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ABSTRACT

In this work, several stochastic computing models are inves-
tigated on how its stochastic process was introduced. While
not all existing stochastic computing models are investigated
in this work, most models included in this study involve a
stochastic selection process with different approaches on the
application of random variables and probabilities. Some of
the results of this short survey were used for the recently
introduced model known as spiking Neural P systems with
stochastic application of rules (⋆SN P) during the 2020 Inter-
national (electronic) Conference on Membrane Computing.

1 INTRODUCTION

This study investigates the introduction of a stochastic pro-
cess to computing models. A stochastic process is a set of
random states indexed within a set of time parameters [24].
Theoretically, certain types of problems seem to be more
solvable by algorithms that are stochastic than determin-
istic, albeit with a small probability of error [23]. Despite
the trade-off, incorporating a stochastic process to comput-
ing models offer different advantages depending on usage,
from the various applications of Markov chains, to enabling
learning behavior to finite automata [4][13][1], to introducing
reward and punishment to weighted grammar [21], and to
modeling natural chemical reaction representations in mem-
brane computing [15].

It is important to preface this study by stating that not all
stochastic computing models in existence is not investigated
but rather a particular subset of it. The interest of this work
is aligned with the introduction a stochastic process to the
Spiking Neural P (SN P) Systems. SN P systems is a class of
P systems that incorporates the idea of spiking neurons into
the area of membrane computing [6]. This model does not
exhibit any stochastic behavior and as of this writing, only
three SN P variants have introduced stochastic processes to
the model, namely: the Stochastic Spiking Neural P (SSN P)
system of [2], the Extended Spiking Neural P (ESNP) system
of [27], and the Spiking Neural P system with Stochastic
Application of Rules (⋆SN P) of [8].

Furthermore, another loose criterion of interest for the sur-
vey includes the application of stochastic process to selection
processes. Although some models included does not meet this,
hence the criterion being being loose, being those models
provide meaningful insight in stochastic processes for it to be
overlooked. A stochastic selection process involves two cases.

*corresponding author: fccabarle@up.edu.ph.

The first case involves having only one option, which may
seem counter-intuitive but is indeed applicable as further
discussed in [8]. The other case is the sensible scenario of
having multiple options. Most of the stochastic computing
models included in this short survey deal with some form of
stochastic selection.

This work discusses the approaches of stochastic com-
puting models when introducing a stochastic process. The
insights gathered in this short survey was referenced in the
⋆SN P model design. Section 2 discusses the definitions used
throughout the study. Section 3 details the surveyed stochas-
tic computing models along with their approaches (i.e. how
random variables are introduced and usage of discrete or
continuous random variables) on introducing a stochastic
process. Section 4 discusses the recommendations, future
work, and conclusion.

2 PRELIMINARIES

This section requires basic familiarity with formal language,
automata, computability theory, and membrane computing.

2.1 Stochastic Processes and Probability

This work refers to [24] for definitions related to probability,
random variables, and stochastic process. Some definition of
terms in this subsection are never used in this study but are
important prerequisites to clearly define probability, random
variable, random vector, and stochastic process.

2.1.1 Probability. An experiment is any activity or procedure
that may give rise to a well defined set of outcomes. A sample
space, denoted by Ω, is the set of all possible outcomes of
an experiment with a particular but unspecified outcome
denoted by 𝜔. An event is a subset of Ω, in which Ω is called
a certain event while Ω𝑐 is called an impossible event. Two
events 𝐴 and 𝐵 are disjoint if 𝐴 ∩ 𝐵 = ∅. An event space,
denoted by 𝐹 , is a collection of events where:

(1) ∅ ∈ 𝐹 ;
(2) if 𝐴 ∈ 𝐹 , then 𝐴𝑐 ∈ 𝐹 ;
(3) if 𝐴𝑛 ∈ 𝐹 ∀𝑛 ∈ [1,∞], then

⋃︀∞
𝑛=1 𝐴𝑛 ∈ 𝐹 .

A probability distribution, is a function 𝑃𝑟 : 𝐴 ∈ 𝐹 → 0 ≤
𝑃𝑟(𝐴) ≤ 1 that assigns the probability of an event to occur
between 0 (will not occur) and 1 (will occur) where:

(1) 𝑃𝑟(Ω) = 1;
(2) 0 ≤ 𝑃𝑟(𝐴) ≤ 1 for any event 𝐴;
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(3) axiom of countable additivity. if 𝐴𝑗 ∩𝐴𝑘 = ∅ for 𝑗 ̸= 𝑘,
then

𝑃𝑟(
⋃︁

𝑛∈𝐼

𝐴𝑛) =
∑︁

𝑛∈𝐼

𝑃𝑟(𝐴𝑛),

where (𝐴𝑛;𝑛 ∈ 𝐼) may be a finite or countably infinite
collection of events.

A conditional probability is the probability of an event
𝐴 given that another event 𝐵 occurs denoted by 𝑃𝑟(𝐴|𝐵)
where 𝑃𝑟(𝐴|𝐵) = 𝑃𝑟(𝐴∩𝐵)/𝑃𝑟(𝐵). A probability space is a
tuple (Ω, 𝐹, 𝑃𝑟) that fully describes an experiment from the
possible outcomes Ω, to the events 𝐹 and the probabilities
𝑃𝑟 assigned to the events.

