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ABSTRACT
With the rise in popularity of applications about ride-sharing, food
delivery, courier service, and any subject that caters in fulfilling
the needs of an on-demand economy, access to spatial information
in real-time becomes an important aspect. To achieve this, spa-
tial databases are used to store and process location information
that are consumed by these applications. Normally, these databases
use relational modelling. This research proposes the use of hexag-
onal discrete global grid systems in graph databases in order to
improve upon existing spatial databases. In measuring the query
performance, a geofence surrounding Quezon City, Philippines
was created and various amenities within the area were extracted
then used as the dataset. Bounding box search queries were then
performed on this dataset. A working implementation of a graph-
powered spatial database with a hexagon discrete global grid system
called H3 was presented, and it was shown that this setup can pro-
duce lower query execution times at scale than those of relational
databases.
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1 INTRODUCTION
There has been an increased development in the service industry
that points it towards being an on-demand economy. These devel-
opments are mostly dependent on transportation, which means
applications must have instant and continuous access to location
data in order for them to choose optimal routes that consider cur-
rent traffic and total travel time without having prior knowledge
of the area. Because of this, there is an increased demand in spatial
database systems (SDS) that use the power of database management
systems (DBMS) in order to store large amounts of location data.
The challenging issue here is to efficiently perform standard DBMS
operations to these location data, as well as capture the geometric
processing that can be implemented on them.

Database indexing is a way of optimizing disk access in process-
ing queries. In SDS, this comes in the form of discrete global grid
systems (DGGS). DGGS is a series of regions that partitions the
Earth’s surface, where each region contains points that can be asso-
ciated to a location data. These regions can be further subdivided
to finer resolutions, giving a better representation of regions that
can be utilized for various applications.

Over time, DGGS was repurposed to being a data structure for
location data as it provides consistent storage and ease of reference
to the spatial data [8]. Uber’s H3 is one example of this case. H3
is a hierarchical geospatial indexing system that uses hexagonal
grids (which can be further subdivided to finer hexagonal grids)
and hierarchical subdivisions. [3] Uber has been using H3 as a data
structure for various events and processes that rely on its location
data.

As it stands, most SDS today were implemented on relational
DBMS, therefore they perform spatial operations that involve graph
theory under the constraints of being a relational model. With
this, a large amount of SDS data should enjoy the advantages of
being implemented on graph databases (GDB). GDB came about
from NoSQL databases which improved upon the limitations set by
having to use relations in order to define the connections of each
data. By having an actual graph structure to explicitly lay out the
dependencies between nodes of data, it can now perform semantic
queries on its nodes and edges and have proper data structure to
represent its properties.

In this study, the aim is to provide an alternative system for
existing relational and graph databases by leveraging a DGGS to
use as an indexing system in a graph database. Its performance
is then compared to existing relational and graph databases. The
research goes as follows: Section 2 provides information on the
different technologies that the research utilizes or is based of, Sec-
tion 3 gives an overview of the existing state of the art in terms of
the use of graph databases in SDS and implementing DGGS as an
indexing system, Section 4 presents the methodology on how the
performance of DGGS-powered graph databases is compared to
normal relational and graph databases, and Sections 5 and 6 discuss
the results of the experiment and summarize the conclusions drawn
from the analysis of the results.

2 BACKGROUND
There has been a rise in applications that require on-demand access
to spatial information. These applications rely on some technologies
that will be utilized for this research. In order to fully define the
scope of the experiments to be done, each of the base technologies
are discussed first in the following subsections.

2.1 Spatial Database Systems
A spatial database system (SDS) focuses on implementing DBMS to
handle spatial or geographic data. It offers additional functionality
over traditional databases to support spatial object types through
specialized queries in order to analyze, edit, and present the data
with ease. [5] SDS reveals deeper insight into location data, such
as patterns, relationships, and situations, all of which can help in
implementing applications to make smarter decisions.



SDS represents geographic data by its vector approach. It allows
the use of geometric objects such as points, lines, and polygons to
represent geographic data. This representation is more efficient as
it can already represent locations with the use of these features. But
in cases where there is a need to handle large amounts of location
data, SDS still suffers from the pitfalls of traditional databases.

