
Periodic Dynamical Behavior in SN P Systems and the
Presence of Cycles in their Graph Representation

Gyenn Neil Ibo*

Henry N. Adorna
gvibo@up.edu.ph,ha@dcs.upd.edu.ph

Department of Computer Science (Algortihms & Complexity)
University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines

ABSTRACT
In this paper, we explored how the topology of a genera-
tive Spiking Neural P system (SN P system) relates with
its dynamic behavior. Specifically, we proved our claim that
periodicity in an SN P system implies presence of cycles in
the graph representing the system (where neurons are rep-
resented as nodes and synapses are rpresented as directed
edges). Moreover, we extend the notion of periodicity from
deterministic , one-rule-per-neuron generative SN P systems
to the non-deterministic, multi-rules-per-neuron generative
SN P systems. We also emphasize the importance of periodic-
ity in generative SN P systems, and proved that a generative
SN P system can generate an infinite number of outputs if
and only if it is periodic.

KEYWORDS
Membrane Computing, Spiking Neural P Systems, Periodicity,
Dynamical Aspects of P Systems, Cycles in Graphs

1 INTRODUCTION
Spiking Neural P Systems were introduced in [3] as a par-
ticular type of P Systems that abstracts and applies ideas
from neurobiology. This system consists of monomembranar
cells, with the synaptic connections in between them serving
as media for transporting an object called a spike. Despite
several restrictive characteristics of these systems, they have
been found to be Turing complete [3].

Among the many peculiarities of SN P Systems, the idea of
encoding information as time duration is the most distinctive.
These systems are designed such that their computations rely
heavily on the amount of time elapsed between particular
events, and their output is likewise represented as such. This
idea is derived from the fact that most of the neural impulses
are almost identical, electrical signals of a given voltage [3].
Information, thus, is not encoded in the strength of these
signals, but in the frequency and the time of their occurrence.

In recent years, quite a number of topics have been raised
[3] and studied in this relatively young field. In [4], for in-
stance, the already formal SN P Systems is further formalized
and abstracted. The result of this particular study is an al-
gebraic representation of the concepts in SN P Systems: the
configuration of a system, the set of rules that can be applied,
and the amount of spikes gained and lost by neurons are
*corresponding author: ha@dcs.upd.edu.ph.

represented as vectors, the structure and relation of the rules
to the neurons is represented as a matrix, and the event of a
computation, or the application of the rules, is represented
by multiplying a vector with a matrix. Aside from the fact
that it simplifies the programmer’s job of coding a program
simulating SN P Systems, what is more admirable from a the-
oretical viewpoint is that it presents an elegant representation
of a rather complex system. In [2] the foundations laid in [4]
were used to explore a particular dynamical aspect of SN P
Systems − periodicity. Dynamical studies and investigations
on periodicity have already been conducted in other types of
P Systems [1].

In this paper, we took note of the importance of the study
of periodicity in SN P systems in [2], and we explored how a
generative SN P system’s topology relates with its dynamical
behavior.

In the next section, we present the formal definition of
SN P Systems. In Section 3, we recall the concepts and
ideas presented in [2]. In Section 4, we proved our claim
that periodicity in an SN P system implies presence of cycles
in the graph representing the system (where neurons are
represented as nodes, and synapses are represented as directed
edges). Moreover, in Section 5, we extend the notion of
periodicity from deterministic, one-rule-per-neuron generative
SN P systems to the nondeterministic, multiple-rules-per-
neuron generative SN P systems. We also emphasize the
importance of periodicity in generative SN P systems, and
proved that a generative SN P system can generate an infinite
number of outputs if and only if it is periodic. We end with
the final remarks in Section 6.

2 PRELIMINARIES
We present here the formal definition of SN P Systems without
delay, which is a restricted variant, as adapted from [4].

