
A Heuristic Spline Interpolation Method on Signal
Denoising

Therese Anne G. Basco-Uy
Department of Physical Sciences and

Mathematics
University of the Philippines-Manila

theresebasco@gmail.com

Marrick C. Neri
Institute of Mathematics

University of the Philippines-Diliman
mcneri@up.edu.ph

ABSTRACT
In this paper, we apply in a discrete setting a modification
of the Spline Contact Problem (SCP) and the Taut-String
Algorithm (TSA) found in (G. Steidl 2006), utilizing cubic
splines linked with a heuristic step. This process aims to
keep the splines within the tube region centered at the an-
tiderivative of the observed signal data with radius equal to
the regularization parameter λ. The resulting spline serves
as the antiderivative of a solution to a minimization problem
with quadratic data term and a total variation (TV) regu-
larization term. The heuristic spline method proposed aims
to improve recovery of corners and reduce the staircasing
effect in the solution compared to that obtained when TSA
is applied.

Keywords: Signal denoising, variation model, splines, heuris-
tic method

1. INTRODUCTION
In this paper, we consider an observed signal represented by
a function f : E → R, with E ⊂ R. We are interested in
obtaining a solution u that is m-times continuously differen-
tiable that will minimize a discrete version of the following
functional:

1

2

∫
E

(u(x)− f(x))2 + λ|∇u(m)(x)| dx. (1)

The first term is referred to as the data fidelity term which
promotes the closeness of the solution u to the observed data
f . The second term, commonly referred to as the penalty
term, represents the total variation of u which contributes
to the preservation of the edges and smoothing of flat zones,
i.e, with constant values, in the data. The constant λ > 0
controls the influence of the second term in the solution,
while m is the order of differentiation. This is a general
version of the classical model proposed by Rudin, Osher,
and Fatemi in [10] called the ROF model and is widely used
for its applications in digital image processing.

In this paper, all computations are done in a discrete set-
ting which is ideal for tools and operations used in digital
signal and image processing. We focus our attention to the
following discretized version of (1):

M(u) =
1

2
‖f − u‖22 + λ ‖J(u)‖1 , (2)

where u and f are n×1 vectors and J(u) is a discrete version
of the derivative of u.

To recover the true signal in a noise-contaminated obser-
vation, the most commonly used methods are based on the
least squares concept which mainly depends on the L2 norm.
TV norms in image restoration models are typically L1 or
L2 norms of derivatives, which aid in the recovery of edges or
boundaries in images. Solution methods involving L2 norms
can be derived as closed-form expressions where the result
is linear in form. They are easier to compute compared to
the L1 estimation which is non-linear and computationally
complex [10].

Another popular approach in image denoising is by the use
of a wavelet transform with a thresholding technique [13].
A similar technique was earlier applied to reduce noise of
speech signals in [14] and was used to denoise ECG signals
in [15]. Machine learning techniques such as neural networks
have also been applied to signal denoising; see for instance
[16] and [17].

It was shown in [5] that some methods for denoising discrete
one-dimensional discontinuous data using model (2) with
first-order TV term select reconstructions within a tube-like
region. These methods are referred to as tube methods.
The concept of tube methods were developed based on a
constrained minimization problem formulation focused on
an antiderivative F of the given data f . For all components
of F , the boundaries F + λ and F − λ are constructed en-
closing the tube region T . The minimizer u then has the
property that its antiderivative U is contained in T .

In [11], a general version of (2) was formulated as a tube
problem called the Spline Contact Problem (SCP). In Sec-
tion 3, it is shown that the minimization problem

1

2
‖f − u‖22 + λ ‖Dn,mu‖1 ,

where Dn,m is defined as in (3) below, is equivalent to an
SCP satisfying boundary, tube, and contact conditions. For
m = 1, the discrete antiderivative of the unique solution can
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be obtained using TSA resulting in a piecewise-linear curve
contained within a tube of radius λ, centered at F , and
interpolating boundary and contact points. The derivative
of the taut-string output is a piecewise constant function.
This will reflect in the recovery process as staircasing in the
reconstruction u, possibly flattening peaks in the original
signal.