2.2 Discrete Global Grid Systems
A discrete global grid (DGG) implements space partitioning to a
polyhedron (in this case, Earth), and uses these region partitions as
spatial data models [10]. These grids simplify position calculations
by providing an abstraction to the partitions of the Earth through
points which can be called a cell. Further improvement to this is
the introduction of resolutions which allows further partitioning of
these regions in a recursive pattern, turning into a series of discrete
global grids with progressively finer resolutions. This improvement
turns DGG into discrete global grid systems (DGGS).

One of the popular partitioning topology used for DGGS are
hexagons. Hexagonal grids have higher packing density, approx-
imate circular regions, and equal distance from other hexagon
neighbors. Kimerling et al. [7] stated that due its equal orienta-
tion, hexagon cells can be used for recursive partitioning of spheri-
cally rectangular quadrilaterals with desirable rotational invariance
present for any n-fold partitioning, an advantage when assembling
global datasets of partition at varying spatial resolutions.

Figure 1: Hexagon partitioning on a part of an icosahedron

As discussed in Section 1, Uber’s H3 is used as the DGGS in
this research as it provides a great variety of language bindings
for development [2]. At its current version, H3 delivers all basic
functionalities required by the Open Geospatial Consortium in their
standard data protocol for a technology to be considered a DGGS
[4].

H3 uses map projection and grid partitioning to create a global
grid system. It uses hexagon grids to give the system only one
distance between the centerpoint and its neighbours as seen in
Figure 2. It also has icosahedron partitions that, instead of being
unfolded to produce two-dimensional maps, have the hexagon grids
laid out to the faces themselves. A partial icosahedron with hexagon
grids is seen in Figure 3

The resulting grid is constructed with 122 base cells covering the
Earth, having ten cells per face. There are cells contained to more
than one face. At each icosahedron vertex, there are pentagons
(totaling up to twelve) to fill it up whole. H3 supports sixteen reso-
lutions, and as it gets finer, it has cells having one seventh the area
of the coarser resolution.

Figure 2: Distance of a hexagon to its neighbors, Image taken
from Uber’s whitepaper about H3 [3]

Figure 3: A partial icosahedron with hexagon grids, Image
taken from Uber’s whitepaper about H3 [3]

2.3 Graph Databases
Just like in normal DBMS, most established spatial database sys-
tems are running on relational DBMS. The introduction of NoSQL
paved the way for developers to have an alternative to relations-
motivated schema, allowing them to use a database that does not
require establishing any form of relation. From NoSQL databases
came about graph databases, where it improves upon the represen-
tation of graph relationships in RDBMS as implicit connection of
nodes [1]. Graph databases directly implement graph structures
for running semantic queries and for defining its data structure.
The graph integrates data as a collection of nodes and edges, where
the edges represent the relationships between the nodes. These
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relationships allow data to be linked together directly and, in many
cases, be retrieved with one operation. In a graph database, rela-
tionships between data are treated as priority. This makes querying
relationships fast because they are perpetually stored within the
database itself [11].

Figure 4: Graph database with a set of nodes and their con-
nections

Naturally, with the advent of this technology came its implemen-
tation to improve upon spatial databases. Geographic systems can
be easily abstracted to a graph system in order to utilize network
analysis of each node [6]. One pitfall of relational SDS is that it
doesn’t scale well to large amounts of data. In theory, with the us-
age of the underlying network of nodes inside it, a graph database
can easily perform operations and represent large amounts of data
with ease by showing it as a graph. This database manages net-
work features and elements in a graph in order to naturally interact
with network features to solve useful problems. With this type of
database and a DGGS as an indexing system, it is possible that this
setup can match or even beat existing relational SDS technologies
when operating on large datasets.

3 RELATEDWORK
This section presents publications about graph databases and spatial
databases that talk about the current state of art about using graph
database and discrete global grid systems to improve geospatial
search. These papers helped shape the direction of this research.