Definition 1. (SN P Systems without delay)
An SN P System without delay, of degree m m ≥ 1,

is construct of the form
Π = (O , 𝜎1, . . . , 𝜎m , syn, in, out),

where:
(1) O = {a} is the singleton alphabet (a is referred to as

the spike);
(2) 𝜎1, . . . , 𝜎m are neurons of the form

𝜎i = (ni ,Ri), 1 ≤ i ≤ m,

38



Gyenn Neil Ibo and Henry N. Adorna

where:
(a) ni ≥ 0 is the initial number of spikes in 𝜎i ;
(b) Ri is a finite set of rules of the following two forms:

(i) E/ac → ap , where E is a regular expression over
{a}, and c ≥ 1, p ≥ 1, with the restriction c ≥ p;

(ii) as → 𝜆 for s ≥ 1, with the restriction that for each
rule E/as → ap of type (1) from Ri , a

s ̸∈ L(E);
(3) syn = {(i , j ) | 1 ≤ i , j ≤ m, i ̸= j} (synapses between

neurons);
(4) in, out ∈ {1, 2, . . . ,m} indicate the input and output

neurons, respectively.

The rules of type (1) can be applied if the neuron 𝜎i

contains k spikes, and ak ∈ L(E), k ≥ c. Applying this type
of rule consumes c spikes from neuron 𝜎i and sends p spikes
to all neurons to which it has an outgoing synapse.

The type (2) rules (also known as forgetting rules) can be
applied if neuron 𝜎i contains exactly s spikes; this removes
all the spikes in the neuron.

During each time unit, if a neuron 𝜎i can apply one of its
rules, then a rule from Ri has to be applied. Note that it is
possible that two or more rules in Ri can be validly applied
at a particular time unit, in which case only one of them is
nondeterministically chosen and applied.

This means that the rules are applied in a sequential
manner in each neuron, at most one at a time, whereas several
neurons can fire simultaneously, functioning in parallel.

The number of spikes in each neuron represents the con-
figuration of the system during that time-step. For each
configuration, a particular set of rules, according to the crite-
ria described above, can be applied. This produces a sequence
of configurations, which is called a computation of the system.
This computation halts if it reaches a configuration where no
rule can be applied. The number of steps elapsed between the
first two spikes of the designated output neuron is considered
as the output of the system.

What we just presented above is a formal definition of an
SN P system. More often than not, however, an SN P system
is presented in its graphical form. An example of a graph
representation of an SN P system is shown in Figure 1. In
the figure, neurons are represented as box-like figures, and
synapses are represented as arrows − directed lines with an
origin and destination neuron. This figure can be seen as a
directed graph, where neurons are the nodes, and synapses
are directed edges.

3 MATRIX REPRESENTATION OF SN
P SYSTEMS

We recall here the matrix representation of SN P systems
introduced in [4]. We refer the reader to the said paper for
further details.

Definition 2. (Configuration Vectors)
Let Π be an SN P system with m neurons, the vector

C0 = (n1,n2, . . . ,nm) is called the initial configuration
vector of Π, where ni is the amount of initial spikes present
in neuron si , i = 1,2,. . . ,m before the computation starts.

Figure 1: An SN P system generating all even natu-
ral numbers, from [3].

For any k ∈ N , the vector Ck = (n1
(k), n2

(k),. . . , nm
(k))

is called the kth configuration vector of the system, where
ni

(k) is the amount of spikes in neuron si , i = 1,2,. . . ,m after
the kth step in the computation.

Definition 3. (Spiking Vectors)
Let Π be an SN P system with m neurons and n rules.

Assume a total order d : 1,. . . ,n is given for all the n rules,
so the rules can be referred as r1,. . . ,rn , and E1,. . . ,En the
corresponding regular expressions defined in Definition 2-1. A
spiking vector s(k) is defined as s(k)= (r1(k), r2(k),. . . , rn (k)).
The computation of s(k) is as follows: ri (k) is given as 1, if
the regular expression Ei (defined in Definition 2-1) of the
rule ri is satisfied and the rule ri is chosen and applied, and
0 otherwise.