The taut-string solution can be viewed as a linear spline
complying with the SCP conditions. Splines are significantly
useful in problems involving interpolation and approxima-
tion. In [1], cubic spline regression was used to study the
relationship between solar radiation and sunlight duration.
In [2], spline interpolation techniques were applied in the
field of power systems. It was used to compute heat transfer
in [3]. Because of its customized property, splines are ideal
tools for minimization problems requiring a certain level of
smoothness. We use cubic splines to replace the linear spline
solution U obtained from the taut-string method to offer a
smoother, if not optimal, alternative solution in the one and
two dimensional cases. The boundary points and contact
points with the tube based on the TSA are maintained to
initialize interpolation using cubic splines. This however re-
sults to parts of the spline which may escape the tube. In
Section 5 we discuss the inclusion of a heuristic step that
reinserts the spline inside the tube by adding additional
points inside the tube to be reinterpolated.

2. DISCRETE SPLINES
We are interested in a piecewise continuous function that
is smooth everywhere, even at its points of connectivity. A
spline function is such a function, defined as follows [6, 7]:

Definition 2.1. Let D = {(xi, yi) |1 ≤ i ≤ m} be a set of
m points in R2 such that xi < xi+1, for all i = 1, . . . ,m− 1.
A spline

s(x) =

m−1∑
i=1

pi (x)χ[xi,xi+1] (x)

is an nth- degree function of class Cn−1 [8] that passes through
the set of knots D

where pi(x) =

n∑
k=0

ak,ix
k and χE(x) =

{
1 if x ∈ E
0 otherwise

.

The coefficients ak,i are chosen such that

• s(x) interpolates all points (xi, yi), i.e., s(xi) = yi, for
all i = 1, . . . ,m and

• adjacent sub-functions pi(x) and pi+1(x) and their re-
spective derivatives are continuous at their common
point (xi+1, yi+1), for all i = 1, . . . ,m− 2.

2.1 Cubic Splines
By definition 2.1, a cubic spline through D is a C2 function
s(x) where

pi(x) = aix
3 + bix

2 + cix+ di

for each i = 1, . . . ,m− 1.

Since s(k) is continuous for each k = 0, 1, then

lim
x→xi

+
s(x) = pi(xi) = aix

3
i + bix

2
i + cixi + di = yi, and

lim
x→xi+1

−
s(x) = pi(xi+1) = aix

3
i+1+bix

2
i+1+cixi+1+di = yi+1,

for all i = 1, . . . ,m− 1.

Moreover,

lim
x→xi+1

−
s(k)(x) = p

(k)
i (xi+1) = p

(k)
i+1(xi+1) = lim

x→xi+1
+
s(k)(x).

For k = 1, 2, we have

3aix
2
i+1 + 2bixi+1 + ci = 3ai+1x

2
i+1 + 2bi+1xi+1 + ci+1

6aixi+1 + 2bi = 6ai+1xi+1 + 2bi+1

for all i = 1, . . . ,m− 1.

We include the following boundary conditions

lim
x→x1

+
s′′(x) = 0 and lim

x→xm
−
s′′(x) = 0

resulting in a natural cubic spline. Other conditions can be
used such as

lim
x→x1

+
s′′(x) = lim

x→x2

s′′(x)

and

lim
x→xm−1

s′′(x) = lim
x→xm

−
s′′(x)

which produces a parabolic run-out spline forcing the ends
of the interval to behave like a parabola.

The above continuity properties are applied on s(x) and are
summarized in the matrix form Qa = y where Q = [A B]
with appropriately sized matrices

A =



x3
1 x2

1 x1 1 0 · · · · · · · · · · · ·
x3
2 x2

2 x2 1 0 · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · · · · · ·

6x1 2 0 · · · · · · · · · · · · · · · · · ·
0 0 0 0 x3

2 x2
2 x2 1 0

0 0 0 0 x3
3 x2

3 x3 1 0
−3x2

2 −2x2 −1 0 3x2
2 2x2 1 0 0

−6x2 −2 0 0 6x2 2 0 0 0

0 · · · · · · · · · · · ·
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

0 · · · · · · · · · · · · · · · · · · 0
. . .



,

B =



0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · 6xm 2 0 0
0 · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · · · · · · · 0

.
.
.

.

.

.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
. 0

.
.
. 0 0 0 x3

m−1 x2
m−1 xm−1 1

.
.
. 0 0 0 x3

m x2
m xm 1

−3x2
m−1 −2xm−1 −1 0 3x2

m−1 2xm−1 1 0

−6xm−1 −2 0 0 6xm−1 2 0 0



,
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a =



a1
b1
c1
d1
a2
b2
c2
d2

.