2.1.2 Random Variables. Given Ω and 𝑃𝑟, a random variable
is a function 𝑋 : 𝜔 ∈ Ω→ 𝑥 ∈ R that assigns a real number
to 𝜔. A discrete random variable takes values only in some
countable set 𝐷 ⊂ R where typically, 𝐷 ⊆ Z. A continuous
random variable is a random variable that takes values in an
otherwise uncountable set 𝐶 ⊆ R.

2.1.3 Random Vector. Given a probability space, A random
vector is a set of random variables {𝑋1, . . . , 𝑋𝑛} denoted by
𝑋 with its possible values {𝑥1, . . . , 𝑥𝑛} denoted by 𝑥.

2.1.4 Stochastic Process. Given a probability space, a sto-
chastic process is a set containing random variables 𝑋(𝑡 ∈ 𝑇 )
or random vectors {𝑋1(𝑡), . . . , 𝑋𝑛(𝑡)} where 𝑡 is the time-
parameter that runs over an index set 𝑇 . Each element in
the stochastic process takes values in some set 𝑆 ⊆ R called
the state space and that element is the state of the process
at 𝑡.

2.1.5 Markov Chains. Given a state space 𝑆, a Markov chain
is a sequence of discrete random variables where it satisfies
the Markov property:

𝑃𝑟(𝑋𝑛 = 𝑘|𝑋0 = 𝑥0, . . . , 𝑋𝑛−1 = 𝑗) = 𝑃𝑟(𝑋𝑛 = 𝑘|𝑋𝑛−1 = 𝑗)

for all 𝑛 ≥ 1, and all 𝑥0, 𝑥1, . . . , 𝑗, 𝑘 ∈ 𝑆. If, for all 𝑛,
𝑃 (𝑋𝑛 = 𝑘|𝑋𝑛−1 = 𝑗) = 𝑝𝑗𝑘, then the chain is homogeneous.
A probability matrix the an array 𝑃𝑟 = (𝑝𝑗𝑘), 𝑗, 𝑘 ∈ 𝑆. A
stochastic matrix is a probability matrix where

∑︀
𝑘∈𝑆 𝑝𝑗𝑘 = 1.

A doubly stochastic matrix is a probability matrix where both∑︀
𝑘∈𝑆 𝑝𝑗𝑘 = 1 and

∑︀
𝑗∈𝑆 𝑝𝑗𝑘 = 1.

2.2 Stochastic Automaton

From [4], a Stochastic Automaton is of the form:

(𝑌,𝑄,𝑈, 𝐹,𝐺)

where:

(1) 𝑌 = {𝑦1, . . . , 𝑦𝑟} is a finite set of inputs;
(2) 𝑄 = {𝑞1, . . . , 𝑞𝑠} is a finite set of states;
(3) 𝑈 = {𝑢1, . . . , 𝑢𝑚} is a finite set of outputs;
(4) 𝐹 is the next state function

𝑞𝑘+1 = 𝐹 (𝑦𝑘, 𝑞𝑘)

where 𝑞𝑘 ∈ 𝑄 and 𝑦𝑘 ∈ 𝑌 ; and
(5) 𝐺 is the output function

𝑢𝑘 = 𝐺(𝑞𝑘)

𝑦𝑘, 𝑞𝑘, and 𝑢𝑘 are the input, state, and output respectively
at some instant 𝑘. 𝐹 is stochastic and 𝐺 may be deterministic
or stochastic.

For each input 𝑦𝛼 applied to the automaton at instant 𝑘, 𝐹
is usually represented as a state transition probability matrix
𝑀𝑘(𝑦𝛼). The (𝑖, 𝑗)-element 𝑝𝑖𝑗𝑘 (𝑦𝛼) of 𝑀𝑘(𝑦𝛼) is defined by:

𝑝𝑖𝑗𝑘 (𝑦𝛼) = 𝑃{𝑞𝑘+1 = 𝑞𝑗 |𝑞𝑘 = 𝑞𝑖, 𝑦𝑘 = 𝑦𝛼}
where 𝑖, 𝑗 = 1, . . . , 𝑠 is the probability of the next state 𝑞𝑘+𝑙

being 𝑞𝑗 when the present state 𝑞𝑘 is 𝑞𝑖 and the present input
is 𝑦𝛼. For all possible next 𝑞𝑗 , 𝑗 = 1, . . . , 𝑠,

𝑠∑︁

𝑗=1

𝑝𝑖𝑗𝑘 (𝑦𝛼) = 1

thus, 𝑀𝑘(𝑦𝛼) is a stochastic matrix. The probability distri-
bution of the state 𝑞𝑘+1 is determined by the probability
distribution of 𝑞𝑘 and 𝑦𝑘 . In the stationary case 𝑀𝑘(𝑦𝛼)
is not a function of 𝑘; that is, 𝑀𝑘(𝑦𝛼) = 𝑀(𝑦𝛼) for all 𝑘.
It is easily seen that a deterministic finite automaton is a
special case of a stochastic automaton of which the matrix
𝑀(𝑦𝛼) consists of zeroes and ones, and each row of the ma-
trix contains exactly one element which is equal to unity.
The function 𝐺, if it is stochastic, can also be represented
in a matrix form. The (𝑖, 𝑗)-element of the matrix is the
probability of the output being 𝑢𝑗 if the state is 𝑞𝑖.

