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ABSTRACT

In this study, we explore evolving Spiking Neural P
Systems, where a genetic algorithm framework is applied
on Spiking Neural P Systems. The framework aims to (1)
reduce the number of rules of an SN P system with 100%
fitness and to (2) find a 100% fit SN P system using an
initial SN P system with less than 100% fitness. Fitness,
in this paper, is a measurement from 0% to 100% of
an SN P system’s accuracy in performing its intended
function by getting the longest common substring of its
output and its ideal output. The framework is limited
to modifying the synapses and the rules of the given SN
P systems. The framework is tested on bitwise addition
and subtraction SN P systems, under three categories:
Type A, with an initial fitness of 100%, Type B, with an
initial fitness less than 100%, and Type C, with an initial
fitness less than 100% fitness and with extra neurons.
Such categories refer tothe different characteristics of
the SN P systems which will be the basis for initial
population of our experiments.
The results of the experiments show that the frame-

work is successful on both objectives, however finding SN
P systems with 100% fitness deemed more challenging
as the size of the system grows, especially in subtraction
of Type B and C, and addition of Type C.

1 INTRODUCTION

When it comes to solving problems, taking inspiration
from nature to form a solution is nothing new. Back in
the early 1990s, Eiji Nakatsu, was faced with the task
of designing a bullet train that would go as fast as 350
kilometers per hour. The speed, however, was not the
only challenge in designing the train - noise and sudden
pressure increase need to be considered, too. He turned
to problem-solving with solutions inspired from nature
for inspiration. He designed the train borrowing char-
acteristics from animals to address the problems. The
pantograph of the train was shaped like an owl’s wing, to
minimize vibrations and noise, the shaft took the shape
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of a penguin’s body to lower the wind resistance, and the
nose of the train took inspiration from the kingfishers
beak to address the sudden increase in pressure when
passing through a tunnel [13]. There are two fields in com-
puter science that are relevant in this paper that both
focus on problem-solving with nature-inspired solutions:
Membrane Computing, and Evolutionary Computing.
Membrane computing is a field in computer science

where models are designed after living cells. In the field
emerged P systems - models inspired by cell biology. P
systems can be cell-like, inspired from the membrane
structure of a living cell, or tissue-like, from many cells
contained in an environment, or neural-like, where cells
communicate, arranged in a graph-like manner [6]. Un-
der neural-like P systems is the interest of this work -
Spiking Neural P Systems. This P system will be further
explained in the next section.

Evolutionary computing, on the other hand, takes the
concept of natural selection and applies it to computer
science. An Evolutionary Algorithm places a population
of candidate solutions to a given problem in an envi-
ronment that favors better performing ones, forcing the
fitness of the population to increase [4]. Genetic Algo-
rithms, a type of Evolutionary Algorithm, is a point of
interest in this study.

Problem-solving can also be approached using a combi-
nation of membrane computing and evolutionary comput-
ing. Evolutionary Membrane Computing combines the
potential of evolutionary computing in real-world appli-
cations and the membrane systems of membrane comput-
ing. Two topics emerged from EMCs: Membrane-Inspired
Evolutionary Algorithms (MIEA) and Automated De-
sign of Membrane Computing Models (ADMCM). MIEAs
combine the search principles of evolutionary computing
and the computation mechanisms of P systems and puts
an emphasis on the capability of membrane comput-
ing for real-world applications. MIEAs take an optional
parameter set as an input and outputs an optimal pa-
rameter set. ADMCMs deal with the programmability of
P systems, and studies in this topic take a computational
task as an input and outputs a successful P system. More
information on EMCs can be found on [15]. In 2015, [14]
approaches traveling salesman problems by proposing an
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approximate algorithm combining P systems and active
evolutionary algorithms (AEAPS).
In this paper, we explore the idea of a framework

using Genetic Algorithms to evolve Spiking Neural P
Systems. This framework, which may be considered un-
der ADMCM, is a tool to produce an SN P system that
successfully performs a certain computational task with
less or equal resources than the given SN P system that
may or may not accurately perform the said computa-
tional task. In Section 2 we provide the preliminaries for
the study. In Section 4, we introduce the general and
specific goals of this work. In Section 3, we discuss re-
lated literature. In Section 4, we present the Theoretical
Framework; In Section 5, we go in depth with the genetic
algorithm, and its implementation in Section 6, which
also includes the chromosome representation of the SN
P systems. In Section 7, we discuss the results of the
experiments. In Section 8, we provide conclusions and
recommendations for future studies. Ideas for this work
were taken from the BWMC2018 presentation in [1].

2 PRELIMINARIES

Spiking Neural P Systems

The way Spiking Neural P Systems compute is similar
to how actual neurons compute. Neurons pulse spikes to
neighboring neurons through synapses. These systems
are represented as a directed graph. Nodes are called
neurons, edges are called synapses, and inside neurons
are rules, which dictate when the neuron will spike [12].
In [6], Spiking Neural P Systems were proposed to

incorporate time as an information carrier of spiking
neurons. These SN P systems only use one object for a
spike because most neural signals are nearly identical,
as a response to the models in [8]. A neuron spikes
when a specific number of spikes has been accumulated,
consuming spikes and sending one spike. When a neuron
spikes, signals are sent to all connected neurons through
synapses, creating as many copies as needed. The results
of the computation are based on the spikes produced by
a designated output neuron in the system, and the time
interval in between the spikes. The system halts when
exactly two spikes are produced by the output neuron.
In [6] is also a proof of the computational completeness
of SN P systems. A slightly extended variant of SN P
systems shows that it is able two solve Subset Sum and
3-SAT problems, with nondeterminism. [8].

