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ABSTRACT

A multimodal network is a mathematical formalism based on hypergraphs that can model the infor-
mational, topological, and dynamic aspects of biological networks. In this paper, we discuss some
fundamental operations on a multimodal network system. We also present how a multimodal network
captures pertinent information from biology literature and how its structure and data can be stored
in a relational database.
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1. Introduction

Biological networks arise from the study of biological phenomena such as those occuring in cells
in response to biotic or abiotic stress. Various mathematical representations are employed to
model both hypothetical and known components of biological networks including their dynamic
and static behaviors. For example, the directed graph is the underlying mathematical repre-
sentation of some popular computational frameworks used to model biological networks. Chief
among these are Bayesian networks and Boolean networks. Pe’er, et al.[16] use a Bayesian
network to infer finer structure of gene interactions using perturbed gene expression data of
Saccharomyces cerevisiae while Albert and Othmer [1] use a Boolean network to model regu-
latory interactions to predict the expression pattern of segment polarity genes in Drosophila
melanogaster. Similarly, directed hypergraphs are used to depict the metabolic network dia-
grams in popular metabolic. network databases like KEGG [13] and MetaCyc [15]. However
when depicting biological networks, specially those inferred from published works in biology, di-
rected graphs and hypergraphs may be too limiting. Appropriate mathematical representations
are crucial in computational frameworks designed to infer new information or hypothesis from
the modeled biological network. In this paper, we offer the multimodal network formalism to
model biological networks.

We note that our research on multimodal networks is a work in progress. Hence, there’s a
possibility that some definitions and concepts presented here will be updated appropriately.
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Figure 1: G, is a graph, G is an directed graph, G is a hypergraph, and G4 is a directed hypergraph.

1.1. Basic Definitions

The following are graph theory definitions taken from Berge [4, 5]; Harris, Hirst and Mossinghoff
[10]; and Gallo, Longo, and Pallotino [9].

Definition 1 A graph is a tuple (V, E) with V as the set of vertices and E as the set of edges
where each e € E 1is pair of vertices of V such that e = (u,v) = (v,u) for u,v € V.

Definition 2 A directed graph is a tuple (V, E) with V as the set of vertices and E as the set
of directed edges where each e € E is an ordered pair of vertices of V. Let e = (u,v) where
u,v € V. Vertices u and v are the tail and head of e respectively.

Each vertex in both ‘undirected’ and directed graphs is represented by a circle. Each edge in
a directed graph is represented by an arrow with the arrow head pointing to its head vertex. In
an ‘undirected’ graph, edges are represented by a continuous curve that connects two vertices.
In Figure 1, graphs G and G are ‘undirected’ and directed graphs respectively. Each has seven
vertices and six edges.

Graphs naturally capture binary relationships between vertices. To represent relationships
that involve more than two vertices, we use hyperedges. A hyperedge is a non-empty subset of
the set of vertices and naturally involve more than two vertices in a relationship. Intuitively, a
collection of hyperedges forms a hypergraph.

Definition 3 A hypergraph is a tuple (V, E) with V as the set of vertices and E a set of hyper-
edges or non-empty subsets of vertices in V such that for all e € F,

Ue=V where e # &, e C V.
ecE

Definition 4 A directed hypergraph is a tuple (V, E) with V as the set of vertices and E as the
set of directed hyperedges where each hyperedge e € E is an ordered pair of disjoint subsets of
vertices in V. Let e = (T, H) where T,H CV and TNH = &. T and H are the tail and head
of e respectively and cannot be both @.

Vertices in a hypergraph are represented by circles. Hyperedges with more than two vertices
are represented by a simple closed curve enclosing its vertices. Hyperedges with two vertices are
represented by a continuous curve connecting its vertices. A directed hyperedge on the other
hand is depicted by a ‘merged’ set of arrows that connects the tail vertices to the head vertices.
In Figure 1, G3 is a hypergraph while G4 is a directed hypergraph. Each has seven vertices and
three hyperedges.

Graphs are special hypergraphs. A hypergraph whose every edge has a cardinality of 2 is a
graph. Similarly, directed graphs are special directed hypergraphs. If a directed hypergraph
G=(V,E)has |T|=|H|=1forall e= (T,H) € E where T, H C V, then G is also a directed

graph.
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Figure 2: A portion of the proposed pathway for HSP mediated modulation of apoptosis by
Xanthodakis and Nicholson [20].