.

.

.

.

.

.

.

.

.

.

.
am−1
bm−1
cm−1
dm−1



, and y =



y1
y2
0
0
y2
y3
0
0

.

.

.

.

.

.

.

.

.

.

.

.
ym−1
ym
0
0



.

Solving the above system will yield a column vector contain-
ing coefficients of a natural cubic spline interpolating the m
points in D.

Splines are commonly used in interpolation problems for
their customized approach of traversing a given set of points.
Because of their smooth nature, they are also ideal for prob-
lems requiring smooth derivatives.

In the antiderivative setting, we use natural cubic splines as
tools for interpolation of data points obtained from TSA.
Once the interpolation is finished, we get the derivative
of the resulting cubic spline which will return a smooth
parabolic curve.

3. SPLINE CONTACT PROBLEM
The details of the derivation of the Spline Contact Problem
and the Taut-String Algorithm in the following section are
taken from [11]. We apply the discretization of the penalty
term ‖J(u)‖1 using forward differences. The n × n matrix
Dn and its inverse An, when applied to an n × 1 vector f
will represent the dicrete versions of the first order derivative
and antiderivative of f , respectively:

Dn =


1 0 . . . 0 0

−1 1 . . . 0 0

.
.
.

.
.
.

0 0 . . . 1 0
0 0 . . . −1 1

, An =


1 0 . . . 0 0
1 1 . . . 0 0

.
.
.

.
.
.

1 1 . . . 1 0
1 1 . . . 1 1

.
The m times application of each of the above matrices yields
the m-fold differentiation and m-fold integration of f , de-
noted by Dm

n and Am
n , respectively.

Let 0n,m denote the n ×m matrix composed of zeros, and
In the n × n identity matrix. The discretization of J(u) in
(2) is defined as the matrix produced by pre-multiplying an
(n−m)-by-n augmented matrix to Dm

n :

Dn,m := (0n−m,m|In−m)Dm
n . (3)

The minimizaton problem (2) can now be restated as

1

2
‖f − u‖22 + λ ‖Dn,mu‖1 → min. (4)

The functional defined above is strictly convex and therefore
has a unique minimizer u which is n× 1.

We list in the proposition below the relations between Dm
n

and Dn,m which are crucial to the formulation of the SCP.

Proposition 3.1. The difference matrices satisfy the fol-
lowing properties:

1. D>n,m = (−1)mDm
n

(
In−m

0m,n−m

)
,

2. Dn,mD
m
n = Dn+m,2m

(
0m,n

In

)
,

3. Dn+m,m

(
0m,n

In

)
= Dm

n .

One of the results in [11] is that the problem of minimizing
(2) is equivalent to a spline interpolation problem where the
knots that define the spline are not known in advance but
depend on the input data f and λ. For m = 1, the resulting
SCP is well examined and can be solved by TSA [5].

To begin the formulation of the SCP, we first apply the con-
ditions for optimality. A necessary and sufficient condition
for u to be the minimizer of (2) is that the n× 1 zero vector
is an element of the functional’s subdifferential, i.e.,

0n,1 ∈ u− f + λ∂
(
‖Dn,mu‖1

)
. (5)

Note that the subgradient of |x| is given by

x

|x| :=

 1 if x > 0
−1 if x < 0

[−1, 1] if x = 0.

By Theorem 23.9 in [9], (5) can be written as

u = f − λD>n,m
Dn,mu

|Dn,mu|
(6)

only if Dn,mu 6= 0 and
Dn,mu

|Dn,mu| is performed component-

wise. The result of this component-wise division return val-
ues 1 or −1. However, if Dn,mu = 0, ∂

(
‖Dn,mu‖1

)
returns

a value between 1 and −1.

The present form (6) of the statement is not convenient for
the computation of the solution u. Multiplying both sides
with the discrete mth antiderivative matrix Am

n , we get

Am
n u = Am

n f − λAm
n D

>
n,m

Dn,mu

|Dn,mu|
.

Applying the forward difference matrix property in Propo-
sition 3.1.1 results to

Am
n u = Am

n f − (−1)mλ

(
In−m

0m,n−m

)
Dn,mu

|Dn,mu|
. (7)

Let K be an index set. We define FK = (Am
n f)K to be the

subvector of Am
n f with indices in K. We can write Am

n f and
Am

n u as

Am
n f =:

(
FI

FR

)
and Am

n u =:

(
UI

UR

)
, (8)
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where FI , UI ∈ Rn−m and the right boundary condition vec-
tors FR, UR ∈ Rm. This means that FI and UI takes in the
first n−m components of Amf and Amu, respectively, and
FR and UR takes in the remaining m components.