2.3 Spiking Neural Networks

From [9], an Spiking Neuron Network 𝑁 is construct that
consists of:

(1) A finite directed graph ⟨𝑉,𝐸⟩ with 𝑉 as the set of
neurons and 𝐸 as the set of synapses,

(2) 𝑉𝑖𝑛 ⊆ 𝑉 as the subset of input neurons,
(3) 𝑉𝑜𝑢𝑡 ⊆ 𝑉 as the subset of output neurons,
(4) for each neuron 𝑣 ∈ 𝑉 − 𝑉𝑖𝑛 a threshold function Θ𝑣 :

R+ → R
⋃︀{∞} where R+ := {𝑥 ∈ R : 𝑟 ≥ 0}, and

(5) for each synapse ⟨𝑢, 𝑣⟩ ∈ 𝐸 a response function 𝜖𝑢,𝑣 :
R+ → R and a weight function 𝑤𝑢,𝑣 : R+ → R.

The firing of the input neurons 𝑣 ∈ 𝑉𝑖𝑛 is assumed to be
determined from outside of 𝑁 such that the sets 𝐹𝑣 ⊆ R+

of firing times (spike trains) for neurons 𝑣 ∈ 𝑉𝑖𝑛 are given
as the input of 𝑁 . It is also assumed that a set 𝑇 ⊆ R+ of
potential firing times has been fixed.

A neuron 𝑣 ∈ 𝑉 − 𝑉𝑖𝑛 defines its set 𝐹𝑣 of firing times
recursively. The first element of 𝐹𝑣 is inf{𝑡 ∈ 𝑇 : 𝑃𝑣(𝑡) ≥
Θ𝑣(𝑂)}, and for any 𝑠 ∈ 𝐹𝑣, the next larger element of 𝐹𝑣 is
inf{𝑡 ∈ 𝑇 : 𝑡 > 𝑠 and 𝑃𝑣(𝑡) ≥ Θ𝑣(𝑡− 𝑠)}, where the potential
function 𝑃𝑣 : R+ → R is defined by

𝑃𝑣(𝑡) := 0 +
∑︁

𝑢:⟨𝑢,𝑣⟩∈𝐸

∑︁

𝑠∈𝐹𝑢:𝑠<𝑡

𝑤𝑢,𝑣(𝑠) · 𝜖𝑢,𝑣(𝑡− 𝑠)

The firing times (spike trains) 𝐹𝑣 of the output neurons
𝑣 ∈ 𝑉𝑜𝑢𝑡 that result in this way are interpreted as the output
of 𝑁 .

The set 𝑇 of potential firing times considered includes
the case 𝑇 = R+ (SNN with continuous time) and the case
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𝑇 = {𝑖 · 𝜇 : 𝑖 ∈ 𝑁} for some 𝜇 with 1/𝜇 ∈ 𝑁 (SNN with
discrete time).

It is also assumed that for each SNN 𝑁 there exists a
bound 𝑇𝑁 ∈ R with 𝑇𝑁 > 0 such that Θ𝑣(𝑥) = ∞ for all
𝑥 ∈ (0, 𝑇𝑁 ) and all 𝑣 ∈ 𝑉 − 𝑌𝑖𝑛. 𝑇𝑁 may be interpreted as
the minimum of all “refractory periods” 𝑇𝑟𝑒𝑓 of neurons in
𝑁 . Furthermore, all “input spike trains” 𝐹𝑣 with 𝑣 ∈ 𝑉𝑖𝑛 are
assumed to satisfy |𝐹𝑣 ∩ [0, 𝑡]| < ∞ for all 𝑡 ∈ R+. On the
basis of these assumptions one can also in the continuous
case easily show that the firing times are well-defined for all
𝑣 ∈ 𝑉 − 𝑉𝑖𝑛 and occur in distances of at least 𝑇𝑁 .

For simulations between SNN’s and Turing machines we
assume that the SNN either gets an input (or produces an
output) from 𝑂, 1* in the form of a spike-train (i.e. one bit
per unit of time), or encoded into the phase-difference of just
two spikes. Real-valued input or output for an SNN is always
encoded into the phase-difference of two spikes.

