
Bounded-Construction-Types for Functional Reactive
Programming

Akihiko Yokoyama

akihiko@psg.c.titech.ac.jp

Department of Computer Science

Tokyo Institute of Technology

Tokyo, Japan

Sosuke Moriguchi

chiguri@acm.org

Department of Computer Science

Tokyo Institute of Technology

Tokyo, Japan

Takuo Watanabe

takuo@acm.org

Department of Computer Science

Tokyo Institute of Technology

Tokyo, Japan

ABSTRACT
We introduce a new type system to Emfrp, a functional reactive pro-

gramming language designed for resource-constrained embedded

systems. To ensure such property that the language can statically

determine the amount of runtime memory and guarantee the termi-

nation of reactive actions, it disallows the use of recursive data types

and functions. However, such restrictions often impose unnatural

representations of data structures and algorithms used in various

applications. Our new type system, named Bounded-Construction-

Types (BCTs), enhances Emfrp by introducing recursive data types

with size annotations yet the improved language keeps the static

property mentioned above. In this paper, we formalize Emfrp ex-

tended with BCTs, present the algorithm for statically computing

the runtime memory bounds, and prove its soundness.

1 INTRODUCTION
Functional Reactive Programming (FRP) is a programming para-

digm that supports the effective description of reactive systems

such as embedded systems and GUIs. It employs the notion of time-
varying values, which abstract values that change continuously

or discretely over time. The idea of FRP was first introduced in

Fran [5], an interactive animation library for Haskell. After that,

various FRP libraries, languages, and DSLs have been proposed, for

example, Yampa [13], Elm [4] (version 0.16 or earlier [3]), and so

on.

Sawada et al. designed and implemented Emfrp [18], a statically

typed pure FRP language for small-scale embedded systems. Polling

and callbacks (and their mixtures) are common patterns used in

describing reactive behaviors in small-scale embedded systems.

However, they often complicate the code by, for example, splitting

the code’s control flow into multiple small pieces. Some example

applications demonstrates that the simple FRP mechanism in Emfrp

is useful in programming embedded systems. The Emfrp compiler

emits platform-independent C code runnable in several resource-

constrained environments including microcontrollers. For example,

their demonstrations include the controller of a reverse pendulum

robot equipped with an 8-bit microcontroller with 2.5KB RAM and

32KB flash
1
.

In a reactive system running in a resource-constrained environ-

ment, it is important to keep the program running with a bounded

memory space and to continue reactions (i.e., to guarantee the ter-

mination of each reaction to keep the system responsive). Programs

written in Emfrp are guaranteed to satisfy these two properties.

For this reason, Emfrp imposes several language design constraints

1
https://github.com/psg-titech/emfrp_samples/

(Section 2.3). One of them is the prohibition of recursive definitions

in functions and data types. Even under these constraints, we can

write many application programs. However, the problem is that the

natural representation of common data structures such as strings,

lists, and trees becomes difficult.

In this paper, we propose a method to relax the restriction on

recursive definitions in Emfrp while satisfying the two properties.

We introduce recursive data types with parameters about the size

of the structure, named Bounded-Construction-Types, and primi-

tive recursive functions whose arguments are structurally reduced

on recursive calls. In addition to the usual type checking, the ob-

ject size constraints are checked to detect programs whose objects

are increasing continuously or whose node update process is not

guaranteed to stop. We also propose an algorithm to determine the

amount of memory used at runtime.

The main contributions of this paper are the following:

• We introduced Emfrp
BCT

, which is an extension of Emfrp

with Bounded-Construction-Types, and presented a useful

program example.

• We formalized Emfrp
BCT

, and developed determination al-

gorithm for upper bounds of memory used.

• Then, we proved their soundness.

The rest of this paper is organized as follows. Section 2 intro-

duces Emfrp and the problems arose from the language restrictions

that motivated this work. Section 3 describes the extension of Emfrp

with Bounded-Construction-Types and presents two examples. Sec-

tion 4 presents the syntax, operational semantics, type system, and

used memory determination algorithm and show their soundness.

Section 5 shows overview of related work and Section 6 concludes

the paper.

2 BACKGROUND
Emfrp[18] is a strongly-typed functional reactive programming

language designed for resource-constrained embedded systems.

