: 

 Tweets that satisfied at least one of the criteria presented 

above were considered hate-containing, even if the delivery 

or expression is masked using humor or sarcasm. 

 News briefs and news report excerpts tweeted by media 

outlets were considered non-hate-containing. However, 
tweets that included a comment or reaction to those news 

briefs or excerpts were evaluated based on the set of criteria 

presented above. 

 Tweets that may be read ambiguously without the proper 
context but do not contain direct statements of hate were 

considered non-hate-containing. 

These set of criteria differ from the one proposed by Waseem and 

Hovy [41] in three salient aspects. First, while Waseem and Hovy 

[41] deemed a tweet offensive if it “uses a sexist or racial slur,” the 

present researchers added the condition that the slur or epithet 

should be used in the manner described by Cohen-Almagor [1]: 

“discriminatory, intimidating, disapproving, antagonistic, and/or 
prejudicial.” Warner and Hirschberg [51] mentioned the following 

example of a non-hateful sentence containing a racial slur: Kike is 

a word often used when trying to offend a jew. 

Second, while Waseem and Hovy [41] placed an emphasis on 
minorities as the targets of offensive tweets, the present researchers, 

following the definition by Cohen-Almagor [1], expressly widened 

the targets to include individuals and groups in general since the 

focus of this research is on political hate speech; as such, a number 
of the hate-containing tweets target specific candidates, parties, or 

groups that are not necessarily members of a minority segment. 

Lastly, while the criteria of Waseem and Hovy [41] stipulated that 

a tweet criticizing a minority is offensive if it “uses a straw man 
argument” or if it is done “without a well-founded argument,” the 

present researches considered all tweets that expressed dissent or 

criticism in the manner described by Cohen-Almagor [1] as hateful. 

Taking into account the high degree of polarization pervading the 
electoral campaign period, evaluating the substance of an argument 

or claim presented in the tweet may introduce biases on the part of 

the annotators, thus affecting the quality of the labels. 

For the second level of annotation, those that were labeled as hate 
were tagged with the target(s). The typology, which was adapted 

from the classification scheme by Silva et al. [52], consisted of the 

following categories: race, sex, physical, disability, religion, class, 

and quality. Their definitions are presented in Table 1.  

 

Table 1. Targets of Hate 

Target Definition 

Race Expresses hate towards or on the basis of race, 

ethnicity, or nationality; or associates an 

individual or a group to such in a hateful manner 

Physical Expresses hate towards or on the basis of a 
physical characteristic; or associates an individual 

or a group to such in a hateful manner 

Sex Expresses hate towards or on the basis of gender 

or sexual orientation; associates an individual or a 
group to such in a hateful manner; or includes a 

hateful remark or threat of a sexual nature 

Disability Expresses hate towards or on the basis of a health 

condition (including but not limited to a physical, 
mental, sensory, or emotional disability or 

impairment); or associates an individual or a 

group to such in a hateful manner 

Religion Expresses hate towards or on the basis of religious 

affiliation or belief; or associates an individual or 

a group to such in a hateful manner 

Class Expresses hate towards or on the basis of social 

class or socioeconomic status; or associates an 
individual or a group to such in a hateful manner 

Quality Expresses hate towards or on the basis of a quality 

that does not fall under any of the previously-

mentioned targets; or associates an individual or a 
group to such in a hateful manner 

 

The gold standard contained 729 tweets annotated independently 

by four of the researchers. Their agreement, which is reported in 

Table 2, was measured using Fleiss’ kappa (κ) and prevalence 

adjusted bias-adjusted kappa (PABAK): 

             Fleiss’ 𝜅 =  
observed agreement−chance agreement

1−chance agreement
       (Equation 1) 

             PABAK = 2 ∙ observed agreement − 1       (Equation 2) 

Table 2. Inter-annotator Agreement 

Label Fleiss’ κ PABAK 

Hate/Non-hate 

Targets of Hate 

0.862 0.868 

Race 0.888 0.997 
Physical 0.765 0.985 

Sex 0.592 0.859 

Disability 0.569 0.992 
Religion 0.666 0.997 

Class 0.431 0.949 

Quality 0.549 0.872 
 

While Fleiss’ κ penalizes very high or low prevalence of a certain 

label in a specific target of hate [53], PABAK makes the necessary 

adjustment to address this [54]. This explains the high PABAK for 

certain classes despite the low Fleiss’ κ. Overall, these values point 
to an acceptable inter-annotator agreement. With the gold standard 

as the guide for quality control of judgments, subsequent tweets 

were tagged, each receiving independent labels from two 

researchers. Only those with unanimous labeling were included in 

the final dataset, which is quantitatively described in Table 3. 
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Table 3. Dataset Composition 

Label Number of Tweets 

Hate 8,600 (46.58%) 

Race 75 

Physical 858 

Sex 109 
Disability 40 

Religion 29 

Class 222 

Quality 7,641 
Non-hate 9,864 (53.42%) 

Total 18,464 (100.00%) 

 

3.3 Data Preprocessing 
Data preprocessing was performed to prepare the tweets for feature 

extraction and classification. It consisted of the following steps: 
data de-identification, uniform resource locator (URL) removal, 

special character processing, normalization, hashtag processing, 

and tokenization. 

3.3.1 Data De-identification 
In order to protect user privacy, the tweets were de-identified 

through the removal of handles and email addresses using regular 
expression (regex). The regex for the removal of email addresses 

was written following the formal definition given in the RFC 5322 

standard [55]. 

3.3.2 Uniform Resource Locator Removal 
Although the presence of URLs was investigated by Anzovino, 

Fersini, and Rosso [53] as a potential cue for detecting misogynistic 
derailing, they were removed in the present research using regex; 

since this study focused on the application of language-independent 

surface features (term frequency-inverse document frequency and 

term occurrence), URLs were not deemed contributive to building 
generalizable hate speech classifiers.  

3.3.3 Special Character Processing 
Special (i.e., non-alphanumeric) characters were removed with the 

following exceptions, which may represent valuable features in 

hate speech recognition: 

 Those found in expletives (e.g., t*ngin@) 

 Those constituting emotion-carrying punctuation strings 

(e.g., ??!!!): The presence of an exclamation point (used to 
express intense feelings or sentiments), question mark (used 

in interrogative statements), and/or swung dash (may be 

used to signal a playful tone) was taken as an indicator for 

emotion-indicative punctuation strings. 

 Those constituting emoticons (e.g., :))))))): Emoticons were 

identified with the use of a manually-compiled list. 

3.3.4 Normalization 
Since posts on social media sites tend to have noisy and malformed 

texts alongside words and strings with little to no predictive power, 

an integral part of data cleaning is normalization, which was done 
in this research through the: 

 Removal of numeric characters 

 Escaping of hypertext markup language (HTML) characters 

(using Beautiful Soup [56], an HTML document parser for 

Python) and removal of resulting punctuation marks that are 

not listed in the exceptions above 

 Removal of diacritics (using Unidecode [57], a Python 

module that takes Unicode data and converts them into their 

nearest universally-displayable equivalent) 

 Conversion of letters to lowercase 

 Removal of stop words, the names of the candidates for the 

2016 Philippine elections, and the string rt (retweet) 

Both English and Filipino stop words were removed. English stop 
words followed the built-in Natural Language Processing Toolkit 

[58] list. Filipino stop words included pronouns (along with their 

shorthand and ligatured forms), determiners, copulatives, and select 

prepositions and conjunctions. Words that signal disagreement or 
negation (namely, the Filipino words di and hindi and the English 

words not, no, and against) were excluded from the stop word list.  

3.3.5 Hashtag Processing 
Both the removal and segmentation of hashtags were experimented 

on with in order to measure their effect on classifier performance. 

Removal was executed with the use of regex. On the other hand, 
segmentation was done manually; a total of 1,377 hashtags were 

segmented. In replacing the original with their segmented forms, 

the Python library FlashText [59], which clocks in a significantly 

faster time compared to regex in replacing keywords, was used. 

3.3.6 Tokenization 
The cleaned tweets underwent tokenization to break them into their 
constituent words. Since the Natural Language Processing Toolkit 

Whitespace Tokenizer [58] was used for this process, whitespaces 

were added before and/or after preserved special character strings 

(wherever necessary) in order for the tokenizer to recognize them 
as individual tokens. 

3.4 Feature Extraction 
Since the collected tweets contained Filipino and English words, 

mingled with foreign expressions that have entered Filipino lexicon 

(e.g., the Spanish que horror, which translates to how terrible) 
language-independent features were selected for extraction. In 

particular, surface lexicon-based features were considered: term 

frequency–inverse document frequency (TF-IDF), term occurrence 

(TO), and their combination (TF-IDF+TO). 

