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ABSTRACT
This paper discusses how coordinating distributed systems can be
expressed using a pure functional reactive programming (FRP) lan-
guage designed for distributed applications. FRP provides functional
abstractions for values changing over time, with which reactive
behaviors can be naturally described. Since each computational
node in a coordinating distributed system can be seen as a reactive
component, FRP is well suited for describing the intra-node compu-
tation. Via a case study of a wireless sensor-actor network (WSAN),
this paper shows that both inter-node coordination and intra-node
computation can be uniformly described using the language.

CCS CONCEPTS
• Software and its engineering→ Distributed programming lan-
guages; Functional languages; Data flow languages.

KEYWORDS
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tion, Wireless Sensor-Actor Netowrks

1 INTRODUCTION
Functional Reactive Programming (FRP) is a programming paradigm
for developing reactive systems. In FRP, a system is described in
terms of continuously changing time-varying values and propaga-
tion of changes [3]. Originally, FRP is introduced to describe inter-
active animations in the pure functional language Haskell [6]. Until
now, the paradigm and its some non-functional variants gained
popularity in various fields such asWeb programming, mobile appli-
cation development, mobile IoT networks, and embedded systems.

The change propagation among time-varying values can be
viewed as dataflow computation. From this viewpoint, FRP provides
a high-level and declarative abstraction for describing concurrent
systems. Thus, integrating FRP with existing concurrent computa-
tion models is interesting in both theoretical and practical aspects.
The author proposed an actor-based execution model of an FRP
language for embedded systems, which can reduce the execution
cost of a programwritten in the language by utilizing asynchronous
messages in the change propagation [18]. Van den Vonder et al.
introduced another direction of integration named Actor-Reactor
model that can widen the expressiveness of a reactive program-
ming language by using actors to describe long-lasting or stateful
behaviors [16].

To develop distributed applications, we designed and imple-
mented Distributed XFRP, a statically-typed, purely functional reac-
tive programming language. The runtime system of the language is

based on the Actor model [1] and change propagation among time-
varying values is implemented as asynchronous message passing. In
our previous paper [15], we proposed a new algorithm for change-
propagation via asynchronous messages and showed that such a
distributed runtime system can be used to implement pure FRP
without suffering from the phenomenon called glitches (temporal
inconsistencies in the change propagation).

The compiler1 of the language translates a source program into
an Erlang program. In contrast to our previous work [18] that
introduced an actor-based runtime system for resource-constrained
uniprocessor systems, the language actually supports distributed
execution of pure FRP programs.

The contribution presented in this paper is that, via a case study,
we emphasize that FRP is well suited for describing coordination.
We present a wireless sensor-actor network (WSAN) application
that controls the air-environment of a long corridor, and show that
the behavior of the WSAN, which is a typical coordination task, can
be easily written in Distributed XFRP. Moreover, we discuss that the
language supports incremental development of such applications.

The rest of the paper is organized as follows. The next section
introduces the non-distributed subset of our language to explain
some basic notions of FRP. In Section 3, we briefly describe the
execution model of Distributed XFRP. Section 4 presents a WSAN
case study to emphasize that Distributed XFRP is beneficial for de-
scribing coordination. Section 5 surveys related work and Section 6
concludes the paper.

2 XFRP
XFRP is a general-purpose functional reactive programming lan-
guage developed as a successor of Emfrp [14], which is designed for
small-scale embedded systems. In Section 4, we develop a WSAN
example using the distributed dialect of XFRP [15]. This section
briefly describes a non-distributed subset of XFRP.