2.4 P systems

From [17], a P system Π is a construct

Π = (𝑉, 𝑇, 𝐶, 𝜇,𝑤1, . . . , 𝑤𝑚, (𝑅1, 𝜌1), . . . , (𝑅𝑚, 𝜌𝑚))

where:

(1) 𝑉 is an alphabet with elements called objects;
(2) 𝑇 ⊆ 𝑉 is the output alphabet;
(3) 𝐶 ⊆ 𝑉 − 𝑇 is set of catalysts;
(4) 𝜇 is a membrane structure consisting of 𝑚 membranes,

with the membranes (and hence the regions) injectively
labeled by the elements of a given set 𝐻 of 𝑚 labels
(𝐻 = 1, 2, . . . ,𝑚); m is called the degree of 𝜇;

(5) 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑚, are strings which represent multisets
over 𝑉 associated with the regions 1, 2, . . . ,𝑚 of 𝜇;

(6) An evolution rule is a pair (𝑢, 𝑣) which is written in
the form 𝑢→ 𝑣, where 𝑢 is a string over 𝑉 and 𝑣 = 𝑣′ or
𝑣 = 𝑣′𝛿, where 𝑣′ is a string over 𝑎ℎ𝑒𝑟𝑒, 𝑎𝑜𝑢𝑡, 𝑎𝑖𝑛|𝑎 ∈ 𝑉, 1 ≤ 𝑗 ≤ 𝑚,
and 𝛿 is a special symbol not in 𝑉 . The length of 𝑢 is
called the radius of the rule 𝑢→ 𝑣.
𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑚 are finite sets of evolution rules over 𝑉
and each 𝑅𝑖 is associated with the region 𝑖 of 𝜇; 𝜌𝑖 is a
partial order relation over 𝑅𝑖, called a priority relation
(on the rules of 𝑅𝑖).

To simplify the notation, the subscript ℎ𝑒𝑟𝑒 for letters
(objects) in evolution rules will be mostly omitted.

If Π contains rules of radius greater than one, then Π is
a system with cooperation. Otherwise, it is a noncooperative
system. A particular class of cooperative systems is that of
catalytic systems where the only rules of a radius greater
than one are of the form 𝑐𝑎→ 𝑐𝑣 or 𝑐𝑎→ 𝑐𝑣𝛿, where 𝑐 ∈ 𝐶,
𝑎 ∈ 𝑉 − 𝐶, and 𝑣 ∈ (𝑉 − 𝐶)* Moreover, no other evolution
rules contain catalysts such that there are no rules of the
form 𝑐→ 𝑣 or 𝑎→ 𝑣1𝑐𝑣2, with 𝑐 ∈ 𝐶, and 𝑎 ∈ 𝑉 − 𝐶.

The (𝑚+ 1)-tuple (𝜇,𝑤1, . . . , 𝑤𝑚) constitutes the initial
configuration of Π. The possibility of dissolving membranes
means that the system may enter a configuration which will in-
clude only some of the initial membranes. Thus, any sequence

(𝜇′, 𝑤′
𝑖1 , . . . , 𝑤

′
𝑖𝑘
) with a membrane structure obtained by re-

moving from 𝜇 all membranes different from 𝑖1, . . . , 𝑖𝑘 with
𝑤′

𝑖𝑗 strings over 𝑉 , 1 ≤ 𝑗 ≤ 𝑘, and 𝑖1, . . . , 𝑖𝑘 ⊆ 1, 2, . . . ,𝑚,
is called a configuration of Π. Not every configuration may
be reachable through an evolution of the system and if a
membrane is present in two different configurations, then it
will have the same label, because labels are associated with
membranes and are never manipulated during an evolution
of the system.

Two configurations 𝐶1 = (𝜇′, 𝑤′
𝑖1 , . . . , 𝑤

′
𝑖𝑘
) and 𝐶2 =

(𝜇′′, 𝑤′′
𝑗1 , . . . , 𝑤

′′
𝑗𝑙
) of Π, written as 𝐶1 ⇒ 𝐶2, is a transition

from 𝐶1 to 𝐶2 if 𝐶1 passes to 𝐶2 using the evolution rules
from 𝑅𝑖1 , . . . , 𝑅𝑖𝑘 in the regions 𝑖1, . . . , 𝑖𝑘.

When using a rule 𝑢 → 𝑣 in the region 𝑖𝑡, copies of the
objects as specified by 𝑢 are removed, and the result of using
the rule is determined by 𝑣.

The use of evolution rules are performed in parallel, for
all possible applicable rules 𝑢 → 𝑣, for all occurrences of
multisets 𝑢 in the regions associated with the rules, for all
regions, following the principles of nondeterminism and max-
imal parallelism.

A sequence of transitions between configurations of a given
P system Π is called a computation with respect to Π. A
computation is successful if and only if it halts, that is,
there is no rule applicable to the objects present in the last
configuration. The output of a successful computation is
Ψ𝑇 (𝑤), where 𝑤 describes the multiset of objects from 𝑇
sent out of the system during the computation. On the other
hand, a non-successful computation has no output. The set
of such vectors Ψ𝑇 (𝑤) is denoted by 𝑃𝑠(Π) (“𝑃𝑠” stands for
“Parikh set”), and it is generated by Π.