This section shows overview of the language and discusses issues

that motivate this study.

2.1 Overview of Emfrp
Listing 1 is a simple Emfrp program that calculates the position of

a two-wheel robot. This example is an adapted version of one writ-

ten in Yampa (an FRP library for Haskell)[13]. The program takes

four inputs (𝑣𝑙 , 𝑣𝑟 , 𝜃 , and 𝑡) and gives a single output (𝑥). They are

the speeds of left and right wheels (𝑣𝑙 and 𝑣𝑟), the angle between the

robot’s orientation and the 𝑥-axis (𝜃), the elapsed time (𝑡), and the

𝑥-coordinate of the robot (𝑥). Note also that they are time-varying

https://github.com/psg-titech/emfrp_samples/

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

1 module RobotPos # module name
2 in vl : Float, # left wheel speed (m/sec)
3 vr : Float, # right wheel speed (m/sec)
4 theta : Float, # angle from x-axis (rad)
5 t(0) : Int # elapsed time (msec)
6 out x : Float # x-position of the robot (m)
7 use Std # library name
8

9 # a small amount of elapsed time (sec)
10 node dt = (t - t@last) / 1000.0
11

12 # x-position of the robot (m)
13 node init[0.0] x = x@last + (vr+vl) * cos(theta) * dt/2

Listing 1: A Two-Wheel Robot in Emfrp

(i.e., functions of 𝑡) and 𝑥 (𝑡) = 1

2

∫ 𝑡

0
(𝑣𝑙 (𝑢) + 𝑣𝑟 (𝑢)) cos(𝜃 (𝑢))𝑑𝑢

holds[13].

An Emfrp program is composed of units called modules. A mod-

ule declares its name, input/output nodes, and library names re-

quired, and defines types, constants, functions, and nodes. Nodes
are continuous or discrete time-varying values in Emfrp. They are

classified into three types: input and output nodes supposed to have
connections with external devices and internal nodes having no

such connections. The program in Listing 1 consists of a single

module named RobotPos. It declares vl, vr, theta, t as the input
nodes and x as the output node (lines 2–6). They correspond to 𝑣𝑙 ,

𝑣𝑟 , 𝜃 , 𝑡 , and 𝑥 , respectively.

The values of input nodes are determined by the external devices

to which they are connected. In Listing 1, the values of vl and vr
are obtained from the rotary encoders connected to the wheels, and

the value of theta can be calculated from the measurements of the

direction (azimuth) sensor. Also, the reading of the system’s timer

gives the value of t. Note that, in the example, we use adjusted

values instead of raw sensor readings for simplicity.

The values of output and internal nodes are determined with

node definitions. A node definition has the syntax node 𝑛 = 𝑒 or node

init[𝑐] 𝑛 = 𝑒, where 𝑛 is the node name, and 𝑒 is an expression

that gives the value of the node. The optional init[𝑐] specifies

the initial value (described later) of the node as 𝑐 . Listing 1 has

definitions of nodes dt (line 10) and x (line 13).

A node name followed by the operator @last represents the

previous value of the node, that is, the value at the previous moment.

In Listing 1, the definitions of dt and x use the operator. In the

example, we express the amount of change and cumulative values

by using @last. In this way, we can concisely express the value

represented by the time integration without using special functions

such as integral in Yampa[13]. The initial value of a node must be

specified if the node’s previous value is referenced in the program.

The initial value is used as the previous value at the start of the

program execution. For example, in Listing 1, the definition of x
specifies its initial value using init[0.0] (line 13). For input nodes

such as t, the initial value is specified as t(0) (line 5).

2.2 Execution Model
We briefly describe the execution model of Emfrp in this subsection.

Let 𝑛 and 𝑛′ be nodes defined in the body of a module. We say that 𝑛

depends on 𝑛′ if 𝑛′ appears in the definition of 𝑛 without @last. We

can construct a directed graph of nodes where the dependency is

represented as a directed edge from 𝑛′ to 𝑛. Emfrp requires that the

graph is a directed acyclic graph (DAG), and every input node does

not have incoming edges. As will be discussed later in Section 2.3.1,

the DAG is statically determined and does not change at runtime.