3.4.1 Term Frequency-Inverse Document Frequency 
Term frequency-inverse document frequency captures the “weight” 
or relevance of a term with respect to a document and to the whole 

document collection by taking the product of term frequency (TF) 

and inverse document frequency (IDF). While TF is the ratio of the 

number of times a term appears in a document to the total number 
of terms in that document, IDF rewards the rarity or uniqueness of 

a term by computing for the common logarithm of the ratio of the 

number of documents in which the term appears to the total number 

of documents in the collection.  

Given a term t, document D, and collection C, N(t, D) denotes the 

number of times t appears in D; N(D), the total number of terms in 

D; N(t, C), the number of documents in C containing the term t; and 

N(C), the total number of documents in C. The TF-IDF of t with 
respect to D and C, represented as TFIDF(t, D, C), is formally 

defined as: 

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝐷, 𝐶) = 
𝑁(𝑡,𝐷)

𝑛(𝐷)
⋅ log [

𝑁(𝑡,𝐶)

𝑁(𝐶)
]       (Equation 3) 

This research kept the default settings implemented in Scikit-learn 

[60] as regards TF-IDF smoothing, which prevents zero division 
through the addition of a document containing all terms, and L2 

normalization, which calculates the Euclidean norm ‖𝑥‖2 to give 

the length of the vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) as mathematically 

defined by the following equation: 

‖𝑥‖2 = √𝑥1
2 + 𝑥2

2 + 𝑥3
2 + ⋯ + 𝑥𝑛

2       (Equation 4) 
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For the purpose of keyword analysis, two document-term matrices 

were constructed. For both matrices, term refers to a token unigram 
extracted from a single tweet and collection refers to the entire set 

of tweets gathered. Two documents were considered for the first 

document-term matrix: the set of non-hate-containing tweets and 

the set of hate-containing tweets. Meanwhile, for the second matrix, 
a total of seven documents were taken into account, corresponding 

to the seven targets of hate. 

3.4.2 Term Occurrence 
Term occurrence gives a binary representation of the presence of a 

term in a particular document. Hence, the term occurrence TO(t, D) 

of a term t with respect to document D, with N(t, D) denoting the 
number of times t appears in D, is defined as: 

𝑇𝑂(𝑡, 𝐷) = {
0,   𝑁(𝑡, 𝐷) = 0
1,   𝑁(𝑡, 𝐷) ≥ 1

                       (Equation 5) 

3.5 Classifier Building 
After subjecting the dataset to a 70%-30% train-test split, binary 

and multilabel classifiers were built to classify the tweets into hate- 

or non-hate containing, and depending on the target(s) of hate, 

respectively. Three approaches were explored: rule-based, machine 
learning, and deep learning. In order to reduce imbalance, majority 

classes were undersampled as shown in Table 4.  

Table 4. Dataset Composition with Class Imbalance Reduced 

Label Number of Tweets 

Hate 8,600 

Race 75 

Physical 230 

Sex 109 
Disability 40 

Religion 29 

Class 164 

Quality 369 
Non-hate 8,600 

 

3.5.1 Rule-Based  
The rule-based classifier was designed to classify a tweet based on 

the presence of a keyword. The keyword list was constructed during 

the annotation process. It included hate-signaling words contained 

in the tweets and was expanded through the inclusion of related and 

synonymous words. Sample keywords are presented in Table 5. 

Table 5. Sample Keywords Used by the Rule-Based Classifier 

Label Keywords 

Hate The keyword list was constructed by combining 

the keyword list for the seven targets of hate. 
Race amgirl, intsek, kano, makachina, neggy, 

negneg, negro, nigga, nigger, nigguh 

Physical alien, bansot, boomsunog, dwende, eggnog, 

kokey, kuba, oily, pandak, pango, panot 
Sex bayot, eutin, iyot, iyutin, kantot, kantutin, 

manyakis, pokpok, supot, syokla 

Disability abno, abnoy, baliw, flid, lunatic, 

medicalmysteries, otis, otistik, retard, tarded 
Religion bigot, cult, cultist, devil, devils, kulto, lucifer, 

osama, satan, satanas  

Class beggar, burgis, elistista, exploiting, greaser, 

peasant, pleb, pobre, pulubi, timawa 
Quality arogante, bastos, boysawsaw, bullshit, 

desperate, kingama, korap, tanga, quingina, 

sinungaling 

In particular, a tweet was deemed hate-containing if and only if at 

least one of the listed keywords was present. Equivalently, a tweet 
was deemed non-hate-containing if and only if none of the listed 

keywords were present. This was aligned with the binary nature of 

the classification task. Meanwhile, a hate-containing tweet was 

tagged with a target of hate if and only if at least one of the target-
specific keywords was present. In light of the multilabel scheme for 

the second level of classification, a tweet may have multiple targets. 

3.5.2 Machine Learning 
Using Scikit-learn [60], an open-source machine learning (ML) 

library for Python, the following ML algorithms were employed to 

build classification models: 

 Linear, nu, and C support vector classifier (SVC) 

 Logistic regression 

 Multinomial, Bernoulli, and complement naïve Bayes (NB) 

 Nearest centroid 

 Passive aggressive 

 Perceptron 

 Random forest 

 Ridge regression 

 Stochastic gradient descent (SGD) 

 XGBoost [61] 

The multilabel classification problem was transformed through the 

method of binary relevance, which decomposes the task by training 

an independent binary classifier for each label, using the Python 
library Scikit-multilearn [62], which is built on top of Scikit-learn. 

While this approach takes less training time, a major limitation is 

its failure to capture dependencies or relationships between labels; 

nevertheless, it has been demonstrated to outperform more complex 
multilabel classification methods in certain experiments [63].  

In order to determine the best parameters to optimize the F1 score 

of the classifiers, hypertuning via stratified ten-fold cross-validated 

grid search was conducted. Ablation experiments were also done, 
with the number of TF-IDF features incrementally reduced by 15% 

(unlike TF-IDF, TO, being a binary representation, is not scalable). 

3.5.3 Deep Learning 
With the deep learning library Keras [64] running on top of the 

computational framework TensorFlow [65], a feedforward neural 

network (FFNN) was designed for binary classification, following 
the architecture described in Table 6.  

Table 6. Feedforward Neural Network Architecture 

Layer Activation 

Function 

Number of Nodes 

Input Layer - Number of features 

Hidden Layer 1 ReLU 1,000 

Dropout Layer 1 - - 

Hidden Layer 2 ReLU 500 
Dropout Layer 2 - - 

Hidden Layer 3 ReLU 50 

Dropout Layer 3 - - 

Output Layer Softmax 2 
 

The activation function used for the hidden layers was rectified 

linear unit (ReLU), which works by thresholding values at 0 as 
defined in Equation 6. The simplicity of the required operations 

reduces computational complexity and training time (especially in 

comparison to tanh and sigmoid functions). ReLU also suffers less 

from vanishing gradients and results to faster convergence.  

𝜙(𝑥) = max {0, 𝑥}                       (Equation 6)
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The use of softmax as the activation function for the output layer 

forces the assignment of discrete probability values with respect to 
each of the classes instead of simple numeric ones. Formally, given 

an index 𝑗 = 1, 2, 3, … , 𝑛 and a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), the 

softmax function is defined as: 

𝜙(𝑥)𝑗 =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑖𝑛
𝑖=1

                       (Equation 7) 

The FFNN was trained over five epochs, with dropout rate set to 

50% to prevent overfitting. The loss function was sparse categorical 

cross entropy, and the optimization algorithm utilized was adaptive 
moment estimation (Adam), with the default parameters kept at        

α = 1 × 10−3, β1 = 0.9, β2 = 0.999, ε = 1 × 10−8, and no decay. 

3.6 Performance Evaluation 
The performance of the built binary classifiers was evaluated using 
precision, recall, F1, and accuracy scores: 

precision = 
|true positive|

|true positive|+|false positive|
                 (Equation 8) 

recall = 
|true positive|

|true positive|+|false negative|
                      (Equation 9) 

F1 = 2 ⋅ 
precision ⋅ recall

precision + recall
                    (Equation 10) 

accuracy = 
|true positive|+|true negative|

total number of labels
                (Equation 11) 

Meanwhile, for multilabel classification, the selected metrics were 

micro-precision, micro-recall, and micro-F1 scores, and Hamming 

loss. Micro-averaged metrics are calculated globally, placing equal 

importance on each instance. If the classification task involves K 

classes and |true positive|𝑘  pertains to the number of true positive 

labels with respect to class k (|true negative|𝑘, |false positive|𝑘, 

and |false negative|𝑘 are similarly defined), the micro-averaged 

metrics are then given by the following equations: 

precisionmicro = 
∑ |true positive|𝑘

𝐾
𝑘=1

∑ |true positive|𝑘
𝐾
𝑘=1 +∑ |true positive|𝑘

𝐾
𝑘=1

    (Equation 12) 

recallmicro = 
∑ |true positive|𝑘

𝐾
𝑘=1

∑ |true positive|𝑘
𝐾
𝑘=1 +∑ |false negative|𝑘

𝐾
𝑘=1

          (Equation 13) 

F1micro = 2 ⋅
precisionmicro ⋅ recallmicro

precisionmicro+ recallmicro
          (Equation 14) 

Unlike the other metrics, Hamming loss is a loss function that may 

be related to accuracy in a multilabel setting; hence, a lower value 

that is closer to zero actually corresponds to a better performance. 