The version relevant for this work is an extended
version of the SN P system in [12]. The extended version
has an accepting mode, where there is a designated input
neuron that can receive spikes from the environment,
neurons are capable of producing more than one spike in

a single time step, and computation results, called spike
trains, can be interpreted as binary.

Definition 1 (SN P system). A spiking neural P
system with extended rules (rules that can produce more
than one spike) of degree 𝑚 ≥ 1, as defined formally in
[12] is of the form:

Π = (𝑂, 𝜎1, . . . , 𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡), where:

(1) 𝑂 = {𝑎} is the singleton alphabet (𝑎 is called spike);
(2) 𝜎1, . . . , 𝜎𝑚 are neurons, of the form 𝜎𝑖 = (𝑛𝑖, 𝑅𝑖), 1 ≤

𝑖 ≤ 𝑚, where:
(a) 𝑛𝑖 ≥ 0 is the initial number of spikes contained

in 𝜎𝑖;
(b) 𝑅𝑖 is a finite set of rules of the following two

forms:
(i) 𝐸/𝑎𝑐 → 𝑎𝑝; 𝑑, where 𝐸 is a regular expression

over 𝑂 = {𝑎} and 𝑐 ≥ 𝑝 ≥ 1, 𝑑 ≥ 0;
(ii) 𝑎𝑠 → 𝜆, for 𝑠 ≥ 1, with the restriction that for

each rule 𝐸/𝑎𝑐 → 𝑎𝑝; 𝑑 of type (1) from 𝑅𝑖, we
have 𝑎𝑠 /∈ 𝐿(𝐸)

(3) 𝑠𝑦𝑛 ⊆ {1, 2, . . . ,𝑚} × {1, 2, . . . ,𝑚} with 𝑖 ̸= 𝑗 for
all (𝑖, 𝑗) ∈ 𝑠𝑦𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑚 (synapses between
neurons).

(4) 𝑖𝑛, 𝑜𝑢𝑡 ∈ {1, 2, . . . ,𝑚} indicate the input and the
output neurons, respectively.

The rules have a form of 𝐸/𝑎𝑐 → 𝑎𝑝; 𝑑. The 𝐸 is the
regular expression of the rule, and if the number of spikes
in the neuron falls in the language 𝐸, then the rule will
activate and will consume exactly 𝑐 spikes and produce
𝑝 spikes to all connected neurons on a 𝑑 delay. Some
rules have the form 𝐸/𝑎𝑐 → 𝜆; 𝑑, which only means that
𝑝 = 0. This form is called a forgetting rule, where the
rule only consumes spikes. Another form is 𝑎𝑐 → 𝑎𝑝; 𝑑,
whenever 𝐸 is the same as 𝑎𝑐. An example of an SN P
system that computes the bitwise AND of two bit strings
is in Appendix A, Figure 5.

Genetic Algorithms

Genetic Algorithms is an evolution-inspired approach to
solve computation problems. It is a method generally
used for problems with a wide search space of candidate
solutions. Genetic Algorithms can be used for problems
with large spaces that are not smooth, and for problems
where a good, not perfect, solution is sufficient. However,
it can get stuck at a local optimum [10], i.e. the optimal
solution is not always guaranteed to be found.
The algorithm starts from a population of candidate

solutions to a problem. In this context, solutions are
often referred to as chromosomes. Some chromosomes
are fitter than others. Fitness may refer to a chromo-
somes chance to reproduce, and is often determined by
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how well a chromosome suits its environment. In the
context of genetic algorithms, fitness is determined by
how well the solution solves the problem using some
abstract fitness function. Chromosomes with higher fit-
ness are more likely to reproduce. Chromosomes that
do reproduce, undergo recombination, where genes from
each parent recombine to produce an offspring. In genetic
algorithms, recombination is referred to as crossover. Off-
spring have a chance to mutate, where some of the genes
may change. Crossover and mutation are repeated until
enough offspring have been produced to populate the
next generation. The new generation will again undergo
fitness evaluation, parent selection, crossover, and mu-
tation. The algorithm stops when either a chromosome
with the maximum fitness has been found, or when a
maximum number of generations has been reached [10].

3 RELATED WORK

[9] developed a genetic algorithm framework for Neural
Networks. The neural networks were represented by con-
straint connectivity matrices of size N by N+1, where
N corresponds to the number of neurons. The first N
columns contain the constraints between the neurons,
and the final column is reserved for the threshold biases.
The algorithms crossover function simple swaps rows
from two different matrices, and its mutation function
changes a value in the matrix. The fitness of each network
was determined by their total sum squared error, and the
selection method used was fitness-proportionate. The
algorithm was tested on three problems: XOR Problem,
Four-Quadrant Problem, and Pattern Copying.
[11] explored for a framework to use over Spiking

Neural P Systems with Rules on Synapses or RSSN P
systems. RSSN P systems are variants of SN P systems
where instead of having the rules in the neurons, the
rules are in the synapses. The goal of the experiment is
to use a genetic algorithm framework to evolve RSSN P
systems to reduce resources such as the initial number of
spikes, rules (including consumed and produced spikes),
and synapses. The framework is tested on five different
functions: NOT, AND, OR, ADD, and SUB.
[3] also worked on a framework for Spiking Neural P