1.2. A.Sample Biological Network

Graphs and hypergraphs are frequently used to represent biological networks. The vertices may
represent genes, proteins, enzymes, metabolites, small molecules, or even a biological process in
a directed graph or directed hypergraph rendering of a biological network. The edges on the
other hand represent relationships between biological entities.

Figure 2 is adapted from the proposed model of pathways for the heat shock protein (HSP)
modulation of apoptosis by Xanthoudakis and Nicholson [20]. In their model, the proteins
cytochrome ¢ (cyt ¢) and Apaf-1 form a complex called apoptosome which in turn forms a
complex with caspase-9 in order to activate the latter. This apoptosome-caspase-9 complex
plays a role in caspase-3 activation which leads to cell death or apoptosis.

The complete Xanthoudakis and NicholSon model is a combination of experimental results
of different researchers. For example, the result showing that hsp27 inhibits the formation of
the apoptosome thereby putting a break in the cascade to apoptosis is due to Bruey, et al. [6].
Their results show that hsp27 forms a complex with the cyt ¢ released from mitochondria. The
capture of ¢yt ¢ by hsp27 leaves Apaf-1 with nothing to pair with to form the apoptosome. This
in turn prevents apoptosis from happening.

Observe that in Figure 2, the role of hsp27 in preventing apoptosome formation is linked to
the hyperedge ({cyt ¢, Apaf-1}, {apoptosome}) and not to any of the vertices of the latter.
This poses a difficulty in strictly using a directed hyperedge to depict this kind of relationship.
The following sections show how to represent this relationship using the multimoda} network
formalism.

2. Multimodal Networks

2.1. Definition and Basic Operations

Definition 5 A multimodal network (MMN) is a triple (V, E, M) where V is a set of vertices,
E is a set of modal hyperedges, and M is a set of modes. A modal hyperedge e € E is an ordered
4-tuple consisting of three subsets of vertices in V and a mode in M. Let e = (T,H, A,m) where
T,HLACV and m € M. The sets T and H, called the tail and head of e respectively, define
the direction of the modal hyperedge. The set A, called the associate set in e, contains vertices
that do not define the direction of e while m is the mode of e.

We can view an MMN as a set of modal hyperedges. A mode is a type of hyperedge. Pertinent
in the definition of an MMN is the set of modes M. When the associate set of a modal hyperedge
is non-empty, we draw the implied arrow connecting the vertices of the head and tail sets and
then enclose all vertices of the modal hyperedge in a closed curve. Whenever the associate set
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Figure 3: Depiction of multimodal networks N1 and Ns. The dotted line, solid line, and dashed
line represent modes my, msg, and mg respectively.
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Pigure 4: Resulting MMNs from the U and N operations

of a modal hyperedge is empty, we draw the modal hyperedge as we would draw a directed

hyperedge.
In the subsequent discussions, we will use the term ‘edge’ to refer to either hyperedge or

‘binary’ edge for simplicity.

Example 1 Let N; = (4, E1, M;) be an MMN where V; = {v1,v2,v3,v4, Vs, Vg, V7, U},

By = {({'Ul}’ {UQ}’ z’ml)’ ({7}2,03}, {U7}a {v4},m2), ({UZ’U‘l}a {US}’ a, m2)’ ({UG: 07}7 {US}’ 9, m2)}’
and M; = {my, ma}.

Furthermore, let Ny = (Vz, Ea, Ms) be an MMN where V2 = {vg, v7, 8, v9, v10},
Ba = {({ve, v7}, {vs}, @, ma), ({vs}, {ve}, @,m3), ({ve}, {v10}, @, ma)}, and Mz = {my, ms}

Figure 3 shows how MMNs N; and N, are drawn. Observe that in one edge of Ny, specifically
({va,v3}, {vr}, {va}, ma), the vertex vy is part of the associate set and hence not connected by
an arrow to any of the vertices v, v3, and v7. The other edges in N; and the edges in N; are
not enclosed in closed curves since their respective associate sets are empty.

Definition 6 Let Ny = (Vi, By, M;) and Ny = (Va, Ey, M) be MMNs. The union of Ny and
Ny is NtUNg = (VAU Vo, E1UEy, My U Ms)

Example 2 The union operation allows the ‘integration’ of two MMNs into a larger MMN.
Figure 4a illustrates the union of N; and No depicted in Figure 3. Observe that a common edge
in N; and No, i.e. ({vs,v7},{vs}, @, m2a), appears only once in N = Ny U N,.
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Definition 7 Let Ny = (V1, B1, M1) and N2 = (Va, Ea, My) be MMNs. The intersection of Ny
and Ny is NN Ny = (ViNVa, EyNEs, MiN M,).