The spiking transition matrix in the following definition
will represent the amount of spikes consumed (or received)
by each neuron in every application of each rule.

Definition 4. (Spiking Transition Matrix)
Let Π be an SN P system with m neurons and n rules,

and d : 1, . . . ,n be a total order for all the n rules. The
spiking transiton matrix MΠ of the system Π is defined as
follows:

MΠ = [aij ]nxm,

where aij is equal to the following:
= -c, if rule ri is in neuron sj and it is applied consuming c
spikes;
= p, if rule ri is in neuron ss (s ̸=j and (s, j) ∈ syn) and it
is applied producing p spikes;
= 0, rule ri is in neuron ss (s ̸=j and (s, j) /∈ syn).

39



Periodic Dynamical Behavior in SN P Systems

The idea of a transition net gain vector is also defined in
order to algebraically represent the computations in an SN
P System.

Definition 5. (Transition Net Gain Vector)
Let ? be an SN P system with m neurons and n rules, and

Ck = (n1
(k), n2

(k),. . . , nm
(k)) be the kth configuration vector

of Π. The transition net gain vector at step k is defined as:

NG(k) = Ck+1 - Ck (1)
Note that the transition net gain vector NG(k) can also be

derived as the product between the spiking vector s(k) and
the spiking transition matrix MΠ, as stated in Lemma 3.1 in
[4].. That is,

NG(k) = s(k) ·MΠ (2)

4 PERIODICITY AND CYCLES IN
DETERMINISTIC SN P SYSTEMS

In this section, we prove that periodicity in a deterministic,
one-rule-per-neuron SN P system implies a presence of at
least one cycle in the graph representation of the SN P
system. We likewise recall the definition of periodicity in SN
P systems as presented in [2]. Note also that when we say
that a neuron fires or spikes, we mean that it applies one of
its rules, which is a fairly common terminology used in SN P
systems literature.

Definition 6. (Computation Sequence of an SN P
System)

Let Π be an SN P System with m neurons and m rules,
C0 = (n

(0)
1 ,n

(0)
2 , . . . ,n

(0)
m ) be the initial configuration vector,

s(0) = (r
(0)
1 , r

(0)
2 , . . . , r

(0)
m ) be the initial spiking vector, and

MΠ be the spiking transition matrix of Π. The computation
sequence of Π is a sequence COMPseq consists of configura-
tions starting with C0, with the proceeding elements obtained
recursively by the formula,

Ck = C(k−1) + s(k−1) ·MΠ (3)
Definition 7. (Periodic SN P System)
Let Π be an SN P System withm neurons rules, and

COMPseq be the computation sequence of Π. The system Π
is periodic if and only if there exist configurations Ck and
Cp in COMPseq , k ̸= p, and Ck = Cp . That is, an SN P Sys-
tem is periodic (or ultimately periodic) if and only if a
particular configuration is repeated in the sequence COMPseq .

Take note that Π has exactly one rule per neuron (m
rules and m neurons). This makes it a deterministic sys-
tem, since in every configuration there is no ambiguity of
which rule to be chosen to apply in any neuron. In any de-
terministic system, from any given configuration Ck ,, there
is only possible configuration C(k+1) to which the system
transitions. Thus, if the k th element Ck in the computation
sequence COMPseq is later repeated in the pth element Cp ,
then the subsequence (C(k+1),C(k+2), . . . ,C(p−1)) that im-
mediately follows Ck and immediately precedes Cp will also

be the same subsequence (C(p+1),C(p+2), . . . ,C(s−1)), that
immediately follows Cp and immediately precedes Cs , where
s = p + (p − k), and Cs = Cp = Ck . Likewise, the same
subsequence will also immediately follow Cs , and so on. This
forms a periodic sequence, where the period is (p − k). More-
over, given that a system Π is periodic, then it implies that
at least one configuration Ck during a particular time step k
must be repeated at some other time-step p.

Definition 8. (Active Neuron)
A neuron that fires one of its rules at any point in the

entire computation sequence of an SN P system is an active
neuron.