Systems. The framework evolves the SN P systems by
modifying the topology of the system - its neurons and
synapses. The algorithm was tested on binary addition
and binary subtraction over three categories: baseline
(topology and precision with the closest approximations),
original (larger topology and smaller precision), and
adversarial (additional 𝑚 neurons connected pseudo-
randomly with pseudo-randomly added rules).
[7] developed a representation, a simulator, and a ge-

netic algorithm framework for Spiking Neural P Systems

with Polarization, a variant of SN P systems that rules
depend on the charge of the neuron instead of the num-
ber of spikes to activate. The framework modifies the
rules and synapses to evolve the PSN P systems. The
framework was tested on two functions: AND and OR,
over three categories: Perfect, Extra, and Mutated.

[11] [3] and [7] all proposed a genetic algorithm frame-
work on their respective SN P system variant. This study
intends to do the same with SN P systems, like [3], but
instead of modifying the neurons and synapses of the
system, the framework in this study intends to modify
the rules and synapses, like in [11] and [7]. The frame-
work in this study will also be tested on bitwise addition
and subtraction, like in [3] and [11]. Some parameters
similar to [11], [3], and [7] is mentioned in Section 5. A
brief comparison of the results with [11] is in Section 7.

4 GOALS AND FRAMEWORK OF THIS WORK

Creating SN P systems by hand can be difficult and time-
consuming. A tool or framework that could create SN P
systems that could perform certain functions would be
beneficial to researchers. In producing such a framework,
this work proposes using genetic algorithms to find SN
P systems with 100% fitness. Fitness, in this paper, is a
measurement between 0% and 100% of how accurately
an SN P system performs its intended function. It is
calculated using some fitness function, which compares
the SN P system’s output with its ideal output. In this
work the number of neurons are fixed, while the number
of rules and synapses are variables. Further, given an
initial SN P system the framework aims to evolve the
system to: reduce or maintain the number of its rules,
and find a system with up to 100% fitness if the initial
system has less than 100% fitness.
More specifically we construct a framework with a

genetic algorithm that when given the following:

∙ Initial SN P system Π𝑖𝑛𝑖𝑡 = (𝑂, 𝜎1, . . . , 𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡)
that performs a function 𝑓(𝑎) with fitness 𝑝, where
0 ≤ 𝑝 ≤ 100,
∙ A set 𝑆 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)} where 𝑎𝑖
is a set of input spike trains {𝑎𝑖1, . . . , 𝑎𝑖𝑗} where
𝑗 = |𝑖𝑛|, and 𝑏𝑖 is its corresponding output spike
train, and
∙ ∀((𝑎𝑖, 𝑏𝑖) ∈ 𝑆, 𝑓(𝑎𝑖) = 𝑏𝑖,

will construct an SN P system Π𝑓𝑖𝑛𝑎𝑙 = (𝑂, 𝜎′
1,

𝜎′
𝑚, 𝑠𝑦𝑛′, 𝑖𝑛, 𝑜𝑢𝑡) such that ∀((𝑎𝑖, 𝑏𝑖) ∈ 𝑆, Π𝑓𝑖𝑛𝑎𝑙(𝑎𝑖) =

𝑏𝑖, 𝑚
′ = 𝑚, and |𝑅′| ≤ |𝑅|.

The framework will be tested on the SN P systems
for the functions addition and subtraction. The SN P
systems that will be used are based on [5].
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Figure 1: The framework

The framework is shown in Figure 1. The framework
starts with an Initial Spiking Neural P System Π𝑖𝑛𝑖𝑡

that computes a function 𝑓(𝑎) but with a fitness less
than or equal to 100 (refer to Section 4 for the definition
of Fitness), and a set of input-output spike train pairs
𝑆 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)} where 𝑎𝑖 is a set of
input spike trains {𝑎𝑖1, . . . , 𝑎𝑖𝑗} where 𝑗 = |𝑖𝑛|, 𝑏𝑛 is an
output spike train, and 𝑓(𝑎𝑖) = 𝑏𝑖. The input-output
pairs will serve as test cases for evaluating the SN P
systems. The goal of the framework is to improve the
fitness and to reduce the number of rules in the system.
The flow starts in the leftmost rectangle with the

creation of the first generation for the genetic algorithm.
The initial SN P system will populate the first generation
by mutating the initial SN P system multiple times using
many different mutation functions.
In the next rectangle, all SN P systems in the pop-

ulation will be simulated with the given set of inputs
from the set of input-output pairs 𝑆. The set of outputs
generated from every SN P system in the population
will be compared to the set of outputs from 𝑆 using
some fitness function. Details of the fitness function are
in Section 5, in the Fitness Evaluation subsection. The
score obtained from the evaluation function will serve as
the fitness of the SN P system. The highest-scoring SN
P system with the lowest number of rules are considered
the fittest and saved for the next generation.
The next step is the diamond, where the framework

checks for the halting condition. While the maximum
number of generations is not yet reached, the program
proceeds to the next rectangle, which is parent selection.

After all SN P systems from the population has been
evaluated, the algorithm will select parents that will
populate the next generation. The likelihood of an SN P
system getting selected will depend on its fitness. Higher
fitness will correspond to a higher probability of getting
selected. After selection, the framework will proceed to
Crossover, Mutation, and SN P Validation.