Research on the use of graph database in geospatial data to lever-
age graph network properties were only a recent trend. Kanaka
et al. [6] explored in their 2015 paper the power of graph databases
in holding spatial data sources by implementing a graph-oriented
spatial database with the use of the Neo4j graph database platform
and OpenStreetMap geographic datasets to create a geographical
information system (GIS). Neo4j was connected to an API service
to allow queries to it and the results were served to an HTML appli-
cation with the Leaflet Mapping library to help present geographic
data. This paper served like a technical white paper in which it fo-
cused on showing a working implementation of these technologies

that one can use to create their own GIS. It also demonstrated the
use of graph databases to store complex geographic information
like customer reviews of restaurants in an area.

In 2017, Roberto et al. [9] acknowledged the benefit of using
graph databases in solving specific problems that were ill fitted
to being implemented on relational models and chose to study
the behavior of graph-oriented spatial databases. They compared
Neo4j-spatial, a spatial extension of Neo4j to PostGIS, which is a
PostgreSQL-based spatial database and used their performance on
various spatial queries as a metrics of comparison. At the time of
writing, the latest version of Neo4j-spatial was able to do proxim-
ity queries (closest geometry given a radius of distance), distance
queries (geometries within a certain radius), and bounding box
queries (get all geometries inside a bounding box) on par with Post-
GIS but there were some disadvantages like not having a single
language binding and having little development support due to it
being a new technology.

Recently this year, Bondaruk et al. [2] published a study about
the current state of art of discrete global grid systems. The re-
searchers here focused on two technologies, H3 and OpenEAGGR.
They compared both technologies based on how well they fared in
following the guidelines specified by the OGC DGGS Standard Data
Protocol, as well as their performance in operational and practical
applications. They both failed to meet the guidelines of OGC but
they managed to fulfill at least some to be able to call themselves
DGGS technologies. In terms of their operational proficiency, H3
and OpenEAGGR lacked some functionalities but OpenEAGGR
had a more complete spatial analysis, data query, and broadcasting
implementations. However, the researchers pointed out that even
with missing functionalities, new features and corrections in H3
are being implemented regularly and H3 enjoys a far more rapid
development compared to OpenEAGGR.

4 METHODOLOGY
The proposed methodology consists of setting up a PostgreSQL
database with the PostGIS extension installed and a Neo4j graph
database with the Uber H3 library added as a plugin. The dataset,
which consists of location points of various amenities around Que-
zon City, Metro Manila, are then imported to both databases. To
evaluate the performance of each database, multiple bounding box
search queries are performed on the dataset, and the execution
times of each search query are recorded.

To perform the experiments, the collection and pre-processing
scripts were developed on Python 3.0 and Jupyter 4.4.0. For the
database systems, PostgreSQL 12.1 and PostGIS 3.0 were used for the
relational SDS while Neo4j 3.5.12 and Uber H3 3.6 (with OpenJDK
13 to handle its Java bindings) were used for its graph counterpart.
The experiments were run in a machine running macOS Catalina
v10.15.1. The details of the experiment are further discussed in the
following subsections.

4.1 Data Collection and Preprocessing
To create the dataset for this research, a geofence is created sur-
rounding Quezon City as seen in Figure 5. All of the spatial ameni-
ties within this geofence are promptly extracted fromOpenStreetMaps
(OSM) and Google Maps. The set of amenities from both OSM and
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Google Maps are then merged into one single dataset, eliminating
duplicates in the process. After extraction and merging, the final
dataset is stored in CSV format.

Figure 5: Geofence used for this experiment surrounding
Quezon City

The resulting dataset contains entries that have no names or
some form of identification. In order to fill them up, a Python script
is used to search for the coordinates of these unidentified points.
Using Google Places API, a search is performed on nearby points
with the same type within a 100 m range. After adding these points,
the initial unidentified point is then removed from the dataset. After
identifying all mystery points inside the dataset, another script is
executed to go through the dataset and check if the locationmatches
its type by cross-referencing the location information to Google
Places API and renaming the said point if it is a different place. This
script corrects amenities placed with the wrong location name. All
in all, there are 19,148 entries, each representing a single amenity,
with name, type and coordinates as its attributes. A sample snapshot
of the dataset is shown in Figure 6.