2.5 SN P systems

From [6], a spiking neural P system of degree 𝑚 ≥ 1 is of the
form:

Π = (𝑂, 𝜎1, . . . , 𝜎𝑚, 𝑠𝑦𝑛, 𝑖0)

where:

(1) 𝑂 = 𝑎 is the singleton alphabet (𝑎 is called spike);
(2) 𝜎1, . . . , 𝜎𝑚 are neurons, of the form:

𝜎𝑖 = (𝑛𝑖, 𝑅𝑖), 1 ≤ 𝑖 ≤ 𝑚,

where:
(a) 𝑛𝑖 ≥ 0 is the initial number of spikes in the neuron;
(b) 𝑅𝑖 is a finite set of rules of the following two forms:

(1) 𝐸/𝑎𝑟 → 𝑎; 𝑑, where 𝐸 is a regular expression
over 𝑂, 𝑟 ≥ 1, and 𝑑 ≥ 0;

(2) 𝑎𝑠 → 𝜆 for some 𝑠 ≥ 1 with the restriction that
𝑎𝑠 /∈ 𝐿(𝐸) for any rule 𝐸/𝑎𝑟 → 𝑎; 𝑑 of type (1)
from 𝑅𝑖;

(3) 𝑠𝑦𝑛 ⊆ {1, 2, . . . ,𝑚} × {1, 2, . . . ,𝑚} with (𝑖, 𝑖) /∈ 𝑠𝑦𝑛
for 1 ≤ 𝑖 ≤ 𝑚 (synapses among neurons);

(4) 𝑖0 ∈ {1, 2, . . . ,𝑚} indicates the output neuron.

SN P Systems function synchronously, i.e. if a neuron can
fire a rule in each step, it must do so. In this way, the entire
system uses a global clock to index the time. The rules of
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form (1) are called firing rules. At some step 𝑞, a neuron 𝜎
fires when it applies a firing rule 𝐸/𝑎𝑟 → 𝑎; 𝑑 if 𝜎 contains
𝑛 spikes such that 𝑎𝑛 ∈ 𝐿(𝐸) and 𝑛 ≥ 𝑟. Neuron 𝜎 releases
its spike at step 𝑞 + 𝑑 to every neuron with a synapse from
𝜎. This means that if 𝑑 = 0 the spike leaves 𝜎 immediately
while 𝑑 > 0 means the spike will leave 𝜎 after 𝑑 steps. If
𝑑 > 0, then 𝜎 is closed within steps 𝑞 and 𝑞 + 𝑑− 1 where it
cannot receive new spikes and consequently fire. Starting at
step 𝑞 + 𝑑 the neuron becomes open, i.e. it can receive new
spikes and emit its spike. Any spike received by 𝜎 while it is
closed is lost, i.e. the spike is never received by 𝜎 .

The rules of form (2) are called forgetting rules. When
such rules are applied, that is when the number of spikes in
a neuron 𝑛 = 𝑠, then 𝑠 spikes are removed from the neuron,
i.e. they are lost, and no spike is produced. Neurons are
allowed to have two firing rules 𝐸1/𝑎

𝑟1 → 𝑎; 𝑑1, 𝐸2/𝑎
𝑟2 →

𝑎; 𝑑2 with 𝐿(𝐸1) ∩ 𝐿(𝐸2) ̸= ∅. Nondeterministic application
of rules occur when 𝑎𝑛𝑖 ∈ 𝐿(𝐸1) ∩ 𝐿(𝐸2), i.e. the neuron
nondeterministically chooses which such rules it fires. Note
that firing and forgetting rules in a neuron cannot be applied
at the same time.

A configuration is the distribution of spikes and the open/-
closed states of all neurons. The initial configuration is
𝐶0 = ⟨𝑛1, 𝑛2, . . . , 𝑛𝑚⟩ corresponding to initial spikes of neu-
rons 𝜎1, 𝜎2, . . . , 𝜎𝑚, with all neurons open. Given two config-
urations 𝐶1 and 𝐶2, a transition, denoted by 𝐶1 =⇒ 𝐶2, is
the step of passing from 𝐶1 to 𝐶2. A computation is then a
sequence of transitions starting in the initial configuration.

Several results can be associated with a computation. A
result can be the number of spikes present in the output
neuron in the halting configuration or the number of spikes
sent by the neuron to the environment during the halting
computation. Another result can be a finite or infinite binary
string where each bit is retrieved per step from the output
neuron with 1 associated to the neuron spiking and 0 if
otherwise. Often the result is obtained as follows: the time
interval between the first two spikes of the output neuron. We
denote by 𝑁(Π) the set of all natural numbers computed
by Π. From the initial paper in [6] it is known that SN P
systems are computationally universal, i.e. they simulate
register machines, and hence also characterise 𝑁𝑅𝐸.

3 STOCHASTIC COMPUTING
MODELS

This section compares and contrasts methods on introducing
stochastic behaviour to computing models including but not
limited to SN P systems. Reviewing a method considers
parameters such as (1) the semantic to which the a random
variable is introduced to, (2) the type of random variable, (3)
the structure of the random variables, (4) the way probability
values are assigned, and (5) whether probability values are
static or dynamic throughout the computation. A summary
of the stochastic computing models is listed in Table 1.