In crossover, the parents will be paired up with another
until enough pairs have been established to populate the
next generation. Every pair of parents will produce two
children. A parent can be paired up more than once or
not at all, but fitness does not play a role in pairing.
After enough pairs have been established, all pairs will
have a chance to undergo crossover. If a pair undergoes
crossover, the children will be the resulting SN P systems.
Otherwise, the children will be an exact copy of their
parents. After crossover, all children will have a chance
to undergo mutation, where synapses may be deleted
or added, and rules may change. After mutation is Vali-
dation, which makes sure that the SN P systems after
crossover and mutation satisfy Definition 1. Valid SN P
systems will now populate the next generation, which
again will undergo fitness evaluation, parent selection,
crossover, mutation, and SN P validation. The cycle will
repeat until the maximum number of generations has
been reached. The fittest SN P system can be retrieved
once the program halts.

Only SN P systems as defined in Definition 1 from [12]
are considered in this work, e.g. a global clock is used,
neurons operate in parallel. Spiking rules used have no
delay and have regular expressions limited to the form
of 𝑎𝑖 only. This form is used because the initial SN P
systems are based from [5], which only contains rules
of the mentioned form. Input and output neurons only
contain the rule 𝑎→ 𝑎; 0 and 𝑎→ 𝜆; 0, respectively.

The Π𝑓𝑖𝑛𝑎𝑙 outputs of the framework in Figure 1 will
have the same number of neurons as Π𝑖𝑛𝑖𝑡, i.e. the frame-
work can only mutate the rules and the synapses of the
SN P systems. The mutation functions are discussed
in Section 5. SN P systems considered in this work are
for binary operations, e.g. bitwise addition, hence our
systems are limited to two input neurons only.

5 THE GENETIC ALGORITHM

Set S. All bitwise addition (respectively, subtraction)
SN P systems share the same input spike trains and
output spike trains. There are 10 pairs of 7-bit input
spike trains for the input - one for each input neuron,
and 10 10-bit output spike trains.

Fitness Evaluation. The fitness evaluation method
used in this framework is Longest Common Substring,
or LCS in short. LCS returns the length of the longest
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substring present in two strings. In this paper, the length
of the longest substring of the ideal output spike train 𝑏𝑖
and the resulting output spike train 𝑏′𝑖 will be computed.
The sum of the LCS of all ideal output spike trains
𝑏𝑖 and resulting output spike trains 𝑏′𝑖 will determine
the fitness of the SN P system. [3] and [7] use LCS as
the fitness function. [11] uses both LCS and Longest
Common Subsequence.

Selection Method. The framework has two selection
methods: Fitness-proportionate, and Fitness-proportionate
with Elitism.

Fitness-proportionate. The probability 𝑃 of an SN
P system Π being added to the pool of parents to popu-
late the next generation is described by Equation 1.

𝑃 (Π𝑗) =
𝑔(Π𝑗)∑︀𝑝
𝑖=0 𝑔(Π𝑖)

(1)

where 𝑔(Π) is the fitness function and p is the number
of SN P systems in the population. This method allows
fitter chromosomes to be more likely selected than less fit
ones. Less fit chromosomes can still be selected, although
with a lower chance. This allows the pool to still have a
diverse set of chromosomes.

Fitness-proportionate with Elitism. For every
generation, the top 10 chromosomes are added directly
to the next generation without any modifications. After
adding the top 10 chromosomes, the rest of the popula-
tion is filled up using the fitness-proportionate selection
method. This ensures that the best chromosomes are
preserved, making sure that the best chromosome in
generation 𝑖 is at least the same or better than the best
chromosome in generation 𝑖−1. This technique, however,
may result in a less diverse genetic pool.

In two selection methods from [11], ”25% of the popu-
lation based on fitness” and ”Top 25% of the population
+ 25% of the population based on fitness”, the ”based
on fitness” also uses Equation 1.

Crossover Functions. Crossover functions are Swap
Rules, and Swap Synapses, with examples given in Figure
7 and Figure 8, respectively (Appendix B).

Swap Rules. Given two SN P systems Π1 and Π2 with 𝑚
neurons 𝜎1, . . . , 𝜎𝑚 and 𝜎′

1, . . . , 𝜎
′
𝑚 respectively, select

neurons 𝜎𝑛, and 𝜎′
𝑛. Swap all rules in 𝜎𝑛 and 𝜎′

𝑛.

Swap Synapses. Given two SN P systems Π1 and Π2 with
𝑚 neurons 𝜎1, . . . , 𝜎𝑚 and 𝜎′

1, . . . , 𝜎
′
𝑚 respectively, and a

set of synapses 𝑠𝑦𝑛 and 𝑠𝑦𝑛′ respectively, select neurons
𝜎𝑛 and 𝜎′

𝑛. Swap all outgoing synapses of 𝜎𝑛 and 𝜎′
𝑛

(𝑛, 𝑗) ∈ 𝑠𝑦𝑛 and (𝑛′, 𝑗′) ∈ 𝑠𝑦𝑛′.
Mutation Functions. Six mutation functions in to-

tal are used: four for the rules and two for the synapses.

Examples of each of the six mutation functions are in
Figures 9b, 10a, 10b, 11a, 11b, 12 (Appendix B).