Naive random over-sampling is then performed on the dataset.
Additional synthetic location points are generated to see the im-
pact of having a larger dataset on query performance. After over-
sampling, the number of entries in the dataset is increased to
516,996.

4.2 Experimental Setup
Neo4j provides a desktop application which allows for a quick setup
of a graph database server, and provides an interface for performing
queries using the Cypher query language. For this experiment, a
local graph database is created, and the dataset is then imported.
Each row or entry in the dataset is added as a node in the graph. A
single Amenity node is composed of properties name, type, lat and

Figure 6: Snapshot of the Dataset

lon. For visualization purposes, a Type node consisting of a name
property is also added. A HAS_TYPE relationship is then created
between Amenity and Type. The code for the setup is presented in
Listing 1. A sample graph of parking amenities is shown in Figure
7.

Figure 7: Parking Amenities in a Graph Database

1 LOAD CSV WITH HEADERS FROM 'file :/// dataset.csv ' AS line

2 CREATE (: Amenity { name: line.name , lon: line.longitude ,

lat: line.latitude , type: line.amenity });

3

4 LOAD CSV WITH HEADERS FROM 'file :/// types.csv ' AS line

5 CREATE (:Type { name: line.name });

6

7 MATCH (a:Amenity),(t:Type)

8 WHERE a.type = t.name

9 CREATE (a) -[:HAS_TYPE]->(t);

Listing 1: Neo4j Setup

4



Neo4j already has built-in support for handling spatial values.
In order to perform a bounding box search query on the dataset,
the lon and lat properties need to be converted to a single point
property, which is a spatial geometry type provided by Neo4j. Each
point is associated with a specific Coordinate Reference System
(CRS). For geographic coordinates, the WGS-84 is used as the CRS.
The query for this process is presented in Listing 2.

1 MATCH (a:Amenity)

2 SET a.location = point({ latitude: a.lat , longitude: a.lon

, crs: 'WGS -84 '});

Listing 2: Point Conversion

To integrate H3 with Neo4j, a plugin which maps the set of
H3 Java bindings to Neo4j procedures is implemented. In order to
perform a bounding box search query using H3, two main proce-
dures are created. The first procedure, hexAddress(), makes use
of geoToH3() from the H3 API. This procedure allows the retrieval
of the hex address given the coordinates and a resolution value.
For this experiment, a resolution of value 9 is used. The second
procedure, polygonSearch(), accepts a set of coordinates as a pa-
rameter, creates a region using these coordinates, generates a set
of hexes within that region, then performs a search on each of the
hexes. It uses polyfill() from the H3 API, which handles the
filling up of hexes inside the region.

Using hexAddress(), a new property called hexAddr is added
for each Amenity. The procedure polygonSearch() uses this value
instead of the coordinates when performing a search query. Addi-
tionally, an index is also created in order to speed up the search.
The process is presented in Listing 3.

1 MATCH (a:Amenity)

2 CALL com.h3.hexAddress(a.lat , a.lon , "9") YIELD value

3 SET a.hexAddr = value;

4

5 CREATE INDEX ON :Amenity(hexAddr);

Listing 3: Hex Address Generation

For the performance tests, a total of 10 search queries are per-
formed. For each query run, 10 bounding boxes are randomly gen-
erated. Each bounding box search are executed on all three setups,
namely Neo4j Spatial, Neo4j + H3 and PostGIS. The PostGIS setup
are not discussed in detail, as it simply requires enabling the PostGIS
extension in the PostgreSQL installation. Results of the experiment
are presented in 5. Listings 4, 5 and 6 provide sample bounding box
search queries.