Example 3 The intersection operation determines the common vertices, edges, and modes
between two MMNs. Figure 4b illustrates the intersection of N and N depicted in Figure
3. The common edge between N; and Ng, i.e. ({vs,vr},{vs}, @, msa), is the only edge in the
resulting MMN I = N7 N Ns.

2.2. Using MMNs to Model Biological Networks

Biological networks typically show multiple types of relationships or interactions of biological
entities in a single diagram. These relationships may not be binary at all. Furthermore, the role
of each biological entity in various relationships may not be the same.

These nuances of biological networks can be represented in an MMN. In the latter, the biologi-
cal entities can be depicted as vertices and the relationships or interactions as modal hyperedges.
The modal hyperedges involving a specific biological entity may have different modes. Note that
we can impose a one to one correspondence between each mode and relationship or interaction
type. Furthermore, the possibly distinct roles of each biological entity in various relationships
may be associated with the modal hyperedges.

If biological networks are represented as MMNs, then the union operation is a tool to inte-
grate these separate biological networks into a larger MMN system. The intersection operation
on the other hand allows identification of common interaction structures between two distinct
MMNs. For example, suppose MMNs X and Y represent all biological pathway information
about Arabidopsis thaliana (a widely used model plant) and Saccharomyces cerevisiae (budding
yeast) respectively. The intersection operation would allow identification of common pathways
(perhaps conserved pathways) between Arabidopsis thaliana and Saccaromyces cerevisiae.

3. Labeled Multimodal Network and Relational Database

3.1. Labeled Multimodal Network

A labeled MMN (V,E,M) is an MMN where each v € V, e € E, m € M, and (v,e,m) €
V x E x M have named attributes. We call the set V x E x M as the incidence set. Attributes
add meaning to the components of an MMN. Furthermore, attributes elucidate the respective
roles of each vertex in different relationships.
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Figure 5: The labeled multimodal network NV
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Consider the MMN N = N; U N, depicted in Figure 4a. N is in fact a representation of
the partial pathway of heat shock protein modulation of apoptosis shown in Figure 2. Figure
5 shows that this is the case. In the figure, each vertex has an ID, a name, and a type; each
mode has an ID and a name; and each edge has an ID. It is difficult however to show the role
of each vertex in a particular edge. In Figure 2, hsp27 is an ‘inhibitor’ of edge ez (formation of
apoptosome from cyt ¢ and Apaf-1) while it is an ‘input’ in edge e3 (formation of cyt ¢ - hsp27
complex). The role of each vertex in a particular edge with a specific mode is an attribute of
the incidence set.

8.2. Some Relational Database Concepts

Information associated with the components of a multimodal network can be stored in a rela-
tional database. Relational databases are built on top of the relational theory that Codd [7]
developed in 1970. Modern discussions on relational theory and relational database can be read
in Silberschatz, et al. [17]; Lewis, et al. [14]; and other recent books on database design.

A relation is composed of a schema and a relation instance. A schema consists of a unique
name of the relation across the database, a set of attribute names with their associated domain
names, and a set of constraints on which tuples can appear as an instance of the relation. A
relation instance on the other hand is a table with rows (tuples) and named columns (attributes).
Each row has the same number of columns (called the arity of the relation). The cardinality of
a relation is the number of tuples of a relation. In a relation, tuples are not duplicated.

The operations o (selection), 7 (projection), and X (natural join) are some of the operators
that can be used to manipulate relations. The ¢ operator is used to select tuples of a relation R
subject to a specific boolean predicate p. For example, o, R is a relation consisting of tuples of
R that satisfy p. The 7 operator on the otherhand project a relation by selecting columns from
a given relation. For example, suppose a, b, and c are attributes of relation R. Then, m, R is a
relation that results from removing attribute ‘b’ from R. The X operator takes two relations R
and @ and produce a relation with tuples formed by concatenating tuples from R and @ whose
values in their common attributes match up. If R and @ have no common set of attributes,
R X @ is empty.

3.8. Multimodal Network Database

Information about the components of an MMN can be stored in four relations. Data on vertices,
edges, and modes can be stored in a vertex relation Ry, edge relation Rg, and mode relation
Rz respectively. Furthermore, the details on the participation of a vertex in a particular edge
with a specific mode may be kept in an incidence relation Ry gas. This relation should indicate
whether a vertex is a head vertex, a tail vertex, or an associate vertex.