Mutate Regular Expression. The function mutates the
regular expression, 𝑎𝑖, of a chosen rule, 𝑎𝑖/𝑎𝑐 → 𝑎𝑝; 𝑑,
in the system. All the rules in the system are eligible
for this function except for rules inside the input and
output neurons. Once a rule has been chosen, the regular
expression of the rule can be mutated from 𝑎𝑖 to any
regular expression in the interval [𝑎, 𝑎𝑖+1].

Mutate Number of Consumed Spikes. The function mu-
tates the number of consumed spikes, 𝑐, of a chosen rule,
𝑎𝑖/𝑎𝑐 → 𝑎𝑝; 𝑑, in the system. The rules that are eligible
for the function are rules that are not inside the input
and output neurons and rules that have a regular ex-
pression of at least 𝑎2. Once a rule has been chosen, the
number of consumed spikes of the rule can be mutated
from 𝑐 to any value in the interval [1, 𝑖].

Mutate Number of Produced Spikes. The function mu-
tates the number of produced spikes, 𝑝, of a chosen rule,
𝑎𝑖/𝑎𝑐 → 𝑎𝑝; 𝑑, in the system. The rules that are eligible
for the function are rules that are not inside the input
and output neurons and rules that have a regular ex-
pression of at least 𝑎2. Once a rule has been chosen, the
number of produced spikes of the rule can be mutated
from 𝑝 to any value in the interval [1, 𝑐].

Delete Rule. The function deletes a rule in the system.
All the rules can be deleted in the system except the
rule in the input neurons and output neuron.

Delete Synapse. The function selects a neuron in the
system and deletes an outgoing synapse. All neurons
can be selected except the output neuron and the input
neuron if the input neuron only has one outgoing synapse.

Add Synapse. The function selects a neuron in the system
and adds an outgoing synapse connected to another
neuron. All neurons can be selected as the source of the
new synapse except the output neuron. The destination
of the synapse cannot be the same as the source, and
cannot be the input or output neuron.

6 IMPLEMENTATION

Details of the implementation of the framework are given
in this section, while experiment results are in Section 7.
Experiment sources (e.g. codes, test files) are available
from the corresponding author upon request.

Initial SN P systems. The framework will be tested
using SN P systems of two functions: ADD and SUB.
For each function, there will be three SN P systems, the
first one (labeled Type A) having 100% fitness but with
extra rules, the second one (Type B) having less than
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100% fitness, with extra rules, and the third one (Type
C) having less than 100% fitness, but with extra neurons
and extra rules. A summary is shown in Table 1.
By testing SN P systems of Type A, the framework

is tested on how well it reduces the number of rules in
the SN P system, without having to worry about finding
a 100% fit SN P system. In Type B, the framework is
tested on its capability of finding 100% fit SN P systems
from a system with less initial fitness. In Type C, the
framework is tested on finding 100% fit SN P systems as
well, but how it handles extra neurons is also observed.

The ADD and SUB SN P systems mentioned are based
from [5]. The ADD SN P system from [5] had 5 rules,
and SUB had 15. The initial SN P systems are shown
in Figures 13, 14, 15, 16, 17, and 18 in the Appendices.
A table of the fitness and the number of rules of the
SN P systems are shown in Table 2. Ideally, the genetic
algorithm should reduce the number of rules of the SN
P systems to 6 for ADD and 16 for SUB because of the
rule from the added output neuron.

Chromosome Representation. The chromosomes
in the context of this work are SN P systems. The SN P
systems are encoded in a way that can be easily mutated
and recombined with other systems. An SN P system is
stored as a collection of vectors and matrices in a text file.
The file contains the following information: number of
neurons, number of rules, input vector, adjacency matrix,
rule representation, status vector, spiking vector, and
configuration vector. In Appendix C a representation of
the SN P system in Figure 5 is shown in Table 9.

Population Initialization. This is the first step in
the framework, as shown in Figure 1. The population of
the first generation is generated by taking the initial SN
P system and mutating it to produce a child. This process
is repeated until enough children have been generated for
the initial population. Mutation rates of the mutation
functions are in Table 10 (Appendix D), with initial
population at 100 chromosomes (see Section E).

More than one mutation can occur per child, occurring
in the order listed above, e.g. an SN P system undergoes
mutated regular expression first, followed by deleted
synapse. The values listed are arbitrarily chosen. All
experiments of the same SN P system type (see Table 1)
use the same initial population.

Parent Selection. After every mutation, all chromo-
somes are simulated with the input spike trains from 𝑆.
The produced output spike trains are compared with the
output spike trains from 𝑆 using LCS. The fitness of an
SN P system is determined by the score from LCS.

After fitness calculation, the parents are selected.

For Fitness-proportionate, the probability of a chromo-
some being selected as a parent is described by Equation
1. Half are selected as parents.

The same goes for Fitness-proportionate with Elitism,
except the SN P systems are ranked by fitness and
number of rules, and the top 10 are directly added to the
next generation as children, without any modifications.
After Parent Selection follows Crossover, Mutation,

and Validation, as shown in Figure 1.
Crossover. Once the pool of parents is complete, the

parents are paired up at random with each other until
enough pairs are available to populate the next genera-
tion. For Fitness-proportionate and Fitness-proportionate
with Elitism, 25 and 20 pairs are used, respectively.