Compared to 0-1 loss, Hamming loss is a more relaxed metric since 
it does not require a fully-correct prediction, or a perfect match 

between the sets of annotated and predicted labels: 

Hamming loss = 
|false positive|+|false negative|

total number of labels
          (Equation 15) 

The macro-F1 scores (which place equal weight on each class) of 

the multilabel classifiers with the highest micro-F1 scores were 
computed to provide a quantitative measure of their performance 

with respect to underrepresented classes. Macro-averaged F1 is the 

arithmetic mean of the F1 scores for each class, represented as F1k: 

F1macro = 
1

𝐾
∑ F1𝑘

𝐾
𝑘=1           (Equation 16) 

4. RESULTS AND DISCUSSION 
In this section, the results of the analysis of keywords, evaluation 
of classifier performance, and application of the top-performing 

classifier on the entire corpus of 2016 Philippine election-related 

tweets gathered by Andrade et al. [24] are discussed. 

4.1 Keyword Analysis 
After repeated trials by increments of 5%, it was found that taking 

the top 40% keywords by TF-IDF yielded the highest percentage of 
keywords unique to each document as reported in Table 7. Hashtag 

segmentation did not affect the percentage of unique keywords by 

more than 5%. 

Table 7. Percentage of Unique Keywords 

Document Hashtags Removed Hashtags Segmented 

Hate 52.61% 51.80% 

Non-hate 53.00% 52.47% 

Targets of Hate   
Race 42.20% 45.66% 

Physical 33.68% 34.06% 

Sex 52.49% 55.60% 

Disability 43.56% 48.00% 
Religion 61.63% 56.47% 

Class 38.07% 39.94% 

Quality 83.78% 84.28% 
 

The top ten keywords by TF-IDF, which are generally the same 
regardless of hashtag treatment, are enumerated in Table 8. It can 

be seen that the keywords which are common to both hate- and non-

hate-containing tweets include: 

 Punctuation strings that are indicative of strong emotions, 

albeit not necessarily hateful (e.g., ?????) 

 Emoticons that are not necessarily hateful (e.g., :() 

 Function words that indicate negation (e.g., no) 

 Offensive words that frequently appear in non-hateful 

contexts, such as news leads (e.g., corrupt) 

 Non-offensive words that are associated with political 

biases (e.g., dilaw [Tagalog for yellow], an identifying color 

of one of the major political parties in the Philippines) 

 Election- and campaign-related words that carry neither 
positive nor negative sentiment (e.g., commercial) 

Table 8. Top Ten Keywords by TF-IDF 

Document Keywords 

Hate (Unique) desperado, hambog, tanga, puta, fuck, 

punyeta, annoying, gago, nakakainis 

Non-hate 

(Unique) 

pht, ppcrv, trndnl, brigada, update, ca, 

ateneo, visit, lando, cheapen 

Hate and Non-
hate 

(Common) 

!, ?, ??, lang, nognog, no, wag, 
commercial, ad, ???? 

Targets of Hate  

Race makumpara, hearings, enebenemyern, ita, 
nigga, amgirl, collaborator, ikinakahiya, 

iresponsable, kano 

Physical touches, oily, pumuti, nasunog, madilim, 

dilim, tigas, kakulay, pinagkaiba, costume 
Sex beb, sex, libog, matuwad, bayot, chicks, 

tangap, womanizer, kantot, woke 

Disability anomaly, virus, pobya, medical, panic, 

kesyo, differentiate, ingrown, brave, 
aketch 

Religion commandments, prejudging, atheist, 

religious, bible, ten, vizconde, violated, 

talab, mapataob 

Class mayayaman, elitista, milyong, richer, 

admits, nahihirapan, noontime, hasyenda, 

entering, gagastusan 

Quality dayaang, corruption, end, till, desperate, 
bobo, desperado, results, bad, dayaan 
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Table 9. Manual Analysis of Top 40% Keywords by TF-IDF 

Document Keyword Analysis Sample Keywords 

Frequency (%) 

Hashtags 

Removed 

Hashtags 

Segmented 

Hate Hateful desperado, hambog, tanga, puta, fuck 33.94% 33.87% 

 Non-hateful prowomen, nagsasalita, magkano, mata, pondo 62.63% 62.57% 

 Ambiguous luh, lmao, sus, huy, lolz 2.56% 2.70% 

 Punctuation String -.-, ./., -___________-, >.<, :-P 0.87% 0.86% 

Targets of Hate     

Race Hateful, Related to Target nigga, amgirl, kano, neg, chinks 13.92% 12.33% 
 Hateful, Unrelated to Target ikinakahiya, iresponsable, naknampoodle 12.66% 15.07% 

 Non-hateful, Related to Target ita, japanese, asian, capiznon, interracial 10.13% 13.70% 

 Non-hateful, Unrelated to Target distinction, asks, mapansin, belong, souls 63.29% 58.90% 

 Ambiguous - 0.00% 0.00% 
 Punctuation String - 0.00% 0.00% 

Physical Hateful, Related to Target oily, nasunog, ingkanto, butete, nogskie  11.41% 12.20% 
 Hateful, Unrelated to Target dafuq, binatbat, burat, nyare, mofo 6.38% 6.44% 

 Non-hateful, Related to Target touches, kayumanggi, kulot, tyan, apechotties 12.42% 13.90% 

 Non-hateful, Unrelated to Target pinagkaiba, niall, budhi, background, malayong 66.78% 65.42% 

 Ambiguous hahahahahahahahahaha, inpernes, charrr, wahhaha 2.35% 1.69% 
 Punctuation String ????????????????????, :-D, D:< 0.67% 0.34% 

Sex Hateful, Related to Target matuwad, bayot, chito, puzzy, manyakis 13.89% 13.14% 
 Hateful, Unrelated to Target nilalangaw, beangry, barangayutakan, eassytohl 4.17% 0.73% 

 Non-hateful, Related to Target sex, bra, viagra, threesome, sexual 20.83% 20.44% 

 Non-hateful, Unrelated to Target woke, nkaupo, brgy, serious, principal 59.72% 64.23% 

 Ambiguous dejoke, tahahaha 1.39% 1.46% 
 Punctuation String - 0.00% 0.00% 

Disability Hateful, Related to Target nababaliw, mongoloid, retarded 8.33% 9.09% 
 Hateful, Unrelated to Target kesyo, fckn, eepal, magisa 10.42% 9.09% 

 Non-hateful, Related to Target virus, pobya, medical, ingrown, dementia 20.83% 20.45% 

 Non-hateful, Unrelated to Target differentiate, brave, computer, lumitaw, diretso 56.25% 56.82% 

 Ambiguous grabeee 2.08% 2.27% 
 Punctuation String p@#$%&*-+ 2.08% 2.27% 

Religion Hateful, Related to Target satanas, sumanib, devils, cult 6.25% 5.67% 
 Hateful, Unrelated to Target mapataob, againsts, saklap, mofos, mangungurakot 12.50% 13.21% 

 Non-hateful, Related to Target commandments, prejudging, religious, bible, mary 29.17% 24.53% 

 Non-hateful, Unrelated to Target ten, talab, nakain, perhaps, clan 50.00% 54.72% 

 Ambiguous olryt 2.08% 1.89% 
 Punctuation String - 0.00% 0.00% 

Class Hateful, Related to Target elitista, oligarch, elitists, elitism, serfdom 5.76% 5.22% 
 Hateful, Unrelated to Target walanjong, karumaldumal, kulong, langyang, mob 10.07% 9.70% 

 Non-hateful, Related to Target mayayaman, properties, wealth, farm, nike 25.18% 25.37% 

 Non-hateful, Unrelated to Target noontime, entering, hanga, maghanap, iendorso 54.68% 55.22% 

 Ambiguous haahahahaha, hahhaaha, ayyy 2.16% 2.24% 
 Punctuation String $_$_$_$, !???????????????????, xo 2.16% 2.24% 

Quality* Hateful 
Hateful, Related to Other Targets 

dayaang, desperate, bobo, desperado, epal 
maniac, pagmumukha, kultong, squatters, budoy 

19.80% 
0.13% 

19.47% 
0.16% 

 Non-hateful gives, wishing, bunga, betwn, inevitability 77.62% 77.85% 

 Ambiguous pls, seriously, ewan, laughtrip, tbh 1.72% 1.73% 

 Punctuation String -_-, :3, :/, ;(, !!???? 0.73% 0.79% 
* The scheme for quality is different since it serves as the catchall category for tweets that cannot be classified under any of the preceding targets.