A probabilistic Turing machine is a type of nondetermin-
istic Turing machine in which each nondeterministic step is
called a coin-flip step and has two legal next moves [23]. The

stochastic process uses discrete random variables since the
possible outcome is either “heads” or “tails”. Since the sto-
chastic process involves a selection of computation branches,
each computation step uses a random vector containing two
random variables for “heads” and “tails”. The probabilities
for each random variable reflect the experiment of flipping a
fair coin. Thus all random variables have a static probability
of 0.5 which is already configured initially. A probabilistic
deterministic Turing machine (PTM) is also introduced by
[22] where it does not use a coin-flip step. Since it is a de-
terministic Turing machine, there are no nondeterministic
branches to select. Instead, the probabilistic deterministic
Turing machine has random state transitions. Since the set
of possible states are countable, the discrete random vari-
ables are used. Also specified in the work is that a Markov
chain may be associated with each PTM which means the
random variables are structured as a stochastic matrix and
the probabilities of those random variables are conditional.

Before proceeding to reviewing the next stochastic com-
puting models, it is important to note that introducing a
stochastic process on a selection process implies a shared
probability space between random variables. Suppose the
coin-flip step of the probabilistic Turing machine uses ran-
dom variables where each have different probability spaces,
then it is possible for both “heads” and “tails” to occur. On
the other hand, as shown in PTM, a stochastic process can
also determine whether a deterministic transition occurs or
not, which is where plain random variables are applicable.

Proceeding to early stochastic computing models, studies
on stochastic finite automata deal with introducing stochas-
tic processes in nondeterministic transition selection. This
means stochastic finite automata uses discrete random vari-
ables because of the countable possible outcomes a state
could transition to. A stochastic automaton uses a stochas-
tic matrix [4]. The random variables typically have static
probabilities but it is also possible for the probabilities to
be dynamic. A stochastic automaton with random environ-
ment adds a new function 𝐴 to the form of the stochastic
automaton to assign the updating scheme or reinforcement
scheme of the model [13]. This function is used to adjust
the probabilities of the random variables. Similarly, the Sto-
chastic Transition System of [1] used a scheduler to modify
the probabilities of the random variables. Dynamic proba-
bilities extends stochastic automata to learning automata
[4][13][1]. Studies on stochastic context-free grammar uses
a fairly similar approach to stochastic finite automata but
instead of stochastic state transitions, the stochastic process
introduced to the selection of production rule used using a
random vector [21].

The stochastic Petri Nets (SPN) of [12] introduces a sto-
chastic processes differently than the previous models. Instead
of using random variables to select a nondeterministic transi-
tion, random variables are used to delay the execution of a
transition. Since time is the subject of the stochastic process,
a continuous random variable is used rather than discrete.
On the other hand, since it does not involve any selection of
outcomes, a shared probability space is not required among
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Table 1: Summary table of surveyed stochastic computing models.

Model Objectives Random Variable Type Structure Probability Assignment
Static
Probabilities

Spiking Neural P Systems with Stochastic
Application of Rules (⋆SN P)

Introduce a stochastic process to SN P rule
application

Rule application Discrete Random vector
Initial or preprocessed
configuration, or dynamic

Static or
Dynamic

Extended Spiking Neural P system (ESNPS) [27]
Approximate solutions of combinatorial
optimization problems

Firing or forgetting
rule application

Discrete
Random vector,
stochastic matrix

OSNP guider No

Time-free SN P Hardware Implementation using
Low-Pass and High-Pass Neurons [26]

Handling stochastic loss of spikes in SN P
hardware implementation

Spike loss Discrete Random variable Implicit No

Stochastic SN P (SSN P) System [2] Create a time-free SN P System
Rule application
delay

Discrete or
Continuous

Random variable Initial configuration Yes

Multi-compartmental Gillespie algorithm
evolution P systems [18]

Computational modelling tool for systems biology Rule application Discrete Random vector
Multi-compartmental Gillespie
algorithm

No

Dynamical Probabilistic P Systems (DPP) [19] Modelling biological systems Rule application Discrete
Random vector with
stochastic constant

Current multiset and rule constant
based assignment

No

Probabilistic Rewriting P systems (PRP) [11] Capturing randomness in rewriting P systems Rule application Discrete Random vector Initial configuration Yes

Single-object-level probabilistic P System [16] Introducing probabilities in P systems Objects Discrete Unspecified Unspecified Unspecified

Multiplicity-of-objects-level probabilistic P
system [16]

Introducing probabilities in P systems
Multiplicities of
objects

Discrete Unspecified Unspecified Unspecified

Communication-target-level probabilistic P
system [16]

Introducing probabilities in P systems
Target membranes
selection

Discrete Unspecified Unspecified Unspecified

Population Dynamics P System (PDP) [3]
Create a standardized population dynamics
model of ecological communities

Rule application Discrete Random variable Initial configuration Yes

K-subset Transforming Systems with Membranes
[14]

Modeling light reactions during photosynthesis Rule application Discrete Random variable
Compartment contents based
assignment per simulation step

No

Abstract Rewriting System on Multisets (ARMS)
[25]

Dealing with the overwhelming genome
information

Rule application Discrete Random variable Initial configuration Yes

Stochastic Spiking Neural Networks (SSNN) [20]
Creating a nondeterministic stochastic neural
model of realistic neural behaviour

Synaptic
transmission
execution

Discrete Random variable Initial configuration Yes

Noisy Spiking Neurons [10]
Reliable digital computing with noisy spiking
neurons

Neuron firing time Continuous Random variable Initial configuration Yes

Probabilistic Spiking Neuron model (pSNM) [7]
Enhance the current SNN models with
probabilistic parameters