A parent can be paired up more than once. Each pair
will produce two children. All pairs have a chance to
undergo crossover. SN P systems that are confirmed to
undergo crossover are equally likely to get either one of
the two crossover functions. Only one crossover function
can be selected per pair at most. For pairs that do not get
the chance to undergo crossover, their children will be
an exact copy of themselves. The crossover rate assigned
per crossover function is arbitrary.

Mutation. Once enough children have been produced
from crossover, the children can undergo mutation. Each
child can be mutated once at most. Mutation rates per
mutation function are shown in Table 11 (Appendix D).
After mutation, the child is added to the next gener-

ation. Children who do not undergo mutation proceed
to validation. The mutation rates per mutation function
are arbitrary.

Validation. Chromosomes produced after crossover
and mutation might be invalid. In this experiment, an
SN P system is considered invalid if non-deterministic
rule sets exist, or if there is no path from the input
neurons to the output neurons.
For the former, detecting non-deterministic rule sets

is easy, since the form of the regular expressions is 𝑎𝑖.
For any given neuron, if two rules exist with the same
regular expression, then the rule set of the neuron is non-
deterministic, therefore the SN P system is considered
invalid. For the latter, path-checking is done by running
a depth first search on every input neuron to check if a
path exists to the output neuron.

Halting Condition. The diamond in Figure 1 rep-
resents the halting condition. The algorithm will cycle
between simulation, fitness calculation, parent selection,
crossover, and mutation. Upon finding an SN P system
with 100% fitness, the algorithm will not stop hoping
to get another SN P system with 100% fitness but with
less number of rules. The algorithm will only halt once
the maximum number of generations is reached.
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Type 100% fitness? Extra rules? Extra neurons? Figures
A Yes Yes No (addA) Figure 13 (subA) Figure 16
B No Yes Yes (addB) Figure 14 (subB) Figure 17
C No Yes Yes (addC) Figure 15 (subC) Figure 18

Table 1: A table showing the three types of SN P systems to be tested

SN P system Fitness Number of Rules
addA 100 9
addB 29 9
addC 55 14
subA 100 21
subB 40 21
subC 57 22

Table 2: The fitness, number of neurons and number
of rules of the initial SN P systems.

15% 5% 20% 10% 25% 15% 30% 20% 35% 25%

addA 10 10 10 10 10

addB 3 4 4 4 4

addC 0 1 0 0 0

subA 10 10 10 10 10

subB 0 0 0 0 0

subC 0 0 0 0 0

Table 3: Number of successful runs for experiments
with the fitness-proportionate selection method.

Setup of the framework for our experiments are in
Appendix E.

7 RESULTS AND DISCUSSION

The results of the experiments are discussed in this
section. See Section 6 for details of the experiments
and Table 1 for the details of Π𝑖𝑛𝑖𝑡 used. The number
of successful runs, i.e. runs yielding 100% fitness, per
experiment is shown in Tables 3 and 4. Figures 28, 29,
3, and 4 use the same legend as Figure 2. The mutation
and crossover rates in Figures 28, 29, 3, 4, and Tables 5,
6, and 7 are from Table 12.

ADD of Type A. Since all Π𝑖𝑛𝑖𝑡 of Type A have
initially 100% fitness (see Table 1) all runs of experi-
ments for such Π𝑖𝑛𝑖𝑡 retained their fitness (see Tables 3
and 4). All experiments were able to achieve the min-
imum number of rules of 6 for ADD. In Table 5, on
average, the experiments show that the framework per-
formed better with fitness-proportionate with elitism,
consistently achieving the minimum 6 rules unlike fitness-
proportionate. Experiments with 30% mutation rate and

15% 5% 20% 10% 25% 15% 30% 20% 35% 25%

addA 10 10 10 10 10

addB 1 1 1 1 3

addC 0 0 0 0 1

subA 10 10 10 10 10

subB 0 0 0 0 1

subC 0 0 0 0 1

Table 4: Number of successful runs for experiments
using fitness-proportionate with elitism.

Mutation & Crossover Rate FP FP with Elitism

15% 5% 6.4 6

20% 10% 6.2 6

25% 15% 6.3 6

30% 20% 6.0 6

35% 25% 6.3 6

Table 5: Average minimum number of rules of each
successful experiment for ADD of Type A.

Mutation & Crossover Rate FP FP with Elitism

15% 5% 7 6

20% 10% 8 6

25% 15% 7.75 6

30% 20% 6.25 6

35% 25% 6.5 6

Table 6: Average minimum number of rules of each
successful experiment for ADD of Type B.

20% crossover rate had the same average for both se-
lection methods. Shown in Appendix F, the framework
generated Figure 19, the Π𝑓𝑖𝑛𝑎𝑙 with only 6 rules, on
both methods with Figure 13 as Π𝑖𝑛𝑖𝑡 .

ADD of Type B. From Tables 3 and 4, all ex-
periments had at least one successful run, with fitness-
proportionate performing better than fitness-proportionate
with elitism for most experiments. However, Table 6
shows that on average fitness-proportionate with elitism
is better at reducing the number of rules. In Appendix
F, the framework generated Figure 19 for both selection
methods, with Figure 14 as Π𝑖𝑛𝑖𝑡.
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Figure 2: Generation number of average first occur-
rence of a 100% fit Π𝑓𝑖𝑛𝑎𝑙 of each successful experi-
ment for ADD of Type B.