2.1 Basics
In XFRP, a system (module) is composed of the definitions of time-
varying values and other components. Time-varying values are
called nodes in the language. Nodes are classified in the following
categories: source (input), sink (output), and internal. Source nodes
(hereinafter referred to as sources) emit externally given values
such as keyboard inputs, network packets from another computer,
and measurements from a sensor device. Sink nodes (hereinafter re-
ferred to as sinks) are the destinations of propagation. They receive

1https://github.com/45deg/distributed-xfrp

https://github.com/45deg/distributed-xfrp
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Listing 1: Fan Controller in XFRP
1 module FanController % module name
2 in tmp : Float, % temperature sensor
3 hmd : Float % humidity sensor
4 out fan : Bool % fan switch
5

6 % discomfort (temperature-humidity) index
7 node di =
8 0.81 * tmp + 0.01 * hmd * (0.99 * tmp - 14.3) + 46.3
9

10 % fan status
11 node init[False] fan = di >= th
12

13 % threshold
14 node th = 75.0 + if fan@last then -0.5 else 0.5
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fandiT

H

temperature 
sensor

humidity sensor

fan

th

FanController

node
dependency

external device reference
past dependency

Figure 1: Graph Representation of FanController

results and normally affect the outer world by displaying charac-
ters, changing the voltage output, etc. Internal nodes lie between
sources and sinks and update their values by evaluating associated
expressions every time sources change. The definition of an ex-
pression is given in a functional style, which means it has no side
effect or mutable states. In summary, changes of sources propagate
throughout internal nodes and finally reach sinks.

Figure 1 shows a simple fan controller example from our pre-
vious paper [17]. The program has two sources tmp and hmd re-
spectively representing the current temperature [◦C] and humidity
[%] measured by external sensors. The node di expresses the cur-
rent discomfort index (the degree of discomfort experienced by a
human). The value of di immediately reflects any changes in the
sensor readings (tmp or hmd).

The operator @last allows access to the previous value (the value
at the previous moment) of an arbitrary node. Using this operator,
we can define history sensitive (or stateful) behaviors. In Listing 1,
@last is used to realize a simple hysteresis control that protects
the fan motor from frequent switching. The definition of th (line
14 in Listing 1) contains the subexpression fan@last that refers to

the value of fan at the previous moment. This means that if fan
is already true, th becomes 74.5 (otherwise 75.5). With such shifts
of the threshold, we can avoid frequent changes of fan when di
drifts around the threshold (75.0).

2.2 Execution Model
An XFRP program can be represented as a directed graph whose
nodes and edges correspond to nodes (time-varying values) and
their dependencies respectively. Figure 1 shows the graph repre-
sentation of Listing 1, which consists of five nodes and five edges.
We categorize the edges (dependencies) into two kinds: past and
present. A past edge from node𝑚 to 𝑛 means that 𝑛 has𝑚@last in
its definition. A present edge from node𝑚 to 𝑛, in contrast, means
that 𝑛 directly refers to𝑚. In Figure 1, the dotted arrow line from
fan to th is the only past edge. All other edges are present.

By removing the past edges from the graph representation of
the program, we should obtain a directed-acyclic graph (DAG). The
topological sorting on the DAG gives a sequence of the nodes. For
Figure 1, we have: tmp, hmd, di, the, fan.

The Emfrp runtime system updates the values of the nodes by
repeatedly evaluating the elements of the sequence. We call a single
evaluation cycle an iteration. The order of updates (scheduling) in
an iteration must obey the partial order determined by the above
mentioned DAG.

The value of 𝑛@last is the value of 𝑛 in the last iteration. At the
first iteration, where no nodes have their previous values, 𝑛@last
refers to the initial value 𝑐 specified with init[𝑐] in the definition
of 𝑛. In Figure 1, the initial value of fan is False (line 11).

3 DISTRIBUTED XFRP
We designed and implemented Distributed XFRP [15], a distributed
dialect of XFRP. This section briefly introduces some important
concepts of the language.

3.1 Glitches
This subsection describes the notion of glitches — temporal incon-
sistencies in the value propagation of FRP systems. Consider the
program fragment below.

node x = a + a

node y = a * 2

node z = x == y

In a glitch-free system, all occurrences of the same node must have
the same value at each moment. Thus the value of z should always
be true. This property does not hold in a system with glitches. For
example, consider a situation that the value of a changes. Due to
possible differences in the propagation times of change, there may
be a moment that x and y have different values.