Spike arrival, PSP,
firing time

Continuous Random variable Initial configuration Yes

Stochastic Petri Nets (SPN) [12]
Petri nets based techniques for the quantitative
analysis of systems

Transition delay Continuous Random variable Initial configuration Yes

Probabilistic Grammar [21]
Changing the manner in which a grammar is
allowed to generate words

Production rule
selection

Discrete Random vector Initial configuration Yes

Stochastic Transition Systems [1] Model and analyse complex stochastic behaviours
State transition
selection

Discrete Random vector Scheduler No

Stochastic Automaton with Random Environment
[13]

Finding an optimal action out of a set of
allowable actions using stochastic automata

State transition
selection

Discrete Random variable
Initial configuration then
environment response

No

Autonomous Stochastic Automaton [4] Investigating stochastic or probabilistic automata
State transition
selection

Discrete Random vector
Initial probability matrix
configuration

No

Probabilistic Deterministic Turing Machine
(PTM) [22]

Introduce a stochastic variant of a deterministic
Turing machine

State transition Discrete
Random variable,
stochastic matrix

Initial configuration Yes

Probabilistic Turing Machine [23]
Investigate another way of selecting a
computation branch past deterministic and
nondeterministic Turing machines

Computation branch
selection

Discrete Random vector Initial configuration Yes

the random variables in SPN. Thus it is not required to
use complex structures like random vectors and stochastic
matrices.

Models reviewed that are closely leading up to SN P sys-
tems include spiking neural networks and certain variants
of P systems. Studies on stochastic spiking neural networks
have different approaches that used random variables on dif-
ferent operations within the semantics of the model. The
stochastic spiking neural network (SSNN) of [20] introduced
stochastic synaptic transition execution and is the only ap-
proach that used a discrete random variable. On the other
hand, the noisy spiking neuron model of [10] used a similar
approach to the stochastic Petri nets where a continuous
random variable determines the neuron firing time. Lastly
the probabilistic Spiking Neuron model (pSNM) of [7] in-
troduced stochastic processes on multiple semantics: spike
arrival, post-synaptic potential, and firing time; all of which
used continuous random variables. All stochastic SNN models
have static probabilities.

In P systems, [16] listed four possible levels on where to
introduce stochastic processes: (1) single objects, (2) multi-
plicities of objects, (3) rules, and (4) communication targets.
Other specifics on the implementation such as the structure
of the random variables, the semantic of assigning proba-
bilities and whether it is static or dynamic are unspecified.
However, since all approaches involve selection, it can be

inferred that discrete random variables are used. Rule-level
probabilistic P systems have been applied in works including
the K-subset Transforming Systems with Membranes of [14],
Abstract Rewriting System on Multisets (ARMS) of [25], and
the Population Dynamics P System (PDP) of [3]. Similarities
among the approach of all three rule-level probabilistic P
systems include using stochastic rule application. This means
multiple rules can still be applicable within a membrane.
ARMS and PDP work fairly the same on different use cases
where a static probability value determines whether a rule is
applied or not. On the other hand, the K-subset Transform-
ing Systems with Membranes uses dynamic probabilities set
per compartment every simulation step.

Other work on stochastic P systems include the Dynamical
Probabilistic P Systems (DPP) of [19], the Probabilistic
Rewriting P systems (PRP) of [11], and the P systems with
Multi-compartmental Gillespie algorithm evolution of [18].
DPP systems, as its name implies, uses dynamic probabilities
in random application of rules similar to the work of [14],
with a difference in using a random vector with a stochastic
constant. The Probabilistic Rewriting P systems (PRP) of
[11] which uses random vectors to select which rewriting rule
to apply. Interestingly, the P system variant of [18], which
implements a stochastic process similar to PRP, highlights
its probability assignment process. It performs a modified
stochastic simulation algorithm of [5], an extended Monte
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Carlo simulation that simulates molecular dynamics, to assign
its probabilities at rule-level.

It is important to note at this point that a key difference
between P systems and SN P systems is that SN P systems
uses only one membrane unlike P systems which can use
several membrane compartments. Further more since SN P
systems uses only a singleton alphabet to represent spikes,
approach (1) and (2) of [16] is therefore not applicable.

Stochastic SN P systems include the Stochastic SN P (SSN
P) Systems by [2], the Time-free SN P Hardware Implemen-
tation using Low-Pass and High-Pass neurons by [26], the
extended SN P system (ESNPS) within the optimization
SN P system (OSNPS) by [27], and the SNP Systems with
Stochastic Application of Rules (⋆SNP) by [8].