We can now rewrite (7) as

UI = FI − (−1)mλ
Dn,mu

|Dn,mu|
, and (9)

UR = FR. (10)

In (8), we can obtain f and u by premultiplying the mth

order forward-difference matrix Dm
n ,

f = Dm
n

(
FI

FR

)
and u = Dm

n

(
UI

UR

)
. (11)

PremultiplyingDn,m on (11) and using property (2) in Propo-
sition 3.1.1 of the previous section, we have

Dn,mu = Dn+m,2m

(
0m,n

In

)(
UI

UR

)
.

An artificial left boundary condition UL := 0m,1 is intro-

duced to replace the product

(
0m,n

In

)(
UI

UR

)
which re-

sults to

 0m,1

UI

UR

.

This extends our vector U to

U :=

 UL

UI

UR

 .

The inclusions in (10) can now be written as

UI = FI − (−1)mλ
Dn+m,2mU

|Dn+m,2mU |
, (12)

UR = FR. (13)

We summarize the above formulations as a problem solvable
by spline interpolation with the conditions specified in the
SCP below.

Spline Contact Problem

1. Boundary conditions: UL = FL = 0m,1 and UR = FR

2. Tube condition: ‖FI − UI‖∞ ≤ λ

3. Contact Condition:

• Lower Contact Condition:
If the ith component of (−1)mDn+m,2mU is pos-
itive, then

U(i) = F (i)− λ.

• Upper Contact Condition:
If the ith component of (−1)mDn+m,2mU is neg-
ative, then

U(i) = F (i) + λ.

where F :=

 FL

FI

FR

 and U :=

 UL

UI

UR

.

The boundary conditions initialize the first m components
of the vector U with zeroes and the last m components are
set with the last m corresponding components of vector F .
The description of the remaining unknown components of
U is summarized in the tube and contact conditions. The
tube condition describes that the distance of the UI compo-
nents cannot be more than λ units away from their partner
FI components. We can contain the possible locations of
the components of U as a tube-like region with a maximum
radius of λ. Figure 1 illustrates this region.

Figure 1. Tube boundaries enclosing possible locations or
values of U

4. TAUT-STRING ALGORITHM
When m = 1, the simplest case of the SCP defined in (4) is
equivalent to solving the Taut-String Algorithm. The solu-
tion to this algorithm is a linear spline representing a string
of minimal length contained within a tube.

Implementing this algorithm on a signal with n data points
is equivalent to solving the following minimization problem
with boundary conditions:

min

n∑
j=1

√
1 + (U (j + 1)− U (j))2.

The n×1 vector U appears to be a string that is taut inside
the tube centered on F . In the tube problem, we first con-
struct the graph of F to be the “center” of the tube. This is
done by premultiplying the discrete antiderivative matrix A
to the vector representing the observed signal f , i.e.,

F = Af.
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Next the boundaries of the tube are set by measuring λ units
above and below F . We set the boundary conditions of the
tube such that the endpoints have the same values as F . The
endpoints of the upper boundary of the tube are initialized
to the endpoint values of the lower boundary vector.

Starting with the leftmost point, the greatest convex mino-
rants of the upper bound and the smallest concave majorants
are computed left to right based on the existing point. The
point of intersection of these segments are included in the
roster of contact points. The last point added to the roster
will serve as the starting point of the next set of convex mi-
norants and concave majorants. This process is continued
until the last point of the tube is reached [4]. Figure 2(a)
displays these contact points.

The set of contact points obtained are connected by linear
splines. The resulting taut-string solution U (e.g., see Figure
2(b)) is now premultiplied with the discrete derivative ma-
trix D to obtain the solution u to the minimization problem
(4), i.e., u = DU.

(a)

(b)

Figure 2. (a) Contact points based on the TSA, (b) Solu-
tion using TSA

Since the taut-string solution vector U corresponds to a lin-
ear spline, its derivative counterpart u represents a piecewise-
constant curve. When simulated in a computational soft-
ware, endpoints with same x-values but different y-values

are connected together using vertical line segments. This
phenomenon, called “staircasing effect” appears as a series
of staircases repeatedly going up and down along the ob-
served signal.