The Emfrp compiler topologically sorts the DAG and generates

a sequence of nodes. In the case of Listing 1, the sequence can be

(t, dt, vl, vr, theta, x). The values of the nodes are updated along

the sequence. A single update cycle (in the example, from t to x) is
called an iteration. The runtime system achieves reactive behavior

by repeating the iteration. Note that 𝑛@last is implemented to have

the value of 𝑛 in the last (previous) iteration.

2.3 Language Restrictions and Issues
Asmentioned in Section 1, Emfrp is designed to write programs that

run on resource-constrained systems such as microcontrollers. For

this purpose, the language (1) does not treat nodes (time-varying

values) as first-class values, and (2) does not allow recursive def-

initions of functions and data structures. The restrictions realize

that the amount of memory to be used at runtime can be statically

determined, and the termination of the iteration is guaranteed.

2.3.1 Nodes Are Not First-Class. Emfrp does not treat nodes (time-

varying values) as first-class data. That is, a node is not assigned

to a variable, nor is it an argument or return value of a function.

When a node name occurs as a function argument, what is passed

is the node’s value, not the node itself. Also, the language does

not provide mechanisms that dynamically create or delete nodes.

Nodes are defined only using keyword node or declared in the

module header. Furthermore, there is no means to define higher-

order nodes, which take other nodes as their values. Thus the

number of nodes and the dependency relation between nodes do

not change at runtime. The constraints make it possible to place

the data structures representing nodes in a static area rather than a

heap.

2.3.2 Recursive Definitions Are Not Allowed. Emfrp allows us to

define functions and algebraic data types in the module body but

prohibits recursions in them. The reason is to guarantee the termi-

nation of every iteration (updating cycle of nodes) and to determine

the amount of memory to be used at runtime.

Emfrp is a purely functional language so that it has no indeter-

minate loop constructs like while statements. Thus, prohibiting

recursive functions implies the termination of the evaluation of

expressions. So every iteration should terminate. Moreover, by pro-

hibiting recursive definitions in algebraic data types, the Emfrp

compiler can determine the size of data. Since there are no recur-

sive functions, the compiler can also determine the size of the call

stack. Thus, the total amount of the memory used at runtime can

be determined.

However, the restriction may impose unnatural implementations

of common data structures such as lists and trees that are useful

even in resource-constrained embedded systems. In this study, we

propose Bounded-Construction-Types (BCT) to introduce recursive

data types and functions to Emfrp. BCT allows us to define recursive

data types with explicit constraints on their sizes that determine

the amount of memory usage at runtime.

Bounded-Construction-Types for Functional Reactive Programming

1 module DupCheck
2 in reset(false) : Bool # reset signal
3 v(0) : Int # input value
4 out detect : Bool
5 use Std
6

7 type OptI = N | S(Int) # None, Some
8

9 func chk(x : Int, a : OptI): Bool =
10 a of: N -> false | S(y) -> x = y
11

12 node init [(N, N, N, N)] history:
13 (OptI,OptI,OptI,OptI) =
14 if reset then (N, N, N, S(v))
15 else
16 history@last of
17 (a1, a2, a3, a4) -> (a2, a3, a4, S(v))
18

19 node init [false] detect: Bool =
20 history@last of: (a1, a2, a3, a4) ->
21 chk(v,a1)||chk(v,a2)||chk(v,a3)||chk(v,a4)

Listing 2: Duplication Checking Module in Emfrp

3 BOUNDED-CONSTRUCTION-TYPES
Bounded-Construction-Types (BCTs) is a type system that speci-

fies the data types of objects along with their sizes. Through two

examples, this section shows overview of Emfrp
BCT

, an extension

of Emfrp with BCTs. The type system guarantees that a well-typed

program is consistent wrt types and object sizes. We formally define

the notion of sizes in Section 4.

3.1 Overview of EmfrpBCT

Emfrp
BCT

is an extension of Emfrp with BCTs. Its execution model

is the same as that of Emfrp. The main difference at runtime is

that each data object of BCT has actual size information. BCTs

determine the maximum object size of nodes and of @last nodes,

and the memory size estimation algorithm (described in Section 4.4)

gives the amount of temporary memory used. Thus it is possible to

update nodes in the constant memory space. Moreover, the program

can continue to run in constant space by doing garbage collection

for temporary objects between each iterations.