Let ATTRIB(0) be the set of attributes of a named object o. We define the schema of the
relations Ry, Rg, Ru, and Ry gpy for an MMN (V, E, M) as follows:

Ry (v.id, ATTRIB(V))

RE (e.id, ATTRIB(E))

R (m.id, ATTRIB(M))

Ryem (v.id, e.id, m.id, vem.type, ATTRIB(V x E x M))

where v.id = v for each v € V, e.id = e for each e € F, m.id = m for each m € M, and vem.type
is either 7" (tail vertex), H (head vertex), or A (associate vertex).

Definition 8 A multimodal network database (MMNdb) is a tuple (Rv, Rg, Ry, RvEm) where
Rv, Rg, Ry, and Rygpn are the vertez relation, edge relation, mode relation, and incidence
relation, respectively derived from the multimodal network (V,E,M).
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Example 4 Let N = (V, E, M) be the labeled MMN depicted in Figure 5 and let Dy be the
database that corresponds to V. The database tables of D follow.

v.id v.name v.type
vy mitochondrion organelle v.id e.id vem.type m.id vem.role
vy cyt ¢ protein v ey T my input
v3 Apaf-1 protein vy ey H my output
vq hsp 27 protein Vg eg T mg input
Ry =| wvp hsp 27, cyt ¢ complex protein v3 eg a5 mg input
vg caspase-9 protein vy ez A mg inhibitor
v7 apoptosome protein vy e H mo output
vg apoptosome caspase-9 complex protein vy e3 I ma input
vg caspase-3 activation process Rypm = V4 eg 7 mg input
V10 apoptosis process v e3 H mo output
Vg eq T, mo input
e.id vy e4 Qg me input
ey : * g eq H mg output
m.id m.name . 7
eo 1 vg es T m3 input
Rp =| e3 Rap = e e easeA vg es H mgz output
mo forms into a complex .
eq vg eg T m3 input
ms3 leads to
es v10 eg H m3 output
€6

In this example, the role of a vertex in an edge is set to ‘input’ or ‘output’ when its type is
‘T” or ‘H’ respectively. Vertex vy (hsp27) is an ‘inhibitor’ in edge es.
3.4. Computations on a Multimodal Network Database

Given an MMNdb (Ry, Rg, Ry, RvEnm), the components of a corresponding MMN (V, E, M)
can be computed using the o and 7 operators. The steps to perform the calculation follows.

1. Project the elements of V from Ry .

V =myia Ry
2. Project the elements of M from R,y.
M = mm.id Rm

3. Extract the edges from Rg and Ry gp.
B = {(Tj,Hj,Aj,mj) ' €j € Te.id RE}, where
Tj = Tyiad (Uvem.typez’T’ AND e.id=e; RVEM),
Hj = Ty.id (Uvem.type=’H’ AND e.id=e; RVEM);
Aj = Ty.id (U'vemAtype=’A’ AND e.id=e; RVEM)» and
Mj = T.id (Te.id=e; RVEM)-
Definition 9 Let D = (Ry, Rg, Ry, Rvem) be an MMNdb. We define the MMNdb selection
function v as O = v (D) where O is an MMNdb that results from selecting the tuples of the

Join of all the relations of D that satisfy the condition p and then projecting the corresponding
-MMNdb relations.

Given an MMNdb D = (Ry, Rg, Ry, RvEMm), we calculate O = v p(D) using the following
procedure.

1. Calculate the join of all the MMNGdb relations.
R=Ry X Rygm X Rg X Ry

2. Project the new vertex relation.
R'y = Ry M (my4q (0p R))

3. Project the new edge relation.
R'g = Rp X (Teia (0p R))
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4. Project the new mode relation.
R'y = Ry X (Tmia (0p R))
5. Project the new incidence relation.

Rvim = Rvipn Tt acid vem tipe,mid (0pR))

The desired MMNdb is O = (R'v, R'g, R'sm, R'vEM)-

Example 5 We illustrate the v operator using the MMNdb Dy defined in example 4. Suppose
we want the portion of Dy that involves only the proteins. Let this portion be called O.
Formally, this is accomplished by the statement O = v,Dn where p is {v.type=‘protein’}. To
compute O, the join of all relations in Dy which we call R is calculated first.