A manual analysis of the computer-generated keywords for hate 

showed that they can be categorized into hateful, non-hateful, and 
ambiguous words, and punctuation strings (including emoticons). 

Ambiguous words, such as sorry, pertain to those that may be used 

both to express non-hateful emotions (as in We are sorry for the 

inconvenience this may have caused you) and to make deriding or 
sarcastic remarks (Sorry na lang ang pangit mo kasi talaga).  

The same coding scheme was extended for the different targets of 
hate, with the addition of determining whether the keyword is 

actually pertinent to the target. The quantitative results, along with 

sample keywords, are reported in Table 9.  

It was found that majority of the keywords were non-hateful, with 

the hateful tokens consistently tallying up to less than a quarter of 
the entire set of keywords. This is not unexpected since, in real-life 

conversations and discourses, the frequency of hateful utterances is 

significantly smaller than that of non-hateful or neutral expressions.  

With regard to the targets of hate, the number of related non-hateful 

keywords consistently outweighed that of related hateful keywords. 

A possible reason is that only a fraction of tweets actually contained 
a hate-expressing keyword specific to a target; most constructions 

involved a neutral word referring to the target, which was then 

adjoined to a general hateful modifier (an adjective or an adverb). 
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It is also to be noted that some keywords, especially those that are 

of a sexual nature, snidely referenced non-election-related events 
or occurrences (e.g., news about celebrities, television shows, and 

Internet videos) that trended at the same time as the electoral 

campaign period. Sardonic word plays on the names of candidates 

and their political slogans were also prominent; these call to mind 
a remark made by Speier on the subject of political humor: 

Since a man’s name is felt to be a constitutive part of a person, 

something that is true both in primitive and contemporary cultures, 

jokes that disfigure or make sport of a name are especially aggressive. 

They kill in a magical way. [66] 

4.2 Performance Evaluation 
In this section, the F1 scores (which give the true predictive power 

by taking the harmonic mean of the precision and recall scores) and 

the accuracy scores (for binary classification) or Hamming losses 
(for multilabel classification) of the rule-based, machine learning, 

and deep learning classifiers are reported and compared. 

4.2.1 Rule-Based Classifiers 
As reported in Table 10, the rule-based binary classifier performed 

better than random guessing, with hashtag segmentation increasing 

the F1 score by 0.94% (from 70.18% to 71.12%) and the accuracy 
score by 0.51% (from 75.52% to 76.03%).  

With respect to the rule-based multilabel classifiers, the increase in 

micro- and macro-F1 scores were limited to 0.88% (from 59.67% 

to 60.55%) and 0.31% (from 45.84% to 46.15%). These figures 
show that, for both classification tasks, hashtag segmentation was 

unable to improve performance by above 1%. 

Table 10. F1 and Accuracy Scores of the Rule-Based Classifier 

Label 
F1 Accuracy/Hamming Loss* 

Hashtags 

Removed 

Hashtags 

Segmented 

Hashtags 

Removed 

Hashtags 

Segmented 

Binary 70.18% 71.12% 75.52% 76.03% 
Multilabel     

Race 42.67% 42.67% 5.80% 5.80% 

Physical 75.37% 75.98% 12.89% 12.63% 

Sex 41.73% 41.73% 10.44% 10.44% 
Disability 73.02% 73.02% 2.19% 2.24% 

Religion 17.65% 17.65% 3.61% 3.61% 

Class 1.21% 1.21% 21.01% 21.00% 

Quality 69.23% 70.76% 26.80% 25.77% 

Micro-F1 59.67% 60.55%   

Macro-F1 45.84% 46.15%   
* Accuracy score is a metric to measure the performance of the binary classifier while 

Hamming loss is used for the multilabel classifiers. Better performance is signified by 

an accuracy score closer to 1 and a Hamming loss closer to 0. 

Error Analysis. Analyzing misclassifications shows a prevalence 
in the number of false negative predictions, as seen in the confusion 

matrix (Figure 2). Moreover, the number of true predictions can be 

described as skewed; the classifier is unable to recognize hateful 

tweets as effectively as it detects non-hateful tweets. 

This increase in false negative predictions and the decrease in true 

positive predictions, as well as the low F1 scores for class and 

religion, can be attributed to the shortcoming of the keyword-

matching operation of the rule-based classifier to account for tweets 
that express hate but in a manner that does not include an explicit 

mention of hateful words.  

The insufficiency of any keyword list construction to include all 

hateful utterances, along with their noncanonical spelling variants, 
also pose a major limitation, considering the complex morphology 

of Filipino in particular and the dynamicity of language in general. 

 

Figure 2. Confusion Matrix for the Rule-Based Binary 

Classifier with Hashtag Segmentation 

4.2.2 Machine and Deep Learning Classifiers 
The feedforward neural network model and most machine learning 

classifiers (with the exception of nearest centroid for the binary 

classification task and Bernoulli and complement naïve Bayes for 

the multilabel classification task) fared better than their rule-based 
counterparts. The F1 scores of these models vis-à-vis the number 

of features and hashtag treatment are shown in Figures 3 to 7; the 

graphs on the left side pertain to hashtag removal while those on 

the right are related to hashtag segmentation. 

 

Figure 3. Binary F1 Scores (TF-IDF) 

 

Figure 4. Binary F1 Scores (TF-IDF+TO) 

 

Figure 5. Micro-F1 Scores (TF-IDF) 

 

Figure 6. Micro-F1 Scores (TF-IDF+TO) 

 

Figure 7. Legend for Figures 3 to 6 
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Table 11. F1 and Accuracy Scores of Top-Performing Machine and Deep Learning Binary Classifiers*

 TF-IDF TO TF-IDF+TO 

Classifier Hashtags Removed Hashtags Segmented Hashtags Removed Hashtags Segmented Hashtags Removed Hashtags Segmented 

 F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy 

Logistic 

Regression 

75.68% 

(9907) 

76.10% 

(9907) 

77.47% 

(7432) 

77.85% 

(7432) 

75.46% 

(18014) 

76.28% 

(18014) 

77.25% 

(18580) 

78.06% 

(18580) 

75.62% 

(22517) 

76.39% 

(22517) 

77.22% 

(26012) 

78.04% 

(26012) 

Multinomial 

NB 

75.18% 

(15311) 

73.90% 

(15311) 

76.55% 

(15793) 

75.39% 

(15793) 

75.29% 

(18014) 

73.59% 

(18014) 

76.94% 

(18580) 

75.47% 

(18580) 

75.38% 

(30623) 

73.74% 

(30623) 

77.07% 

(34373) 

75.64% 

(34373) 

Bernoulli NB 75.50% 

(15311) 

74.30% 

(15311) 

77.03% 

(15793) 

75.95% 

(15793) 

75.50% 

(18014) 

74.30% 

(18014) 

77.03% 

(18580) 

75.95% 

(18580) 

75.50% 

(19815) 

74.30% 

(19815) 

77.03% 

(20438) 

75.95% 

(20438) 

Complement 

NB 

75.18% 

(15311) 

75.62% 

(15311) 

76.55% 

(15793) 

75.39% 

(15793) 

75.29% 

(18014) 

73.59% 

(18014) 

76.94% 

(18580) 

75.47% 

(18580) 

75.38% 

(33325) 

73.74% 

(33325) 

77.07% 

(34373) 

75.64% 

(34373) 

Nu SVC 75.14% 

(12609) 

75.47% 

(12609) 

76.72% 

(15793) 

77.13% 

(15793) 

74.51% 

(18014) 

75.81% 

(18014) 

76.42% 

(18580) 

77.48% 

(18580) 

75.14% 

(33325) 

76.43% 

(33325) 

76.85% 

(26012) 

75.48% 

(26012) 

Ridge 

Regression 

74.69% 

(12609) 

74.98% 

(12609) 

76.77% 

(10219) 

77.19% 

(10219) 

74.21% 

(18014) 

75.08% 

(18014) 

76.24% 

(18580) 

77.15% 

(18580) 

74.82% 

(19815) 