In Emfrp
BCT

, we can define recursive data structures, such as

tree of integer by writing type Tree = Leaf | Node(Tree, Int,

Tree). Leaf and Node are constructors. At the definition, we do not

write size parameter, but we annotate types with size parameter to

use it. We write Tree[𝜓] for type of a Tree of size 𝜓 . 𝜓 is the size

parameter. In this situation, value Leaf has Tree[1] type, and Node(

Node(Leaf,2,Leaf),1,Leaf) has Tree[5] type. Generally, if variable

left has Tree[𝛼] type and variable right has Tree[𝛽] type, term

Node(left,1,right) has type Tree[1 + 𝛼 + 𝛽].

adj and fit expression is introduced by the extension. These

allow us to coerce size parameter of an expression. 𝑒 adj[𝜓] is a

conversion expression that enlarges the size parameter of 𝑒 . It is

checked statically that𝜓 is greater then the size of 𝑒 . So this conver-

sion is always successful at runtime. For example, the expression

Leaf adj[5] converts Leaf of size 1 to Leaf of size 5. This means

that only one element is stored in a memory area of five elements

at most. fit 𝑒 to x:P[𝑘] -> 𝑒1 | fail -> 𝑒2 is an expression that

shrinks the size of 𝑒 to a constant size. This conversion is performed

by runtime size information. Thus, the conversion process may fail.

If the conversion succeeds, the value of 𝑒 is bound to new variable

1 module DupCheck
2 in reset : Bool init false # reset signal
3 v : Int init 0 # input value
4 out detect : Bool
5

6 type L = N | C(Int, L) # Nil, Cons
7

8 func insert(x: Int, l: L[m]): L[m+1] where {m > 0} [m] =
9 case l return L[m+1] of
10 | N -> C(x, N) adj[m+1]
11 | C(h: Int, t: L[n]) -> C(h,insert(x,t))
12

13 func search(x: Int, l: L[m]): Bool where {m > 0} [m] =
14 case l return Bool of
15 | N -> false
16 | C(h: Int, t: L[n]) ->
17 if x = h then true else search(x,t)
18

19 func tail(l: L[m]): L[m-1] where {m-1 > 0} =
20 case l return L[m-1] of
21 | N -> N adj[m-1]
22 | C(h: Int, t: L[n]) -> t
23

24 node history: L[5] init (N adj[5]) =
25 if reset then C(v, N) adj[5]
26 else
27 fit history@last to
28 | hl: L[4] -> insert(v,hl)
29 | fail -> insert(v,tail(history@last))
30

31 node detect: Bool init false = search(x,history@last)

Listing 3: Duplication Checking Module using List in
EmfrpBCT

𝑥 whose size is 𝑘 and first clause 𝑒1 is executed; otherwise fail

clause 𝑒2 is executed.

case expression allow us to destruct data structures. Each branch

of case expression introduce new size variables (e.g., Listing 3 line

11). The result types of each branch must be the same 𝜏 by annotat-

ing return 𝜏 .

We can now define first-order primitive recursive functions (e.g.,
Listing 3 line 8-11). If the argument type is BCT, a new size variable

that can be used in the function is introduced. where clause describes

the arithmetic constraints that should be satisfiedwhen the function

is called (e.g., where {m > 0}). This constraint is an equality or an

inequality between size parameters. When the function is called,

the size parameter of the actual argument is assigned to the size

variable of the formal argument, and this constraint is checked

statically. In the case of a recursive function definition, a sequence

of size variables (e.g., [m], [n, m]) is required after where clause. The

sum of these size variables is statically checked to be decreasing on

a recursive call. Passing this check guarantees the termination of

the recursive call.