Margara and Salvaneschi classified glitch-freedom into two types:
single-source and complete [9]. The former requirement is that the
update of a source is propagated to the nodes that depend on it
without glitches but other sources are not considered at the update.
The latter takes the causal relation of all the sources into account
in addition to the requirement of the former. Distributed XFRP
supports the single-source glitch freedom.
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3.2 Execution Model
The runtime system of XFRP is based on the Actor model [1]. Each
source, sink, or internal node corresponds to a single actor. Propa-
gation of updates is performed as asynchronous message passing.
When the value of a source changes, the source sends its updated
value to other nodes that depend on it. Similarly, when a node
receives a message that conveys the updated value, it updates its
value and sends the result to nodes that depend on it.

The dependency between nodes is represented as a directed
graph, where vertices are node actors and edges are reference rela-
tionship between them (for example, if node 𝑎 has a reference to 𝑏,
there is an edge from 𝑏 to 𝑎). Note that a cycle in the graph is not
permitted if the paths have only non-@last references. Every node
has roots, which are sources that will effect on the node at their
changes. In other words, if there is a path from a source 𝑖 to a node
𝑛 in the dependency graph, we can say the node 𝑛 has the root 𝑖 .

Each source has a counter that increments when it sends a new
value, which is attached to propagation messages with the name of
the source to keep track of the happened-before relation between
changes. The attached information that is a pair of a source ID and
its counter value is called version. The relation from version to the
value of a node is surjective. We say “the value of node 𝑁 is 𝑉 at
a version (𝑠, 𝑖)” in the sense that the value of 𝑁 results in 𝑉 by
receiving input messages with a version (𝑠, 𝑖), where 𝑁 is a node,
𝑉 is a node value, and (𝑠, 𝑖) is a pair of a source and its counter. The
explicit use of the source IDs in versions enables the single-source
glitch-freedom in our language [15].

Each actor has special internal values that represent the compu-
tational states. There are three elements: Buffer, Last, and Deferred.
Buffer holds the received values before they are calculated. It is
a map whose keys are versions and values are also maps which
map the depending nodes to their value at the version. Last is a
set of latest received input values used to complement values for
different versions. Deferred is a list of versions which are received
but their processing is postponed because the node lacks the inputs
to calculate the expression.

The update algorithm is divided into two phases. One is the
matching phase, where an actor collects inputs for calculating the
expression from its Buffer. Every versions in the Buffer is scanned
to find an entry that is sufficient to evaluate. The entry consists
of input values that have the same source, therefore, at evaluation,
the values are merged with inputs using other sources using Last
and Deferred. For example, consider a node 𝑥 has an expression
𝑟 + 𝑠 + 𝑡 , where 𝑟 and 𝑠 have the same source and 𝑡 has another
source, and the Buffer in the node has an entry with the value of 𝑟
and 𝑠 in any version. Then 𝑥 can be evaluated with the value of 𝑡 in
the Last field in 𝑥 . Second phase is the receiving phase, where the
actor waits for a new message from dependent nodes. An arriving
message is stored in the Buffer by its attached version. In this time,
the value referenced with @last is placed at a next Version in the
Buffer, which means version (𝑠, 𝑖 + 1) if the Version of the value
is (𝑠, 𝑖). The detailed description of the updating algorithm can be
found in our previous paper [15].

4 CASE STUDY
This section presents a wireless sensor-actor network (WSAN)
described in XFRP. The purpose of this case study is to demonstrate
that the language is suitable for describing coordination.

Wireless sensor-actor networks (WSANs) [2, 7] are a variant
of wireless sensor networks (WSNs) that contain actor nodes in
addition to sensor nodes. The responsibilities of actor nodes in-
clude controlling actuators, making local decisions, and performing
coordination tasks. Note that the term “actor” here is different from
the one in the Actor-model.