R = Ry XRyepm X RgX Ry
v.id v.name v.type e.id vem.iype vem.role m.id m.name
vy mitochondrion organelle e1 P input mi releases
v cyt c protein ey H output mq releases
vy cyt ¢ protein eg d B input mo forms into a complex
v3 Apaf-1 protein eg & input mo forms into a complex
U4 hsp 27 protein ez A inhibitor mey forms into a complex
vy apoptosome protein €2 H output mo forms into a complex
vy cyt ¢ protein es K input mo forms into a complex
= vg hsp 27 protein e3 i o input mo forms into a complex
Vs hsp 27, cyt ¢ complex protein ez H output mo forms into a complex
vg caspase-9 protein e4 s input mo forms into a complex
vT apoptosome protein eq T input mg forms into a complex
vg apoptosome caspase-9 complex protein e4 H output me forms into a complex
vg apoptosome caspase-9 complex protein €5 4y input msg leads to
Vg caspase-3 activation process es H output ms3 leads to
vg caspase-3 activation process ee E input ms leads to
V10 apoptosis process eg H output ms leads to
Next we calculate o, R.
v.id v.name v.type e.id vem.type vem.role ™m.id m.name
vy cyt ¢ protein ey H output mi releases
vy cyt ¢ protein e2 e input ™mg forms into a complex
v3 .Apaf-1 protein eg T input ™mg forms into a complex
v4 hsp 27 protein eg A inhibitor ™me forms into a complex
prs apoptosome protein eg H output mg forms into a complex
UpR = Vg eyt ¢ protein es T input ma forms into a complex
vg hsp 27 protein ez E input ™mo forms into a complex
V5 hsp 27, cyt c complex protein e3 H output ™o forms into a complex
vg caspase-9 protein eq . input ™mo forms into a complex
v7 apoptosome protein eq i input Mg forms into a complex
vg apoptosome caspase-9 complex protein eq H output mg forms into a complex
vg apoptosome caspase-3 complex protein es T input ™msa leads to

Using the procedure described earlier, we can then project the corresponding MMNdb relations
from the relation opR. These relations shown below comprise the MMNdb O.

v.id v.name v.type
vy cyt ¢ protein v.4d e.id vem.type m.id vem.role
v3 Apaf-1 protein vg e1 H ma output
R,V =] ve hsp 27 protein vo en A L mo input
v hsp 27, cyt ¢ complex protein vg eg T mo input
Ve caspase-9 protein v4 e A my inhibitor
vy apoptosome protein v eg H my output
vg apoptosome caspase-9 complex protein R'vem =| v es T mg input
{ vg es 0 mg input
e.id vy e3 H mo output
€1 m.id m.name ve e4 T mo input
i es % my release vy eq D ma input
R'gp= Ry = i
es mg forms into a complex vg eq H ma output
ey m3 leads to vg es T ms input
€5
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Figure 6: The MMN that corresponds to MMNdb O

The operator y provides a way to focus on a selected portion of an MMN indirectly through
its corresponding MMNdb. For example, the corresponding MMN for MMNdb O is shown in
Figure 6. We note that there are edges with an empty tail or empty head in it. These empty
sets depict unknown entities in the relationship that the edge represents.

4. Conclusions

Published models based on directed graphs and directed hypergraphs could be viewed as special
multimodal networks. An MMN N = (V,E,M) with |M| = 1 and modal hyperedges e =
(T,H,A,m) € E such that A = @, is a directed hypergraph. Furthermore, if |H | == 1,
we have a directed graph. It is possible therefore to integrate such models in a computational
framework based on multimodal networks. For example, the network model of HSP mediated
regulation of apoptosis by Xanthoudakis and Nicholson [20] can be represented as an MMN.

Each vertex and modal hyperedge in an MMN has named attributes. Information on each
biological entity could be kept in an MMNdb system. Since every MMN has a corresponding
MMNdb, data such as reference citations and experiment details kept in relational databases can
be integrated. The stochastic parameters of possibly subsumed Bayesian or Boolean network
models can also be part of the attributes of the vertices in an MMN. Furthermore, this provides
an opportunity to include information provided in online databases such as metabolic pathway
databases KEGG [11, 13] and MetaCyc [12, 15]; controlled vocabularies like Gene Ontology
(2, 19]; protein protein interaction like BIND [3, 18]; pathway models from the literature; and
experimental data in an MMN system.

The MMN basic operators U and N and MMNdb selection operator 7 are tools to enrich an
MMN system given the information from several MMNs.
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