75.52% 

(19815) 

76.49% 

(34373) 

77.44% 

(34373) 

Perceptron 72.99% 

(9907) 

72.67% 

(9907) 

75.01% 

(4645) 

75.54% 

(4645) 

73.56% 

(18014) 

73.97% 

(18014) 

74.71% 

(18580) 

74.81% 

(18580) 

73.85% 

(25219) 

73.85% 

(25219) 

75.66% 

(23225) 

75.31% 

(23225) 

Passive 

Aggressive 

74.54% 

(9907) 

75.29% 

(9907) 

76.73% 

(15793) 

77.44% 

(15793) 

73.97% 

(18014) 

74.55% 

(18014) 

76.01% 

(18580) 

76.51% 

(18580) 

74.16% 

(30623) 

74.88% 

(30623) 

77.05% 

(37160) 

76.45% 

(37160) 

SGD 74.75% 

(12609) 

74.92% 

(12609) 

76.24% 

(15793) 

76.55% 

(15793) 

74.92% 

(18014) 

75.85% 

(18014) 

76.61% 

(18580) 

77.60% 

(18580) 

75.36% 

(25219) 

76.26% 

(25219) 

76.85% 

(23225) 

77.77% 

(23225) 

Feedforward 

Neural 

Network 

75.08% 

(4503) 

75.41% 

(4503) 

77.03% 

(4645) 

77.36% 

(4645) 

74.43% 

(18014) 

75.10% 

(18014) 

75.44% 

(18580) 

76.76% 

(18580) 

74.83% 

(36028) 

75.25% 

(36028) 

† † 

* In parentheses are the required number of features to train the classifier; in bold is the top-performing model for each feature. 
† A feedforward neural network was not implemented for binary classification using TF-IDF+TO with hashtag segmentation due to memory limitation. 
 

Table 12. Micro-F1 and Accuracy Scores of Top-Performing Machine Learning Multilabel Classifiers*

 TF-IDF TO TF-IDF+TO 

Classifier Hashtags Removed Hashtags Segmented Hashtags Removed Hashtags Segmented Hashtags Removed Hashtags Segmented 

 Micro-

F1 

Hamming 

Loss 

Micro-

F1 

Hamming 

Loss 

Micro-

F1 

Hamming 

Loss 

Micro-

F1 

Hamming 

Loss 

Micro-

F1 

Hamming 

Loss 

Micro-

F1 

Hamming 

Loss 

Logistic 

Regression 

65.27% 

(268) 

11.16% 

(268) 

65.00% 

(277) 

11.16% 

(277) 

62.47% 

(2682) 

11.34% 

(2682) 

61.22% 

(2778) 

11.65% 

(2778) 

63.75% 

(2950) 

11.16% 

(2950) 

63.20% 

(3055) 

11.28% 

(3055) 

Linear SVC 66.04% 

(268) 

11.16% 

(268) 

66.54% 

(277) 

10.85% 

(277) 

65.10% 

(2682) 

10.91% 

(2682) 

64.30% 

(2778) 

11.10% 

(2778) 

65.77% 

(2950) 

10.97% 

(2950) 

65.50% 

(3055) 

10.91% 

(3055) 

Nu SVC 64.82% 

(2682) 

10.91% 

(2682) 

64.14% 

(1944) 

12.20% 

(1944) 

63.69% 

(2682) 

11.47% 

(2682) 

62.91% 

(2778) 

11.17% 

(2778) 

64.45% 

(3754) 

11.16% 

(2950) 

65.00% 

(3055) 

11.16% 

(3055) 

C SVC 65.21% 

(2682) 

10.73% 

(2682) 

64.99% 

(1944) 

11.10% 

(1944) 

64.49% 

(2682) 

11.34% 

(2682) 

64.48% 

(2778) 

11.28% 

(2778) 

64.74% 

(3352) 

11.22% 

(3352) 

65.39% 

(3055) 

11.10% 

(3055) 

Ridge 

Regression 

63.67% 

(2682) 

11.40% 

(2682) 

64.29% 

(277) 

11.04% 

(277) 

64.02% 

(2682) 

11.10% 

(2682) 

63.73% 

(2778) 

11.10% 

(2778) 

65.89% 

(2950) 

10.79% 

(2950) 

65.74% 

(3055) 

10.61% 

(3055) 

Perceptron 64.22% 

(1475) 

11.34% 

(1475) 

67.05% 

(1111) 

10.67% 

(1111) 

59.00% 

(2682) 

11.58% 

(2682) 

64.53% 

(2778) 

11.53% 

(2778) 

65.52% 

(2950) 

11.04% 

(2950) 

67.80% 

(3889) 

10.42% 

(3889) 

Passive 

Aggressive 

63.47% 

(1877) 

11.22% 

(1877) 

65.07% 

(1527) 

11.65% 

(1527) 

64.66% 

(2682) 

11.53% 

(2682) 

63.17% 

(2778) 

11.22% 

(2778) 

65.54% 

(2950) 

11.22% 

(2950) 

64.55% 

(3889) 

10.97% 

(3889) 

Random 

Forest 

62.19% 

(268) 

12.08% 

(268) 

65.04% 

(277) 

11.40% 

(277) 

56.07% 

(2682) 

12.20% 

(2682) 

57.02% 

(2778) 

11.83% 

(2778) 

58.90% 

(2950) 

12.32% 

(2950) 

62.90% 

(3055) 

11.28% 

(3055) 

XGBoost 62.28% 

(1072) 

11.96% 

(1072) 

64.22% 

(2361) 

11.34% 

(2361) 

60.58% 

(2682) 

11.65% 

(2682) 

63.45% 

(2778) 

11.16% 

(2778) 

62.53% 

(3352) 

11.47% 

(3352) 

62.81% 

(3889) 

11.83% 

(3889) 

SGD 66.55% 

(2279) 

11.59% 

(2279) 

65.67% 

(2361) 

12.63% 

(2361) 

61.41% 

(2682) 

11.40% 

(2682) 

62.53% 

(2778) 

11.47% 

(2778) 

65.63% 

(3754) 

10.85% 

(3754) 

66.55% 

(3472) 

11.28% 

(3472) 

* In parentheses are the required number of features to train the classifier; in bold is the top-performing model for each feature. 

 
Binary Classification. As seen in Table 11 and in Figures 3 and 4, 

the performances of the classifiers were close to each other. The 

use of TF-IDF, TO, or TF-IDF+TO generally did not vary F1 scores 

by above 1% and accuracy scores by above 3%. Meanwhile, 
segmenting hashtags increased F1 by around 1% to 3%. 

Logistic regression (with C = 5 and SAGA as solver) performed 

best, yielding F1 scores of 77.47% (TF-IDF, hashtags segmented), 

77.25% (TO, hashtags segmented), and 77.22% (TF-IDF+TO, 
hashtags segmented, outperforming the rule-based classifier by 

around 6%. They also registered accuracy scores of around 78%, 

signifying approximately 2% improvement over the peak accuracy 

of the rule-based classifier.  

Among these three logistic regression classifiers, the best model 

needed the least training time and the least number of features, 

requiring only the top 40% keywords by TF-IDF. The effectiveness 
of logistic regression in this binary classification task is also 

supported by the fact that all the top-performing models for each 

feature employed the said machine learning technique, with the sole 

exception of term occurrence with hashtag removal (the best model 

for which utilized Bernoulli naïve Bayes). On the flip side, nearest 

centroid consistently performed poorly. It was the only machine 
learning model that failed to reach an F1 score of 70%, even with 

hypertuning of parameters.  

Albeit unable to outperform the best logistic regression classifier 

entirely, the deep learning classifier, which followed a feedforward 
neural network performed competitively, registering peak F1 and 

accuracy scores of 77.03% and 77.36%, respectively (TF-IDF, 

hashtags segmented). Interestingly, although neural networks tend 

to be computationally expensive, the FFNN required the least 
number of features among the top-performing models, using only 

the top 25% keywords by TF-IDF. 

Multilabel Classification. As in the case of binary classification, 
the different machine learning models yielded close performances. 

For most classifiers, the use of TF-IDF outperformed the use of TO 
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by around 1% to 6% in terms of F1 score, as seen in Table 12 and 

Figures 5 and 6. A notable outlier is Bernoulli naïve Bayes, which 
showed above 10% increase. However, comparing TF-IDF against 

TF-IDF+TO and hashtag segmentation against hashtag removal 

does not seem to be straightforward, with performance dependent 

on the classifier. The choice of features and treatment of hashtags 
also had minimal effect on Hamming loss, varying the said metric 

by around 1% only. 