4.1 WSAN Example
Figure 2 shows a wireless sensor-actor network (WSAN) that mon-
itors and controls the temperature and humidity of the air in a
long corridor. The corridor is divided into several segments that
are numbered sequentially. Each odd-numbered (even-numbered)
segment is equipped with a temperature (humidity) sensor and a
temperature (humidity) controller. A temperature (humidity) con-
troller here indicates a special kind of air-conditioner that controls
air temperature (humidity). The purpose of this WSAN is to regu-
late the air environment of the corridor by lowering the difference
in discomfort index among the corridor segments.

Now let us describe how it works. Let 𝑖 ( 𝑗 ) be a positive odd (even)
integer, and 𝑘 be a positive integer. The node2 named t𝑖 (h𝑗 ) is the
source node that is connected to the temperature (humidity) sensor
located at the 𝑖-th ( 𝑗-th) segment. Similarly, the node named tc𝑖
(hc𝑗 ) is the sink node that is connected to the temperature (humid-
ity) controller located in the 𝑖-th ( 𝑗-th) segment. Note that there is
another source node named th — not shown in Figure 2 for simplic-
ity — that represents the threshold for determining which output
nodes should be activated. The node named di𝑘 (𝑘+1) represents the
discomfort index of the in-between area of the 𝑘-th and (𝑘 + 1)-th
segments. The node named ddi𝑘 calculates di(𝑘−1)𝑘 − di𝑘 (𝑘+1) ,
which indicates the degree of imbalance in the data measured by
the sensors located in the (𝑘 − 1)-th and (𝑘 + 1)-th segments. Thus,
if it is larger (smaller) than th (−th), the controller with index 𝑘 − 1
(𝑘 + 1) is activated to lower the difference.

4.2 WSAN Example in XFRP
Listing 2 shows the XFRP code for the example. The code is a
straightforward implementation3 of Figure 2. For simplicity reason,
we omit host specifiers in the code. To deploy the nodes (time-
varying values) to appropriate physical sensor/actor nodes (com-
puters) in the WSAN, we can freely put host specifiers at the source
node declarations (lines 3 and 5 in Listing 2) or at the node defini-
tions (lines 18–22, 25–28 and 31–36). The single-source glitch-free
property of the language guarantees that no temporal inconsisten-
cies can be observed in any deployment configuration.

We demonstrate how the single-source glitch-free property is
effective using a simple example scenario. In the following, we fix
the value of th to 2.0 and assume that ddi5 ≤ th. Suppose that h2 =
70.0, t3 = 24.0, and h4 = 75.0. From the node definitions in Listing 2,
2We use the term “node” to indicate a time-varying value in XFRP rather than a
physical sensor/actor node (computer) in the WSAN.
3The current version of the language does not allow indices in node names. So we
should write, for example, di23 for di23 and hence repeat similar definitions. It may
not be difficult to add appropriate syntactic support in the future version.
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Figure 2: WSAN for Regulating the Air-Environment of a Corridor

we have di23 = 72.36, di34 = 72.84, and ddi3 = -0.47. Thus, neither
hc2 nor hc4 is activated because−0.47 ≥ −th. Now suppose that t3
changes to 25.0 but h2 and h4 remain the same in the next moment.
At that moment, thanks to the single-source glitch-free property,
both di23 and di34 are guaranteed to observe that t3 = 25.0. Thus
di23 = 73.87 and di34 = 74.39 holds, and both hc2 and hc4 are still
inactive because ddi3 = −0.52 ≥ −th. However, without the single-
source glitch-free property, it is possible that di23 sees t3 = 24.0
and di34 sees t3 = 25.0 at the same time, and hence di23 = 72.36
and di34 = 74.39 hold. In this case, we have ddi3 = −2.03 < −th,
and thus hc4 is incorrectly activated.