It is harder to obtain a solution for the SCP when m > 1.
This is because of the implicit nature of the formulation and
the increasing computational requirements for higher values
of m.

Also, for a specific value of m the solution u is a spline of
degree m− 1 which shows staircasing effects for m = 1.

Figure 3 illustrates the effect of staircasing on a peicewise
signal.

Figure 3. Staircasing effect on the solution to a piecewise
signal with 500 data points

It is evident in this example that the staircasing greatly
affects corners in the original signal. The TSA tends to lose
the sharpness of the corners in its reconstruction.

5. A HEURISTIC STRATEGY
In this section we apply a similar version of (4), modifying its
penalty term by substituting the matrix Dn in place of the
forward-difference matrix Dn,m. We need the antiderivative
of the forward difference matrix in the tube formulation of
the problem. This substitution simplifies the algorithm for
the one-dimensional case by using the invertible square ma-
trix Dn as compared to Dn,m which is of size (n−m)-by-n.
Recall that our objective is to minimize the functional

1

2
‖f − u‖22 + λ ‖Dnu‖1 .

Following the necessary and sufficient condition for optimal-
ity,

0n,1 ∈ u− f + λ∂ ‖Dnu‖1 ,
which implies

u ∈ f − λD>n
Dnu

|Dnu|
.

Integrating in the discrete sense yields

A>n u ∈ A>n f − λA>nD>n
Dnu

|Dnu|
.
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Simplifying,

A>n u ∈ A>n f − λ
Dnu

|Dnu|
.

Using the splitting applied in (8), we get

U ∈ F − λ Dnu

|Dnu|
.

where U = A>n u and F = A>n f

In the previous section, the TSA provides a solution for the
problem stated above. In this paper, we replace the linear
spline with a cubic spline interpolating the same contact
points initially derived from TSA.

We use cubic splines because of its smoothness up to the
third degree. We need this property so that when we return
to obtaining the reconstruction u, by discretely differenti-
ating U , we obtain a smooth derivative based on the cubic
spline we used.

The method proposed in this paper starts out by imple-
menting TSA in the tube region based on f . After which we
implement the heuristic step which utilizes cubic splines to
obtain the solution. It begins with two inputs. Firstly, the
observed data f , which is a vector of length n. Secondly, the
value λ which is a nonzero constant that serves as radius of
the tube to be derived from f. The vector f is assumed to
contain a collection of function values at each node from 1
to n.

The antiderivative F is computed by premultiplying An to
f . We then obtain the lower and upper boundaries of the
tube Flow and Fupp, respectively. The lower boundary is
obtained by simply subtracting from F a λ-vector which is
a vector of the same length where are the components are all
λ. Similarly, we obtain the upper boundary by adding the
λ-vector to F . These steps are found in Algorithm 1 lines 3
and 4.

We then implement the Taut-String Algorithm to determine
a solution. We only note the nodes and function values of
the contact points of the resulting solution as c and fc as
seen in Algorithm 1 line 5.

The determination of knots or contact points for a cubic
spline with the boundaries of the tube is more computation-
ally complex compared to using TSA in determining the
contact points for a linear spline solution. Cubic splines
have the tendency to go outside of the tube, thus requiring
more information than linear splines.

We adapt the same contact points obtained from TSA and
use these points as knots for interpolation using cubic spline.
See, e.g., Figure 2(a). The function values of the interpo-
lating spline at every node from 1 to n is stored in vector
U (this step can be found in Algorithm 1 listed as line 6).
The clustering formed in figure (2) on the interval (60, 80) is
due to the steep decline before the interval and the following
incline after the interval.

Interpolating these points using cubic splines results to parts
of the spline which may escape the tube, i.e., points in the

spline that may be below the lower boundary of the tube,
or above the upper boundary of the tube.

This is expected since cubic splines do not necessarily as-
sign upper boundary contact points as maximum points of
the cubic curve. A similar observation applies to the lower
boundary of the tube.