Perceptron (with α = 1 × 10−3) performed best, registering the 

following F1 scores: 67.80% (TF-IDF+TO, hashtags segmented) 
and 67.05% (TF-IDF, hashtags segmented). Stochastic gradient 

descent (with α = 1 × 10−3) ranked third, giving an F1 score of 

66.55% (TF-IDF, hashtags removed). Their Hamming losses were 
limited to less than 12%. Among these three models, the second 

top-performing classifier clocked in the least training time, using 

only the top 40% keywords by TF-IDF.  

Table 13. Macro-F1 Scores of the Top Three Machine 

Learning Multilabel Classifiers 

Classifier Macro-F1 

Perceptron (TF-IDF+TO, hashtags segmented) 61.86% 

Perceptron (TF-IDF, hashtags segmented) 59.14% 
SGD (TF-IDF, hashtags removed) 51.29% 

 

In order to measure their performance with respect to the minority 
classes, their macro-F1 scores were computed and are reported in 

Table 13. As seen in this table, the best perceptron model recorded 

a 15.71% increase in macro-F1 score in comparison to the rule-

based classifier, implying an improved performance in predicting 
minority classes. 

While the micro-F1 scores of the best machine learning classifiers 

were around 7% higher than that of the rule-based classifier, naïve 

Bayes performed poorly, with the Bernoulli and complement naïve 
Bayes models failing to outperform their rule-based counterpart.  

 

Figure 8. Confusion Matrix for the Top-Performing              

Logistic Regression Binary Classifier 

Error Analysis. As seen in Figure 8, the top-performing machine 
learning binary classifier, unlike its rule-based counterpart, showed 

a roughly equal ability in recognizing both hateful and non-hateful 

tweets. A skewness in the number of true positive predictions was 

not observed, evincing the effectiveness of using simple lexicon-
based, language-independent features. 

The false negative and false positive predictions can be traced to 

the presence of keywords that are common to both hate-containing 

and non-hate-containing tweets (enumerated in Section 4.1), as 
well as ambiguous words (examples of which are given in Table 9). 

Furthermore, since the models only considered token unigrams, 

spelling variants that need character-level treatment and important 
phrasal constructions that require longer n-grams (for instance, 

unigrams are unable to capture the essence of the word not in the 

phrase not corrupt) contributed to misclassification.  

The low F1 score for religion (around 36%) is not unexpected since 
minority classes, especially those in a heavily-imbalanced dataset 

as in the case of tagging the targets of hate, are known to pose a 

problem to machine learning classifiers [67]. This can be ascribed 

to the difficulty of discerning patterns given the sparsity of the 
number of samples; in the case of religion, the training and test sets 

consisted of only twenty and nine tweets, respectively.  

4.3 Application on the Entire Corpus 
The entire corpus of tweets crawled by Andrade et al. [24] was fed 

to the top-performing classifiers that employed hashtag removal, 
i.e., logistic regression using TF-IDF (binary F1 = 75.68%) and 

stochastic gradient descent using TF-IDF (micro-F1 = 66.55% and 

macro-F1 = 51.29%).  

Each presidential candidate was mentioned in a roughly equal 
proportion of hate-containing tweets, as reported in Table 14. A 

candidate was tagged based solely on the mention of his/her name 

or a related hashtag; it is not necessary for the hate to be directed 

towards the candidate. In addition, the detection and discarding of 
tweets posted by bots were outside the scope of this study. 

Table 14. Proportion of Hate- and Non-Hate-Containing 

Tweets per Presidential Candidate 

Label 1 2 3 4 5 

Hate 63166 
(22.39%) 

19508 
(20.02%) 

27657 
(21.94%) 

37165 
(22.93%) 

236893 
(25.05%) 

Race 188 764 185 238 625 

Physical 8093 834 1431 565 4317 

Sex 819 83 390 734 3435 

Disability 39 7 77 14 143 

Religion 87 10 154 33 1594 

Class 1758 178 422 322 1762 

Quality 41484 6142 13987 9402 37356 

Non-Hate 218977 
(77.61%) 

77933 
(79.98%) 

98418 
(78.06%) 

124895 
(77.07%) 

708768 
(74.95%) 

 

The top ten keywords by TF-IDF that are unique in tweets classified 

as hate-containing are enumerated in Table 15. As seen in this table, 

there are noticeable intersections in the keywords generated per 

candidate. In general, the top keywords by TF-IDF include: 

 Punctuation strings that are indicative of strong emotions,  

 Themes that are associated with a candidate’s platform, 

campaign, background, or characteristics 

 Imputations that are specific to a candidate’s platform, 

campaign, background, or characteristics 

 Words that are used to express general hatred or contempt, 

such as expletives  

 Function words that serve to intensify, restrict, or compare 

 Election- and campaign-related words that carry neither 

positive nor negative sentiment 

 

Table 15. Top Ten Keywords by TF-IDF Unique in Tweets 

Classified as Hate-Containing 

Candidate Keywords 

A !, ?, ??, eh, bakit, lang, tatay, panday, sabi, magiging 

B !, ?, ??, lang, rally, ????, grand, president, mayor, talaga 

C !, ?, ??, lang, president, ????, ??????, talaga, no, not 

D !, ?, ??, lang, mas, ????, president, never, talaga, kesa 

E !, ?, ??, vp, lang, laban, tuloy, nognog, talaga, ???? 
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5. CONCLUSION AND FUTURE WORKS 
This research was able to show the effectiveness of using simple 

lexicon-based, language independent-features, specifically term 
frequency–inverse document frequency, term occurrence, and their 

combination, in detecting and classifying hate speech in Philippine 

election-related tweets. It is emphasized though, that the models 

built were trained and tested on a specific domain of hate speech, 
that is, hate speech during elections. While the type of features used 

in our models may be applied to other domains of hate speech, the 

actual feature values will be different; thus, retraining of models is 

needed. 

As regards the binary classification task, logistic regression using 

TF-IDF and with hashtag segmentation gave the best performance, 

outperforming the rule-based classifier by around 6% in terms of 

F1 score. Although it was unable to entirely outperform the top 
logistic regression model, the feedforward neural network scored 

competitively and used fewer features compared to the machine 

learning models.  

Meanwhile, for the multilabel classification task, the top classifier 
employed perceptron using TF-IDF+TO and with hashtag 

segmentation, outperforming its rule-based counterpart by 15.71% 

and 7.25% in terms of macro- and micro-F1 scores, respectively. 

While predicting minority classes posed a difficulty to the machine 
learning multilabel classifiers, the binary classifiers yielded 

acceptable results even with a small dataset. 

Future works may focus on extending the methods of this research 

to hate speech detection in general. The addition of rules aside from 
lexicon-based keyword matching may improve the performance of 

the baseline rule-based classifier. In-depth features, such as those 

that are language-specific or context-aware, may be explored; these 

include cluster analysis, topic modeling, embeddings, skip-grams, 
part-of-speech tagging, and metadata extraction. Investigations 

may also be done to determine and to compare the effectiveness of 

other machine learning models and deep learning architectures. 

6. ACKNOWELDGMENTS 
The researchers extend their gratitude to Ms. Charibeth K. Cheng, 
assistant professor in the Software Technology Department of the 

College of Computer Studies at De La Salle University, for sharing 

her time and her expertise as the research adviser. They also thank 

Mr. Edward P. Tighe, assistant professor in the same department, 
for his comments and suggestions as their co-panelist, together with 

Ms. Cheng, during their proposal defense.  

7. DISCLOSURE STATEMENT 
The researchers declare no potential conflict of interest. In addition, 

the keywords and examples found in this study are the results of 
processing actual crawled tweets and in no way reflect the opinion 

of the authors. 

8. FUNDING 
No external funding was received for this study. 

9. REFERENCES 
[1] Cohen-Almagor, R. 2014. Countering hate on the internet. 

Annual Review of Law and Ethics 22 (Dec. 2014), 431–443. 

https://ssrn.com/abstract=2543511. 

[2] Amanullah, M. G. and Dwisusilo, S. M. 2018. Post-truth and 

echo chamber phenomena of Indonesian social media: 
analysis of political contestation of Jokowi and Prabowo’s 

supporters in Facebook. In Proceedings of the International 

Conference on Language Phenomena in Multimodal 

Communication (Surabaya, Indonesia, Jul. 17–19, 2018). 

DOI= https://doi.org/10.2991/klua-18.2018.14 

[3] Bruns, A. 2017. Echo chamber? What echo chamber? 2017. 

Reviewing the evidence. In 6th Biennial Future of Journalism 

Conference (Cardiff, United Kingdom, Sept. 14–15, 2017). 