1 MATCH (a:Amenity)

2 WHERE point({ latitude :14.620510 , longitude :121.013297}) <

a.location < point({ latitude :14.674593 , longitude

:121.095295})

3 RETURN DISTINCT(a.name), a.type;

Listing 4: Neo4j Spatial Search Query

1 CALL com.h3.polygonSearch ([

2 {lat :14.620510 , lon :121.013297} ,

3 {lat :14.674694 , lon :121.014557} ,

4 {lat :14.674593 , lon :121.095295} ,

5 {lat :14.620204 , lon :121.094549}

6 ] ,[{}]) YIELD nodes

7 UNWIND nodes AS a

8 RETURN DISTINCT a.name AS name , a.type AS type;

Listing 5: H3 Polygon Search Query

Table 1: Query Results (19,148 location points)

Query # PostGIS Neo4j-spatial Neo4j + H3
1 45 ms 257 ms 97 ms
2 26 ms 155 ms 90 ms
3 26 ms 150 ms 94 ms
4 19 ms 130 ms 88 ms
5 20 ms 110 ms 83 ms
6 21 ms 141 ms 82 ms
7 20 ms 110 ms 76 ms
8 19 ms 102 ms 71 ms
9 18 ms 97 ms 72 ms
10 21 ms 120 ms 74 ms

1 SELECT name , type , lon , lat FROM amenities WHERE

amenities.geom && ST_MakeEnvelope (120.850250 ,

14.473059 , 121.217164 , 14.775077 , 4326);

Listing 6: PostGIS Search Query

5 RESULTS AND DISCUSSION
The execution times of the bounding box search queries performed
on the original dataset are presented in Table 1. The graph of the
results is shown in Figure 8. Observing the results above, one can
say that integrating H3 with a Neo4j graph database improves the
search execution time significantly. Based on the 10 query runs,
Neo4j + H3 had an average execution time of 82.7 ms, compared to
Neo4j-spatial’s 137.2 ms. PostGIS performed best with an average
execution time of only 23.5 ms.

The execution times of the bounding box search queries per-
formed on the larger dataset are presented in Table 2, and the graph
of the results is shown in Figure 9. In the larger dataset, PostGIS per-
formed the worst, with an average execution time of 7.06 seconds.
The performance of Neo4j-spatial and Neo4j + H3 were very close;
their average execution times are 2.9 and 2.5 seconds, respectively.
On the larger dataset, both graph database setups performed better
than PostGIS. This might entail that graph databases are generally
better in terms of scalability.

Both Neo4j and PostGIS have some sort of caching enabled by
default, so it is expected that the first few query runs have slightly
longer execution times. Leaving caching on during the experiment
was intentional, so that the obtained results reflect how search
queries really perform in production environments, where enabling
caching is almost always recommended.

6 CONCLUSION
The researchers were able to produce a working implementation of
Neo4j that uses H3 for spatial queries. By measuring the query exe-
cution times, it was shown that, compared to a relational database,
a graph database integrated with H3 can perform better at scale.
As part of future work, one can perform some tests on a dataset
with multiple tables and relationships. Another aspect of the study
that one can explore is to perform some tests where there is an
increasing number of polygon points for each search query, and
check if it impacts database performance.
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Figure 8: Query Results (19,148 location points)

Table 2: Query Results (516,996 location points)

Query # PostGIS Neo4j-spatial Neo4j + H3
1 7146 ms 4943 ms 2602 ms
2 7165 ms 3282 ms 2594 ms
3 7080 ms 3133 ms 2571 ms
4 7069 ms 3234 ms 2568 ms
5 7004 ms 2604 ms 2513 ms
6 7037 ms 2474 ms 2545 ms
7 7059 ms 2446 ms 2425 ms
8 7043 ms 2473 ms 2366 ms
9 6988 ms 2273 ms 2388 ms
10 6975 ms 2195 ms 2354 ms

Figure 9: Query Results (516,996 location points)

The resulting implementation can be a base point into creat-
ing a fully working graph-powered GIS. With H3 enjoying rapid
development and a growing community, it would be a worthy tech-
nology to consider for various spatial operations. With its ability
to pinpoint locations via smaller resolutions, it can be used for
various applications that cover transportation or spatial services. It
can also be used to provide a heat map laid on top of a map that
leverages graph networks in order to provide more meaningful

relationships between grids. With a world that moves toward on-
demand economy and an increasing need of real-time information
to aid in decision-making, a graph-network powered GIS can bring
improved performance to various applications.
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