In Figure 2, fitness-proportionate with elitism finds
the first Π𝑓𝑖𝑛𝑎𝑙 with 100% fitness earlier than its coun-
terpart for all mutation and crossover rate pairs on
average, around the 3rd generation for the 20% and
10% pair, and at 16th generation for 15% and 5% pair.
Fitness-proportionate on average finds a 100% fit Π𝑓𝑖𝑛𝑎𝑙

at generation 6.75 for 35% and 25% pair, and on average
at generation 17.66 for 15% and 5% pair.

ADD of Type C. Only two runs found a 100% fit
Π𝑓𝑖𝑛𝑎𝑙, at fitness-proportionate method of 20% and 10%
pair, and at fitness-proportionate with elitism method
of 35% and 25% pair. For the successful run with the
former method, the framework was unable to reduce the
number of rules, however it was able to find a 100% fit
Π𝑓𝑖𝑛𝑎𝑙. The latter method performed better, reducing
the number of rules to 10 from 14. In Appendix F the
successful Π𝑓𝑖𝑛𝑎𝑙 from both selection methods are shown
in Figures 20 and 21.
Fitness-proportionate with elitism for the rate pair

20% and 10% achieved a fitness of about 67%, while the
other method achieved around 80% fitness for the rate
pair 35% and 25%. The framework found the 100% fit
Π𝑓𝑖𝑛𝑎𝑙 at generations 50 and 39 for fitness-proportionate
and fitness-proportionate with elitism, respectively. See
Figures 28 and 29 in Appendix G for details.

SUB of Type A. Similar to ADD of Type A, all
runs were able to find a 100% fit SN P system. Table
7 shows that fitness-proportionate with elitism consis-
tently performs better than fitness-proportionate, e.g.
on average, a Π𝑖𝑛𝑖𝑡 with 21 rules was reduced by the
former method to as few as 16 rules (35% and 25% rate
pair), while the latter method only reduced it to 19.2

Mutation & Crossover Rate FP FP with Elitism

15% 5% 19.5 17.2

20% 10% 19.5 16.2

25% 15% 19.6 16.4

30% 20% 19.2 16.3

35% 25% 19.5 16.0

Table 7: Average minimum number of rules of each
successful experiment for SUB of Type A for both
selection methods.
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Figure 3: Highest fitness achieved for SUB of Type
B for both selection methods and each pair of rates.

rules (30% and 20% rate pair). Figures 22 and 23 in the
Appendix show some subA Π𝑓𝑖𝑛𝑎𝑙.

SUB of Type B. Successful runs of SUB are more
difficult to achieve due to their larger size, e.g. only one
run found a 100% fit Π𝑓𝑖𝑛𝑎𝑙 with fitness-proportionate
with elitism for the 35% and 25% rate pair, reducing
the number of rules from 21 to 19. Figure 3 shows that
fitness-proportionate runs reached at least 78% fitness
(e.g. at 15% and 5% rate pair), with the highest fitness
of 87% at 25% and 15% rate pair. The single Π𝑓𝑖𝑛𝑎𝑙 with
100% fitness was found at generation 48. The Π𝑓𝑖𝑛𝑎𝑙

with 87% and 100% fitness are shown in Figures 24 and
25 in Appendix F.

SUB of Type C. As in SUB of Type B, only one
run achieved a Π𝑓𝑖𝑛𝑎𝑙 of 100% fitness under the same
selection method, mutation and crossover rates. The
framework was able to reduce the number of rules from 22
to 17. In Figure 4 the fitness-proportionate run achieved
a max fitness of 93% at 35% and 25% rate pair. The
Π𝑓𝑖𝑛𝑎𝑙 with 100% fitness was from generation 27 at the
35% and 25% rate pair. The Π𝑓𝑖𝑛𝑎𝑙 with 100% and 93%
fitness are shown in Figures 27 and 26 in Appendix F.

In summary, it is clear that the fitness-proportionate
with elitism selection method performs better in reducing
the number of rules. In ADD of Type A and Type B,
the experiments under the mentioned selection method
showed a consistent result of 6 rules, compared to its
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Figure 4: Highest fitness achieved for SUB of Type
C for both selection methods for each pair of rates.

counter part without elitism. At ADD of Type C, while
fitness-proportionate was able to find a 100% fit SN P
system, it was unable to reduce the number of rules,
while its counterpart was able to reduce the rules by 4.
At SUB of Type A, the same goes for all mutation rate
and crossover rate pairs, as seen in Table 7. For SUB of
Type B and Type C, a comparison cannot be made as
no runs from fitness-proportionate were successful.

Fitness-proportionate with Elitism outperforming just
fitness-proportionate might be because elitism incen-
tivizes rule reduction for SN P systems which already
have 100% fitness, ranking the chromosomes by fitness
and number of rules in every generation and directly
copying them over to the next generation, making sure
that 100% fit SN P systems with lesser rules survive.
While there is no mutation function that increases the
number of rules, this behaviour is not incentivized in
fitness-proportionate without elitism. With elitism, the
only factor accounted in selection is the fitness of each
chromosome. When two chromosomes have the same fit-
ness but one has fewer rules than the other, the selection
method does not favour the one with fewer rules.
Inspecting the number of successful runs, both selec-

tion methods tied at Type A SN P systems, and at ADD
of Type C. Fitness-proportionate has more successful
runs in add of Type B compared to its counterpart. On
SUB of Type B and C however, fitness-proportionate
with elitism has at least one successful run, while fitness-
proportionate has none. For the mutation and crossover
rate pairs, fitness-proportionate with elitism had more
success with the 35% and 25% rate pair for all Π𝑓𝑖𝑛𝑎𝑙

with at least one successful run, and fitness-proportionate
with the 20% and 10% rate pair for 4 out of 6 of the
Π𝑓𝑖𝑛𝑎𝑙 with successful runs.