Because of possible excursion of the spline outside the tube
(Figure 4(a)), we include a heuristic step in the algorithm
to keep the spline within the tube. This heuristic process is
enveloped in a while loop as indicated in Algorithm 1 from
line 7 to 14. Inside this loop, we verify per data point if the
cubic spline U has values that are outside the tube region. If
that is the case, the ”insert” subfunction is prompted. This
subfunction adds one or more knots to the list of points
to be interpolated by the cubic spline. These points are
obtained by first determining pairs of consecutive contact
points where the curve is outside the tube. Next, the mid-
dle of these pairs of contact points are reassigned values
equal to the corresponding value of F . The updated set
of nodes and function values which are stored as cnew and
fcnew, respectively, are then interpolated by a cubic spline
as indicated in line 10.

The process of inserting and reinterpolating is repeated un-
til, for a certain tolerance level (tol), all points on the spline
are in the tube. In the experiments performed, the tolerance
value used is 0.1. Figure 4(b) demonstrates the result of this
heuristic scheme. In figure 4(a), the cubic spline exits the
tube between the first two contact points and between the
third and fourth contact points. The heuristic step assigns
the midpoint of each pair of contact points with the value of
F at that location. Re-interpolating the contact points with
these additional points results in the cubic spline shown in
figure 4(b). The resulting cubic spline U is differentiated to
obtain the solution u.
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(a)

(b)

Figure 4. (a) Cubic spline interpolation of contact points,
(b) Cubic spline interpolation with heuristic step

In summary, we have the following algorithm:

Algorithm 1 One-dimensional Heuristic Spline Interpola-
tion Algorithm

1: function Algorithm1(λ, f)
2: n=length(f)
3: F = Af
4: Flow = F − λ ∗ 1n,1, Fupp = F + λ ∗ 1n,1

5: (c, fc) = TautString(Flow, Fupp)
6: U = cubicspline(c, fc)
7: while 1 6= 0 do
8: if U − Fupp > tol or Flow − U > tol then
9: [cnew, fcnew] = insert(c, fc, Fupp, Flow)

10: U = cubicspline(cnew, fcnew)
11: else
12: break
13: end if
14: end while
15: u = DU return u
16: end function

6. NUMERICAL EXAMPLES
In this section, we provide numerical results and images
to demonstrate the capabilities of our heuristic method in
terms of restoration efficiency.

We used Signal-to-Noise Ratio (SNR) and Root Mean Square
(RMS) to evaluate the effectiveness of the reconstruction us-
ing the heuristic method. In the following statistical mea-
surements, g is referred to as the column vector representing
the observed noisy signal. In the implementation of Algo-
rithm 1, u is the obtained solution [11].

The Signal-to-Noise Ratio, SNR = 10 log10

(
‖g‖22
‖g − u‖22

)
,

measures the ability of the reconstruction u to recover the
clean signal. The Euclidean norm is used to measure the
magnitude of both clean signal and removed noise. Obtain-
ing high values for SNR implies good performance in the
recovery.

The Root Mean Square, RMS =
∥∥∥g − u

n

∥∥∥
2
, of a vector is a

formula similar to the mean, measuring the central tendency
of the difference between the clean signal and the solution
u. Lower values of RMS correspond to better method per-
formance.

We included in the summary table for each pair of figures,
the value M(u) of the discretized ROF functional (2). An-
other shorter table is included for most of the simulations.
This shorter table contains the summary of the same statisti-
cal measures however it is applied only on the local extrema
values of the signal. The purpose of this additional table is
to ascertain which method is better at recovering the peaks
or corners of the signal.

The TSA Method and proposed Algorithm 1 was run using
MATLAB 2018a in a workstation with 1.8 GHz i5 processor
and 8GB RAM.

For the test example, we used four test signals: blocks,
bumps, heavisine, and doppler originally introduced in [12].

In the experiments performed, each of the four signals listed
above is evaluated at each integer from 1 to 2n where n is
taken to be 10 or 13. Figure 5 illustrates the four signals
each with 210 = 1024 data points. The signals are corrupted
with either 10% or 20% additive gaussian white noise before
implementing the denoising algorithms.

For simplicity, the value for λ is set to 0.1. Similar results
were observed when λ is changed to any other value in the
interval (0.05, 1). In general, when the value of λ approaches
0, the tube formed in the antiderivative setting becomes
smaller and in effect results in solutions which resemble the
original noisy image. When λ is increased, the initial contact
points will only include the boundary points and will give
indiscriminate results.

In Figure 6(a), the TSA reconstruction displays a better re-
construction than Algorithm 1 6(b) because both the blocks
signal and TSA solutions piecewice constant. Table 1 records
the different measures for comparison of the two methods.
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Figure 5. Blocks, Bumps, Heavisine, and Doppler signal
with 1024 data points

Note that the TSA outperforms the heuristic algorithm when
it comes to these measures.