4.3 Discussion
As the example shows, XFRP provides a declarative way to express
inter-node (inter-computer) behaviors of WSNs and WSANs. In
other words, the language can be used as a macroprogramming
language[12]. Especially, the single-source glitch-freedom enables
a convenient way to programWSANs. Because, when merging data
from two or more actor nodes that directly or indirectly receive
data from the same sensor node, we don’t need to be bothered
with the synchronization among the actor nodes. Moreover, the
single-source glitch freedom is more efficient than complete glitch-
freedom such as [8]. If we need the glitch-freedom with regard
to multiple sensor nodes, we can use source unification feature
provided by the language.

In addition, since the design of the language is based on Em-
frp [14], we can also write internal behaviors of physical sensor/ac-
tor nodes in XFRP. Thus, the language enables a uniform way to
express whole (inter- and intra-node) behaviors of WSANs. This
sort of uniformity is important because it eases the development

process of WSANs as follows. First, we can construct a prototype
of a WSAN as a single module that defines the entire (inter- and
intra node) behaviors of the WSAN. The module has no host speci-
fiers initially and the source and sink nodes are connected to some
debug/test stubs written in Erlang. After the local testing, we can
gradually deploy nodes (time-varying values) to actual physical
sensor/actor nodes by incrementally adding host specifiers and
source unifiers to the module definition.

5 RELATEDWORK
DREAM [8, 9] is a distributed reactive middleware that provides
elective consistency models: FIFO, causal, single-source glitch free-
dom, and complete glitch-freedom, but they assume that all mes-
sages are delivered in a FIFO order.

REScala [13] is a functional reactive library implemented in Scala.
SID-UP (Source IDentifier Update Propagation) [4, 5] is an efficient
propagation algorithm for distributed reactive programs in REScala
and it supports complete glitch-freedom while the execution model
is iterative.

Recently, a new method for REScala is proposed [10] and it pro-
vides fault tolerance for distributed reactive programming with
reasonable performance. Besides, Myter et al. proposed another
method for handling partial failures in distributed reactive sys-
tems [11]. However, these methods focus on node crashes rather
than on network inconsistencies.

Regiment [12] is a functional macroprogramming language for
wireless sensor networks (WSNs). The language enables us to write
a WSN as a whole via functional reactive programming. However,
it does not provide mechanisms that support actor nodes.
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Listing 2: XFRP Code for Figure 2
1 module WSANExample
2 in % temperature sensors
3 t1 : Float, t3 : Float, t5 : Float,
4 % humidity sensors
5 h2 : Float, h4 : Float, h6 : Float,
6 % threshold
7 th : Float
8 out % temperature controllers
9 tc1 : Bool, tc3 : Bool, tc5 : Bool,
10 % humidity controllers
11 hc2 : Bool, hc4 : Bool, hc6 : Bool
12

13 % discomfort index
14 fun di(t, h) = 0.81 * t
15 + 0.01 * h * (0.99 * t - 14.3) + 46.3
16

17 % discomfort index nodes
18 node di12 = di(t1, h2)
19 node di23 = di(t3, h2)
20 node di34 = di(t3, h4)
21 node di45 = di(t5, h4)
22 node di56 = di(t5, h6)
23

24 % di-difference nodes
25 node ddi2 = di12 - di23
26 node ddi3 = di23 - di34
27 node ddi4 = di34 - di45
28 node ddi5 = di45 - di56
29

30 % controller nodes
31 node tc1 = ddi2 > th
32 node hc2 = ddi3 > th
33 node tc3 = ddi2 < -th || ddi4 > th
34 node hc4 = ddi3 < -th || ddi5 > th
35 node tc5 = ddi4 < -th
36 node hc6 = ddi5 < -th

6 CONCLUDING REMARKS
In this paper, we briefly describe a distributed dialect of the func-
tional reactive programming language XFRP whose runtime sys-
tem is based on the Actor-model. The updating algorithm of time-
varying values employs asynchronous message passing for change
propagation. The algorithm guarantees single-source glitch-freedom
in a distributed system with the existence of out-of-order delivery
of messages.

The case study showed that a wireless sensor-actor network
(WSAN) application — typical application with coordination — can
be straightforwardly written in the language. In addition, we dis-
cussed the possibility of an incremental development method for
distributed applications.
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