Note that in most cases, all the neurons of an SN P system
are active neurons. We just explicitly define this here for
clarity of our discussions later on in this paper, to emphasize
the fact that a neuron fires at some point of the system’s
computation.

Observation 1. If a neuron fires (i.e., applies one of its
firing rules), then it decreases its number of spikes.

Firing rules are of the form E/ac → ap , as presented
in Section 2. Applying this rule means that c spikes are
consumed from the neuron, thus decreasing its number of
spikes. This further means that the number of spikes in a
neuron can independently decrease, regardless of the events
in other neurons.

Observation 2. A neuron can not independently increase
the number of spikes it contains.

Rules in an SN P system are only either of the two forms:
(1) E/ac → ap , or (2) E/ac → 𝜆, which are called firing and
forgetting rules, respectively. Application of either of these
rules, as stated in Observation 1, decreases its number of
spikes. There is no such rule in standard SN P systems where
a spike is increased within the neuron itself.

Observation 3. An increase in the number of spikes in a
neuron, say neuron i , happens if and only if another neuron,
say neuron j , fires, applying a rule of the form E/ac → ap ,
where p > 0, and a synapse from neuron j directed towards
neuron i exists, that is, a synapse (j , i) ∈ syn, where syn is
the set of all synapses in the system.

Observation 4. In a periodic SN P system, the number
of spikes of each of its constituent neurons is also periodic.

Observation 4 is evident by recalling that periodicity in an
SN P system implies that the sequence of configurations in its
Computation Sequence is periodic, and that the configuration
is defined as a vector that is consists of the number of spikes
in each neuron.

Lemma 1. In a periodic SN P system, for all Active Neu-
rons, there must exist another Active Neuron that has a
synapse towards it. That is, for every Active Neuron ni , there
must exist another Active Neuron nj , such that i ̸= j , and
(j , i) is an element of the set of synapses.

40



Gyenn Neil Ibo and Henry N. Adorna

Proof. A neuron, say neuron ni , being an active neuron
implies that it must fire at some point in the computation
of the system. If a neuron fires, then by Observation 1, its
number of spikes must decrease. Given that the SN P system
is periodic, then by Observation 4, the number of spikes
contained in each of its neurons must also be periodic. But
since the number of spikes in the active neurons decrease
whenever they apply their firing rules, at some point after
firing, there must be some spikes being added to the active
neuron for it to be periodic. And by Observations 2 and 3,
the only way that spikes are added into a neuron is that some
other neuron also fires (an active neuron), say neuron nj , and
that it has a synapse towards neuron ni . □

Theorem 1. If a finite SN P system is periodic (and at
least one of its neurons is an active neuron), then there must
exist at least one cycle in the graph representation of the SN
P system.

Proof. By Lemma 1, for every active neuron ni, there
must exist another active neuron nj (not necessarily unique),
such that i ̸= j , and nj has a synapse towards ni (i.e.,
(i , j ) ∈ syn, the set of synapses of the system). But since every
nj is also an active neuron, for every nj there must also exist
another active neuron nk (not necessarily unique), such that
j ̸= k , and nk has a synapse towards nj (i.e., (k , j ) ∈ syn).
This leads to a domino effect, wherein every Active Neuron
requires an existence of another, not necessarily unique, active
neuron. This domino effect could be consummated in a system
with a finite number of neurons only if there exists at least
one cyclic path of synapses between active neurons. □

5 PERIODICITY IN
NONDETERMINISTIC SN P
SYSTEMS

Here, we extend the notion of periodicity introduced in [2] to
nondeterministic, multiple-rules-per-neuron SN P systems.

Definition 9. (Output Configuration)
A configuration during which the output neuron spikes. The

output of this computation is computed as the time difference
between this instance and the time at which the output neuron
spiked for the first time. Note that there could be several
Output Configurations within a single SN P system (although
the output neuron is strictly only one), and the set of these
output configurations is a subset of all the configurations in
the system’s computation tree.