(a)

(b)

Figure 6. Reconstructions on blocks signal with 1024
points and 10% noise level: (a) TSA, (b) Algorithm 1

M(u) SNR RMS time
TSA 10.74 12.23 0.1038 0.040786

Algo 1 15.58 10.75 0.1232 0.057308

Table 1: Summary of results for Taut-String Algorithm and
Algorithm 1 with 1024 data points and 10% noise level ap-
plied on the blocks signal

In Figure 7(a), the TSA reconstruction displays staircasing
in its reconstruction and it struggles to recover the original
signal at the sharp corners. On the other hand, the recon-
struction using Algorithm 1 shows better recovery of sharp
corners of the original signal.

Table 2 lists the different measures on the methods. As in
the earlier case, the same observation is made, i.e., the values
returned by TSA is better by a small margin.

If we obtain the measurements solely at the local extremum
to determine the effectivity of each method in recovering
corners of the signal we have the following summary:

Table 3 shows favorable results for Algorithm 1 in all mea-
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(a)

(b)

Figure 7. Reconstructions on bumps signal with 1024
points and 10% noise level: (a) TSA, (b) Algorithm 1

M(u) SNR RMS time
TSA 14.97 9.742 0.1144 0.045359

Algo 1 16.96 9.624 0.116 0.072919

Table 2: Summary of results for Taut-String Algorithm and
Algorithm 1 with 1024 data points and 10% noise level ap-
plied on the bumps signal

M(u) SNR RMS
TSA 0.3214 11.67 0.1614

Algo 1 0.3072 12.73 0.1427

Table 3: Summary of results for Taut-String Algorithm and
Algorithm 1 with 1024 data points and 10% noise level ap-
plied on the bumps signal evaluated at local extremum val-
ues

sures which indicates that it is better at local extrema re-
covery than TSA.

Figure 8 shows the TSA and Algorithm 1 solutions for the
bumps signal when the number of data points is increased
to 8192.

(a)

(b)

Figure 8. Reconstructions on bumps signal with 8192
points and 10% noise level: (a) TSA, (b) Algorithm 1

Table 4 shows that Algorithm 1 outperforms TSA in terms
of SNR and RMS.

M(u) SNR RMS
TSA 0.01204 25.23 0.03387

Algo 1 0.01668 27.26 0.02681

Table 4: Summary of results for Taut-String Algorithm and
Algorithm 1 with 8192 data points and 10% noise level ap-
plied on the bumps signal evaluated at local extremum val-
ues

Figures 9 and 10 show the results for heavisine and doppler
signals with 20% noise and 8192 data points.

Tables 5 and 6 shows that Algorithm 1 also outperforms
TSA in terms of SNR and RMS for the heavisine and doppler
signals with 20 % noise.
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(a)

(b)

Figure 9. Reconstructions on bumps signal with 8192
points and 20% noise level: (a) TSA, (b) Algorithm 1

M(u) SNR RMS
TSA 0.1086 15.31 0.1007

Algo 1 0.1097 16.44 0.08842

Table 5: Summary of results for Taut-String Algorithm and
Algorithm 1 with 8192 data points and 20% noise level ap-
plied on the heavisine signal evaluated at local extremum
values

M(u) SNR RMS
TSA 0.2821 13.11 0.1188

Algo 1 0.3663 13.6 0.1122

Table 6: Summary of results for Taut-String Algorithm and
Algorithm 1 with 8192 data points and 20% noise level ap-
plied on the doppler signal evaluated at local extremum val-
ues

Similar results are observed for the Bumps signal with 20%
noise and Heavisine and Doppler signals with 10% noise.

7. CONCLUSIONS AND RECOMMENDA-
TIONS

The results obtained for a one-dimensional signal demon-
strate the capacity of the heuristic spline interpolation method

(a)

(b)

Figure 10. Reconstructions on bumps signal with 8192
points and 20% noise level: (a) TSA, (b) Algorithm 1

in denoising problems. Corners are better restored by the
method as compared with the Taut String Algorithm. The
drawback with the heuristic are overall measures (SNR and
RMS) it returns, although it exhibits good results if mea-
surements are restricted at local extrema.

A natural extension of this research is the application of the
heuristic method to reconstructing two-dimensional images.
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