[4] Flaxman, S., Goel, S., and Rao, J. M. 2016. Filter bubbles, 
echo chambers, and online news consumption. Public 

Opinion Quarterly 80, Special Issue (Jan. 01, 2016),         

298–320. DOI= https://doi.org/10.1093/poq/nfw006. 

[5] Hosanagar, K., Fleder, D., Lee, D., and Buja, A. 2014. Will 
the global village fracture into tribes? Recommender systems 

and their effects on consumer fragmentation. Management 

Science 60, 4 (Apr. 2014), 805-823. DOI= 

https://dx.doi.org/10.1287/mnsc.2013.1808. 

[6] De Smedt, T., Jaki, S., Kotzé, E., Saoud, L., Gwóźdź, M., De 

Pauw, G., and Daelemans, W. 2018. Multilingual Cross-

Domain Perspectives on Online Hate Speech. Computational 

Linguistics & Psycholinguistics Technical Report Series, 

CTRS-008 (Sept. 2018). University of Antwerp. 

[7] Walters, M. A., Brown, R., and Wiedlitzka, S. 2016. Causes 

and Motivations of Hate Crime. Equality and Human Rights 

Commission Research Report 102 (Jul. 2016). University of 
Sussex.  

[8] Roberts, C., Innes, M., Williams, M., Tregigda, J., and Gadd, 

D. 2013. Understanding Who Commits Hate Crime and Why 

They Do It. Welsh Government Social Research.  

[9] Müller, K. and Schwarz, C. 2018. Fanning the flames of 

hate: social media and hate crime. (Nov. 30, 2018). DOI= 

http://dx.doi.org/10.2139/ssrn.3082972. 

[10] International Foundation for Electoral Systems. 2016. The 
Influence of Hate Speech as a Political Tool on the Youth of 

Kosovo. (Jul. 2016). 

[11] Isola, O. 2018. Tackling the Problem of Hate Speech During 

Election in Nigeria. Policy Brief No. 17. Wilson Center. 

[12] Fasakin, A., Oyero, O., Oyesomi, K., and Okorie, N. 2017. 

Use of hate speeches in television political campaign. In 

Proceedings of the 4th International Conference on 

Education, Social Sciences and Humanities (Dubai, United 
Arab Emirates, Jul. 10–12, 2017), 1382–1388. 

[13] Bock, J., Byrd-Craven, J., and Burkley, M. 2017. The role of 

sexism in voting in the 2016 presidential election. 

Personality and Individual Differences 119 (Dec. 2017), 
189–193. DOI= 

https://dx.doi.org/10.1016/j.paid.2017.07.026. 

[14] Ikeanyibe, O., Ezeibe, C., Mbah, P., and Nwangwu, C. 2017. 

Political campaign ang democratisation: interrogating the use 
of hate speech in the 2011 and 2015 general elections in 

Nigeria. Journal of Language and Politics 17, 2 (Oct. 2017). 

DOI= https://dx.doi.org/10.1075/jlp.16010.ike. 

[15] Mending, M. D. J. and Sangcopan, A. J. 2018. An Act 
Defining Hate Speech and Providing Penalties Therefor. 

(Jan. 16, 2018). 

[16] Republic of the Philippines. 1930. An Act Revising the Penal 

Code and Other Penal Laws. (Dec. 08, 1930). 

[17] Santiago, M. D. 2012. An Act Establishing a Magna Carta 

for Philippine Internet Freedom, Cybercrime Prevention and 

Law Enforcement, Cyberdefense, and National 
Cybersecurity. (Nov. 12, 2012). 

12



[18] Van Hee, C., Lefever, E., Verhoeven, B., Mennes, J., 

Desmet, B., and De Pauw, G. 2015. Detection and fine-
grained classification of cyberbullying events. In 

Proceedings of Recent Advances in Natural Language 

Processing (Hissar, Bulgaria, Sept. 7–9, 2015), 672–680. 

Associated for Computational Linguistics. 

[19] Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, 

V., and Bhamidipati, N. 2015. Hate speech detection with 

comment embeddings. In Proceedings of the 24th 

International Conference on World Wide Web Companion 
(Florence, Italy, May 18–22, 2015), 29–30. Association for 

Computing Machinery. DOI= 

http://dx.doi.org/10.1145/2740908.2742760. 

[20] Burnap, P. and Williams, M. L. 2015. Cyber hate speech on 
Twitter: an application of machine classification and 

statistical modeling for policy and decision making. Policy & 

Internet 7, 2 (Apr. 2015). DOI= 

https://doi.org/10.1002/poi3.85. 

[21] Gambäck, B. and Sikdar, U. K. 2017. Using convolutional 

neural networks to classify hate speech. In Proceedings of 

the First Workshop on Abusive Language Online 

(Vancouver, Canada, Jul. 30–Aug. 04, 2017), 85–90. 
Association for Computational Linguistics. 

[22] Badjatiya, P., Gupta, S., Gupta, S., and Varma, V. 2017. 

Deep learning for hate speech detection in tweets. In 

Proceedings of the 26th International Conference on World 
Wide Web Companion (Perth, Australia, Apr. 03–07, 2017), 

759–760. International World Wide Web Conferences 

Steering Committee. DOI: 

https://dx.doi.org/10.1145/3041021.3054223. 

[23] Esteves, P. 2016. Social media changers landscape of Phl 

elections. The Philippine Star (May 13, 2016). 

https://www.philstar.com/headlines/2016/05/13/1583095/soc

ial-media-changes-landscape-phl-elections 

[24] Andrade, R. J. C., Balajadia, R. C. M., Han, K. J., and 

Cheng, C. K. 2017. Analyzing Twitter Data from the 2016 

Philippine Presidential Elections. Undergraduate Thesis.         

De La Salle University. 

[25] Spertus, E. 1997. Smokey: automatic recognition of hostile 

messages. In Proceedings of the Fourteenth National 

Conference on Artificial Intelligence and Ninth Conference 

on Innovative Applications of Artificial Intelligence 
(Providence, Rhode Island, Jul. 27–31, 1997), 1058–1065. 

American Association for Artificial Intelligence. 

[26] Zhang, Z. and Luo, L. 2018. Hate speech detection: a solved 

problem? The challenging case of long tail on Twitter. 
Semantic Web 1 (Sept. 2018), 1–21. 

[27] Schmidt, A. and Wiegand, M. 2017. A survey on hate speech 

detection using natural language processing. In Proceedings 

of the Fifth International Workshop on Natural Language 
Processing for Social Media (Valencia, Spain, Apr. 03–07, 

2017), 1–10. Association for Computational Linguistics. 

[28] Mehdad, Y. and Tetreault, J. 2016. Do characters abuse more 

than words? In Proceedings of the Special Interest Group on 
Discourse and Dialogue 2016 Conference (Los Angeles, 

United States of America, Sep, 13–15, 2016). Association for 

Computational Linguistics. 

[29] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and 

Chang, Y. 2016. Abusive language detection in online user 

content. In Proceedings of the 25th International Conference 

on World Wide Web (Montréal, Canada, Apr. 11–15, 2016), 

145–153. International World Wide Web Conferences 
Steering Committee. DOI= 

https://dx.doi.org/10.1145/2872427.2883062. 

[30] Xiang, G., Fan, B., Wang, L., Hong, J., and Rose, C. 2012. 

Detecting offensive tweets via topical feature discovery over 

a large scale Twitter corpus. In Proceedings of the 21st ACM 

International Conference on Information and Knowledge 
Management (Maui, United States of America, Oct. 29– 

Nov. 02, 2012), 1980–1984. Association for Computing 

Machinery. DOI= 

https://dx.doi.org/10.1145/2396761.2398556. 

[31] Kshirsagar, R., Cukuvac, T., McKeown, K., and McGregor, 

S. 2018. Predictive embeddings for hate speech detection in 
Twitter. In Proceedings of the Second Workshop on Abusive 

Language Online (Brussels, Belgium, Oct. 31, 2018). 

Association for Computational Linguistics. 

[32] Le, Q. and Mikolov, T. 2014. Distributed representations of 

sentences and documents. In Proceedings of the 31st 

International Conference on Machine Learning (Beijing, 
China, Jun. 21–26, 2014), 1188–1196.  

[33] Sood, S. O., Churchill, E. F., and Antin, J. 2012. Automatic 
identification of personal insults on social news sites. 

Journal of the Association for Information Science and 

Technology 63, 2 (Feb. 2012), 270–285. 

[34] Razavi, A. H., Inkpen, D., Uritsky, S., and Matwin, S. 2010. 

Offensive language detection using multi-level classification. 

In Proceedings of the 23rd Canadian Conference on 
Advances in Artificial Intelligence (Ottawa, Canada,         

May 31–Jun. 02, 2010), 16–27. Springer-Verlag Berlin. 