Definition 10. (Computation Graph of a Nonde-
terministic SN P System)

The Computation Graph of a nondeterministic SN P sys-
tem is a directed graph where the configurations are repre-
sented as nodes, and the transitions from a configuration to
another is represented as directed edges. Figure 2 shows the
Computation Graph of the SN P system in Figure 1.

The nodes of the graph shown in Figure 2 represent the
configurations of the SN P system; inside them are the config-
uration vectors (described in Section 2). The directed edges

Figure 2: Computation Graph of the SN P system
shown in Figure 1.

represent the transitions between configurations. Configura-
tion (1, 1, 1, 1, 0, 0, 2), labeled O .C . in its upper-right area, is
an Output Configuration.

Definition 11. (Generative Computation Path).
A Generative Computation Path is a path in the Compu-

tation Graph of an SN P system that starts from the initial
configuration and ends at the Output Configuration.

Definition 12. (Periodic Nondeterministic Gener-
ative SN P System).

A Periodic Nondeterministic Generative SN P system is a
system whose Computation Graph includes at least one cycle.

Definition 13. (O .C .-Periodic Nondeterministic Gen-
erative SN P System).

An O .C .- Periodic Nondeterministic Generative SN P sys-
tem is a Periodic Nondeterministic Generative SN P system
where there exists at least one path from any configuration
node (that is part of at least one cycle in its Computation
Graph) to an Output Configuration.

Theorem 2. A finite nondeterministic generative SN P
system (whose number of spikes is bounded) generates an in-
finite number of outputs if and only if it is an O .C .- Periodic
Nondeterministic Generative SN P system.

Proof. Since the system has only a finite number of neu-
rons and bounded number of spikes, then it can only be in
a finite number of possible configurations. A finite number
of configurations implies a finite number of nodes in the
system’s Computation Graph. Moreover, every output gen-
erated by the system uniquely corresponds to a Generative
Computation Path within the Computation Graph. Thus,
there could be an infinite number of Generative Computation
Paths within a Computation Graph with finite number of
nodes if and only if there are cycles that lead to an Output
Configuration. □

41



Periodic Dynamical Behavior in SN P Systems

6 FINAL REMARKS
In this paper, we explored how a computing model’s (specifi-
cally, SN P system) topology relates to its dynamical behavior.
Since time is a crucial component in the computation process
in SN P systems, then it is paramount that its dynamical
behavior across time be studied. Moreover, we have proven
that periodicity is an integral behavior of SN P systems for
them to be able to generate an infinite number of outputs. We
believe that topological connections play an important role in
network-like systems such as SN P systems, Artificial Neural
Networks, and the like, and thus it is the aim of our future
endeavors to investigate further on more specific relations
between topological properties and computing capabilities of
such computing models.

ACKNOWLEDGMENTS.
The authors wish to acknowledge the support of the ERDT
program of DOST-SEI, and express appreciation towards the
Algorithms and Complexity Laboratory. They likewise are
thankful for the encouragement, discussions and insights of
their colleagues in the said laboratory.

REFERENCES
[1] F. Bernardini and V. Manca. 2003. Dynamical Aspects of P Systems.

Biosystems Vol. 70 (2003), 82–93. Issue Issue 2.
[2] G.N. Ibo and H. Adorna. [n.d.]. Periodicity as a Dynamical Aspect

of Generative Spiking Neural P Systems. In 12th International
Conference on Membrane Computing.

[3] M. Ionescu, Gh. PÄČun, and T. Yokomori. [n.d.]. Spiking Neural
P Systems. Journal Fundamenta Informaticae Vol. 71 ([n. d.]).
Issue Issue 2,3.

[4] X. Zeng, H. Adorna, M.A. Martinez-del Amor, L. Pan, and M.
PÃľrez-JimÃľnez. [n.d.]. Matrix Representation of SN P Systems..
In 11th International Conference on Membrane Computing.

42


	PCJ-PSystem-2019_Vol14No2