In [11], the fitness-proportionate selection method per-
formed the best among two other selection methods, in

terms of the highest average fitness. The selection meth-
ods in [11] are: selecting the top 50% of the population
as parents; 25% using fitness-proportionate; and the top
25% of the population + 25% using fitness-proportionate.
In this paper, however, fitness-proportionate alone is out-
performed by fitness-proportionate with elitism. When
it comes to the SN P systems, [11] found that finding
RSSN P systems of at least 90% fitness was challenging
for addition and most especially for subtraction.

The initial RSSN P systems that [11] used had extra
rules and neurons, with fitness less than 100%, similar to
Type C in this paper. In their framework, only 4 out of
64 experiments yielded an RSSN P system with at least
90% fitness, and SUB had none, with the highest at only
88%. Looking at the Type C results in this framework,
the framework was able to find SN P systems of 100%
fitness, but only 2 out of 100 were successful for ADD of
Type C, and only 1 for SUB of Type C. [11] says that
the difficulty might be caused by the complexity of rules
and the large number of rules and neurons in the tested
addition and subtraction RSSN P systems, as they had
success with RSSN P systems for the bitwise operators
NOT, AND, and OR. In this framework, the difficulty
in finding SN P systems with 100% fitness for Type C
might have similar reasons, especially due to the larger
number of rules of SUB compared to ADD.

Referring back to Section 4 the framework is successful
in reducing the number of rules from a system with
100% fitness, as shown in experiments with Type A. The
number of rules of Type B and Type C were also reduced,
as long as 100% fit Π𝑓𝑖𝑛𝑎𝑙 were found. The framework
is also successful in finding Π𝑓𝑖𝑛𝑎𝑙 with 100% fitness, as
shown in experiments with Type B and C.

In systems of Type C, we see that the framework did
not fully isolate extra neurons by removing all its rules
or detaching it (i.e. removing synapses) from the rest of
the system. However, it was able to modify the extra
neurons such that it no longer contributes to the output
to the system. The framework was able to render an
extra neuron useless by removing all the rules in that
neuron, or removing enough synapses that it does not
affect the system any more, or by changing its spiking
rules to forgetting rules, or sometimes a combination of
these, as in Figures 21 and 27 in Appendix F.
The only successful run for ADD of Type C using

fitness-proportionate with elitism shows an interesting
result, as seen in Figure 21. This Π𝑓𝑖𝑛𝑎𝑙 appears far from
ideal as many of its rules are not what are expected
when compared to the Π𝑓𝑖𝑛𝑎𝑙 in Figure 19, but both
have 100% fitness.
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8 FINAL REMARKS

Based on experiments (Section 6) and results (Section
7) our framework found SN P systems with 100% fitness
and fewer number of rules from an initial SN P system
Π𝑖𝑛𝑖𝑡. The evolving SN P system framework using a
genetic algorithm is successful in finding SN P systems
with higher fitness, or finding systems with fewer number
of rules from a Π𝑖𝑛𝑖𝑡 with 100% fitness.
For experiments of Π𝑖𝑛𝑖𝑡 with 100% fitness, reducing

the number of rules have shown desirable results. For
experiments of Π𝑖𝑛𝑖𝑡 with less than 100% fitness, finding
a 100% fit Π𝑓𝑖𝑛𝑎𝑙 becomes more difficult as the size
of the system increases. While the framework was also
successful in this matter, its low success rate is not
enough to say that the framework is efficient in finding
SN P systems with 100% fitness.
The framework, while successful with the given pa-

rameters and SN P systems, may not be as effective for
other SN P systems with more complex rules and a larger
topology. Possible improvements in this framework are
mentioned next.

Exploring more parameters can be useful in improving
the framework. Since the framework only uses LCS, as
in [3] and [7], to measure the fitness of an SN P system,
it is encouraged to use other fitness metrics. The same
goes for the selection methods, as fitness-proportionate is
primarily used, only with the addition of elitism. [7] used
Tournament Selection as one of their selection methods
for their framework for PSN P systems. Additionally,
this work had success with fitness-proportionate by in-
cluding elitism. The inclusion of elitism to other selection
methods might prove useful, as it is able to incentivize
the behaviour of reducing the number of rules in the
system. Varying the top number of chromosomes directly
copied to the next generation might also be considered.

Varying the population size for each initial SN P sys-
tem can also be considered, like in [3], where the popu-
lation size is set differently based on the size of each SN
P system.
It is also encouraged to explore SN P systems with

other forms of regular expressions. The framework in
this work only deals with rules of the form 𝐸/𝑎𝑐 → 𝑎𝑝; 0
where 𝐸 is of the form 𝑎𝑖. Also, exploring SN P systems
that perform operations with more than two inputs, e.g.
sorting, decision problems, is worth investigating.

REFERENCES

[1] Cabarle, F. G. C., Mart́ınez-del Amor, M. Á., Zeng,
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