With the goal of creating time-free or asynchronous SN P
systems and inspired by the stochastic Petri nets approach,
SSN P systems replaced the original SN P system firing
delays with random variables and added random delays to
its forgetting rules as well. In effect, the activity of a SSN P
neurons is governed by a stochastic process in an a posteriori
sense. Another important aspect to note is that its stochastic
process is performed every computational step, which means
that the delay is dynamic every step. Unlike the previously
discussed delay-related stochastic processes, SSN P systems
uses both discrete and continuous random variables since the
domain of the random variable is not restricted. For example
the random delay can be a probability distribution or {0,1}.
This means that SSN P systems allow the outcomes to be
countable or otherwise

From the assumptions in [2] that SN P systems are natu-
rally time-free, a hardware implementation of SN P systems
using DRAM-based CMOS circuits was investigated in [26].
This implementation uses two basic types of neurons called
low-pass (LP) neurons which contains 𝑎→ 𝑎 and 𝑎≥2 → 𝜆 as
rules, and high-pass (HP) neurons which contains 𝑎→ 𝜆 and

𝑎≥2 → 𝑎 as rules. Instead of explicitly introducing a stochas-
tic process to SN P, the hardware implementation caused
a stochastic loss of spikes because with the the time-free
assumption, a spike may not reach a neuron at the designed
time. The work focused on handling the unreliability by in-
troducing an error model along with the implementation.
Unlike other approaches discussed in this section, the sto-
chastic loss of spikes is treated as an effect rather than an
intended incorporation to the SN P model. This means the
stochastic process is not defined in the model, which includes
the probability space and random variables. Nevertheless,
the stochastic parameters can still be observed such that
the random variables are whether the spike is lost or not;
which makes it a discrete random variable. Lastly, this work
highlights the importance of maintaining reliability when
introducing stochastic processes.

ESNPS has a rather specific but straightforward configu-
ration. Its neurons only contain one firing rule of form 𝑎→ 𝑎
and one forgetting rule of form 𝑎 → 𝜆. These rules do not
follow the specifications of firing and forgetting rules in the
original SN P system model and having the same regular

expression 𝑎 on both firing and forgetting rule entails nonde-
terministic selection between the two rules. To prevent this,
each rule is applied depending on a random vector of two dis-
crete random variables with a shared probability space. The
probabilities are dynamically adjusted during computation
using a guider component in the OSNPS. With the modified
form of rules in ESNPS, its nondeterministic behaviour be-
comes different from the original SN P system. As of writing,
no work has been found on validating if the ESNPS approach
is backwards compatible to SN P systems. Neither has been
a study on proving whether including forgetting rules in the
nondeterministic selection of applicable SN P rules is trivial
or otherwise.

The ⋆SN P system is designed in consideration of all the
models previously discussed. The objective was to introduce
a stochastic process a priori to the application of SN P rules,
which corresponds to probabilities being incorporated at
rule level. There are two cases of stochastic rule application:
given a number of spikes applicable to at least one neuron
cases involve (1) if there is only one rule applicable, or (2)
there are multiple rules applicable. In the second case, the
rule applied among the several applicable rules depend on
the probabilities assigned to the rule at that step. On both
cases if the sum of the probabilities of all applicable rules
is < 1, then there is a probability for no rule to be applied
on that step, regardless of a neuron having an applicable
rule. This corresponds to the neuron being idle in a given
computational step. Furthermore since the neuron is not in
a refractory period, it can still receive spikes on that step.

The approach of ⋆SN P differs to SSN P as the stochastic
rule application delay is an a posteriori approach in introduc-
ing probabilities to rule application. However, both models
can be combined for a variant that have both stochastic rule
application and stochastic rule application delays. further-
more, ⋆SN P can still exhibit a refractory period where it
cannot receive spike when a rule is applied unlike SSN P
where despite having a delay, the neuron can still receive
spikes.

On the other hand, both ⋆SN P and ESNP have rule-level
probabilities. However, both models have different probability
spaces. ESNP only reserves its probability space for its rules
such that the sum of the probabilities for the rules must be
1. This means there is no probability for an ESNP neuron
no have no applied neuron at any step of the computation,
which differs to ⋆SN P.

4 FINAL REMARKS

This work investigated various stochastic computing models
on how their stochastic process was introduced.

The models included in the survey mostly involves a sto-
chastic selection among a set of choices such as rules or
transitions. Thus the survey is limited to insights of other
applications for stochastic processes that can improve deter-
ministic models. This study recommends that in future work,
other stochastic models that is not dealing with a selection
process be investigated as well on how probabilities can be
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incorporated for uses other than selection. A model in this
survey like the SSN P system with its stochastic delays is an
example of this, but nevertheless the number of non stochas-
tic selection models is few. This recommendation also leads
to exploring continuous random variables as the surveyed
work in this study is mostly discrete, which correlates to the
nature of stochastic selection.

This study also recommends exploring more schemes or
functions of dynamic probability assignment. Similar to the
stochastic automata with random environment, DPP sys-
tem, and ESNP system, applications to stochastic computing
models comes with dynamic probabilities. Exploring more
incorporations of the Gillespie algorithm to computing is also
recommended.

This study is limited to understanding the approach made
of introducing stochastic process to computing models and
as such, investigations on reliability is recommended. Since
probabilistic approaches corresponds to a probability of error,
future work on reliability is of immediate concern. Other
stochastic parameters such as probability distribution is also
worth investigating as it is connected to reliability as well such
that setting a certain probability distribution can mitigate
probabilities of error.

Immediate future work of this study focuses on SN P
systems and more specifically the ⋆SN P system along with
the questions and recommendations discussed in [8].
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