DOI= https://dx.doi.org/10.1007/978-3-642-13059-5. 

[35] Gitari, N. D., Zuping, Z., Damien, H., and Long, J. 2015.        

A lexicon-based approach for hate speech detection. 

International Journal of Multimedia and Ubiquitous 
Engineering, 10, 4 (Apr. 2015), 215–230. DOI= 

https://dx.doi.org/10.14257/ijmue.2015.10.4.21 

[36] Xu, J. M., Jun, K. S., Zhu, X., and Bellmore, A. 2012. 

Learning from bullying traces in social media. In 

Proceedings of the 2012 Conference of the North American 

Chapter of the Association for Computational Linguistics: 
Human Language Technologies (Montréal, Canada,          

Jun. 03–08, 2012), 656–666. Association for Computational 

Linguistics. 

[37] Chen, Y., Zhou, Y., Zhu, S., and Xu, H. 2012. Detecting 

offensive language in social media to protect adolescent 

online safety. In Privacy, Security, Risk and Trust, 2012 
International Conference on and 2012 International 

Conference on Social Computing (Amsterdam, Netherlands, 

Sept. 2012), 71–80. Institute of Electrical and Electronics 

Engineers. 

[38] Burnap, P. and Williams, M. L. 2016. Us and them: 

identifying cyber hare on Twitter across multiple protected 
characteristics. EPJ Data Science 5, 1 (Dec. 2016), 1–15. 

DOI= https://doi.org/10.1140/epjds/s13688-016-0072-6. 

[39] Dinakar, K., Jones, B., Havasi, C., Lieberman, H., and 

Picard, R. 2012. Common sense reasoning for detection, 

prevention, and mitigation of cyberbullying. ACM 
Transactions on Interactive Intelligent Systems 2, 3 (Sept. 

2012), 1–18 

13



[40] Dadvar, M., Trieschnigg, D., Ordelman, R., and De Jong, F. 

2013. Improving cyberbullying detection with user context. 
In Proceedings of the 35th European Conference on 

Advances in Information Retrieval (Moscow, Russia,            

Mar. 24–27, 2013), 693–696. Springer-Verlag Berlin. 

[41] Waseem, Z. and Hovy, D. 2016. Hateful symbols or hateful 

people? Predictive features for hate speech detection on 

Twitter. In Proceedings of the 2016 Conference of the North 
American Chapter of the Association for Computational 

Linguistics: Human Language Technologies (California, 

United States of America, Jun. 12–17, 2016), 88–93. 

Association for Computational Linguistics. 

[42] Hosseinmardi, H., Mattson, S. A., Rafiq, R. I., Han, R., Lv, 

Q., and Mishra, S. 2015. Detection of cyberbullying 
incidents on the Instagram social network. Association for 

the Advancement of Artificial Intelligence. CoRR, 

abs/1503.03909. 

[43] Zhong, H., Li, H., Squicciarini, C., Rajtmajer, S. M., Griffin, 

C., Miller, D. J., and Caragea, C. 2016. Content-driven 

detection of cyberbullying on the Instagram social network. 
In Proceedings of the Twenty-Fifth International Joint 

Conference on Artificial Intelligence (New York, United 

States of America, Jul. 09–15, 2016), 3952–3958. 

Association for the Advancement of Artificial Intelligence. 

[44] Zimmerman, S., Fox, C., and Kruschwitz, U. 2018. 

Improving hate speech detection with deep learning 
ensembles. In Proceedings of the Eleventh International 

Conference on Language Resources (Miyazaki, Japan, May 

7–12, 2018), 2546–2553. Association for Computational 

Linguistics. 

[45] Zhang, Z., Robinson, D., and Tepper, J. Detecting hate 

speech on Twitter using a convolution-GRU based deep 
neural network. In Proceedings of the 15th European 

Semantic Web Conference (Heraklion, Greece, Jun. 3–7, 

2018), 745–760. Springer. 

[46] Polignano, M. and Basile, P. 2018. HanSEL: Italian hate 

speech detection through ensemble learning and deep neural 

networks. In Proceedings of the Sixth Evaluation Campaign 
of Natural Language Processing and Speech Tools for 

Italian co-located with the Fifth Italian Conference on 

Computational Linguistics (Turin, Italy, Dec. 12–13, 2018). 

CEUR-WS.org.  

[47] Gelashvili, T. 2018. Hate Speech on Social Media: 

Implications of Private Regulation and Governance Gaps. 
Master’s Thesis. Lund University. 

[48] Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., 
and Wojatzki, M. 2016. Measuring the reliability of hate 

speech annotations: the case of the European refugee crisis. 

In Proceedings of the 3rd Workshop on Natural Language 

Processing for Computer-Mediated Communication 
(Bochum, Germany, September 2016), 6–9. DOI= 

https://dx.doi.org/10.17185/duepublico/42132 

[49] Tighe, E. P. and Cheng, C. K. 2018. Modeling personality 

traits of Filipino Twitter users. In Proceedings of the Second 

Workshop on Computational Modeling of People’s Opinions, 

Personality, and Emotions in Social Media (New Orleans, 
United States of America, Jun. 2018), 112–122. Association 

for Computational Linguistics. DOI= 

https://dx.doi.org/10.18653/v1/W18-1115. 

[50] Cheng, C. K. and See, S. L. 2006. The revised Wordframe 

model for the Filipino language. Journal of Research in 

Science, Computing and Engineering 3, 2 (Aug. 2006),        

17–23. 

[51] Warner, W. and Hirschberg, J. 2012. Detecting hate speech 

on the World Wide Web. In Proceedings of the 2012 
Workshop on Language in Social Media (Montréal, Canada, 

June 7, 2012), 19–26. Association for Computational 

Linguistics. 

[52] Silva, L., Mondal, L., Correa, D., Benevenuto, F., and 

Weber, I. 2016. Analyzing the targets of hate in online social 

media. In Proceedings of the 10th International Conference 
on Web and Social Media (Cologne, Germany, May 17–20, 

2016), 687–690. Association for the Advancement of 

Artificial Intelligence. 

[53] Anzovino, M., Fersini, E., and Rosso, P. 2018. Automatic 

identification and classification of misogynistic language on 

Twitter. Natural Language Processing and Information 
Systems. Springer. DOI= https://doi.org/10.1007/978-3-319-

91947-8_6. 

[54] Byrt, T., Bishop, J., and Carlin, J.B. 1993. Bias, prevalence, 

and kappa. Journal of Clinical Epidemiology 46, 5 (May 

1993), 423–429. DOI= https://doi.org/10.1016/0895-

4356(93)90018-V. 

[55] Resnick, P. Ed. 2008. Internet Message Format. RFC 5322. 

(October 2008). https://tools.ietf.org/html/rfc5322. 

[56] Richardson, L. Beautiful Soup. 

https://www.crummy.com/software/BeautifulSoup/bs4/doc/# 

[57] Burke, S. M. & Solc, T. Unidecode 1.0.23. 

https://pypi.org/project/Unidecode/ 

[58] Natural Language Toolkit. https://www.nltk.org/ 

[59] Singh, V. 2017. Replace or retrieve keywords in documents 

at scale. arXiv:1711.00046v2. 

[60] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., 

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, 

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., 
Brucher, M., Perrot, M., and Duchesnay, E. 2011. Scikit-

learn: machine learning in Python. Journal of Machine 

Learning Research 12 (Oct. 2011), 2825–2830. 

[61] XGBoost. https://xgboost.readthedocs.io/en/latest/ 

[62] Syzmański, P. and Kajdanowicz, T. 2018. A scikit-based 

Python environment for performing multi-label 

classification. arXiv:1702.01460v5. 

[63] Luaces, O., Díez, J., Barranquero, J., and Del Coz, J. J. 2012. 

Binary relevance efficacy for multilabel classification. 

Progress in Artificial Intelligence 1, 4 (Dec. 2012), 303–313. 
DOI= https://doi.org/10.1007/s13748-012-0030-x 

[64] Keras: the Python deep learning library. https://keras.io/ 

[65] TensorFlow: an end-to-end open source machine learning 

platform. https://www.tensorflow.org/ 

[66] Speier, H. 1998. Wit and politics: an essay on power and 

laughter. The American Journal of Sociology 103, 5 (Mar. 
1998), 1352–1401.  

[67] Napierala, K. and Stefanowski, J. 2016. Types of minority 
class examples and their influence on learning classifiers 

from imbalanced data. Journal of Intelligent Information 

Systems 46, 3 (June. 2016), 563–597. DOI= 

https://doi.org/10.1007/s10844-015-0368-1 

14


	PCJ Vol.14 Number 1 August 2019 -2