3.2 Example 1: Duplication Checking Module
The first example is DupCheck module. This module checks du-

plication of input values within past 4 iteration loops. Listing 2

shows the Emfrp source code for DupCheck. The history node of

input value is represented by tuple of optional integer and has se-

quence of N as initial values. Updating nodes, the tuple is used as

a queue and the input value is appended to the last value of the

history node by shifting it. We decompose the tuples and compare

each element when searching for input values in the history. If you

want to change the number of elements in the history, you need

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

1 # The sum of the top 10 of the input data
2 module Top10Sum
3 in x: Int # input value
4 out y: Int # sum
5

6 # Leftist Heap
7 type Heap = E # terminal
8 | T(Int,Int,Heap,Heap) # (rank,v,left,right)
9 # omitted
10 # sum of values in heap tree
11 func sumHeap(h: Heap[n]): Int where {n>0} =
12 case h return Int of E -> 0
13 | T(r,x,a:Heap[p],b:Heap[q])-> x+sumHeap(a)+sumHeap(b)
14

15 node h: Heap[21] init (E adj[21]) = # heap tree node
16 fit h@last to hl: Heap[19] -> insert(x, hl)
17 | fail -> if x <= findMin(h@last) then h@last
18 else insert(x, delMin(h@last))
19

20 node y: Int init 0 = sumHeap(h) # sum of heap node

Listing 4: Ranking Module using Leftist Heap Tree

to rewrite the tuple decomposition in the element addition and

detection processes. If the number of elements is large, it may be a

heavy burden for programmers and may embed bugs with rewrit-

ing. Listing 3 shows the Emfrp
BCT

code for the same module. The

program uses the size limited list L defined by BCTs to represent

the history of the input. The size of the list is 5 in order to keep 4

past input values and N at the end of the list. We define an recursive

function to insert a value to the end of the list. The history node

is updated by the function and fit expressions. The conversion of

fit expression succeeds if the history length is less than or equal

to three. If not, remove the head of the history node and insert the

input value to the end. When changing the number of elements in

the history, we can flexibly deal with it by appropriately rewriting

the size parameters of the history node and fit expression.

This example shows how BCTs can improve the extensibility

of the program. However, it should be noted that the amount of

memory required at runtime is larger than that of Listing 2 because

of insert function. In Listing 3, all type annotations of the case

handlers are described, but they can be omitted if they are not

needed.

3.3 Example 2: Ranking Module
The second example is Top10Sum module (Listing 4, full version is

available Appendix A). This is the module that outputs the sum

of up to the 10th largest values received as input. The module has

up to 10 values using leftist heap [17], and update their contents

in each iteration. Since the shape of the heap tree is determined

dynamically, it is not possible to fix the data placement statically. In

Emfrp, multiple values are represented by a tuple-based data type.

Such a way of representing data cannot represent a structure in

which the arrangement of contents is unspecified at runtime. By

using a data structure that can represent the absence of a value, such

as Option type, those data structure can be achieved but becomes

an unnatural representation. Using BCTs, we can handle structures

with unspecified data layout at execution time, although the size is

bounded. This is an example of how BCTs improve the expressivity

of a Emfrp program.

Size Constraints

𝑘 ∈ N 𝛿 ∈ SizeVar
C ∈ Constraint ::= ⊤ | A | ∀𝛿.C | C ∧ C′ | C → C′

A ∈ ArithCon ::= 𝜓 = 𝜓 ′ | 𝜓 < 𝜓 ′ | 𝜓 ≤ 𝜓 ′

𝜓 ∈ SizeParam ::= 𝑘 | 𝛿 | 𝜓 +𝜓 ′ | 𝜓 −𝜓 ′

Types

𝜌 ∈ TypeName
𝜏♯ ∈ VarType ::= B | 𝜌𝛿
B ∈ BaseType ::= Bool | Int
𝜏𝐶 ∈ ConstType ::= B | 𝜌𝑘
𝑇 𝜌 ∈ ElemType ::= B | 𝜌 | 𝜌 ′𝑘 (𝜌 ′ ≠ 𝜌)
𝜏 ∈ Type ::= B | 𝜌𝜓

Expressions

𝑖 ∈ Integer 𝑥 ∈ Var 𝑁 ∈ Node 𝑓 , 𝑔 ∈ Function
𝑐 ∈ Constant ::= true | false | 𝑖 𝜒 ∈ ConstructorLabel
𝑒 ∈ Expr ::= 𝑐B | 𝑥 | 𝑁 | 𝑁@last | let 𝑥 = 𝑒 in 𝑒

| if 𝑒 then 𝑒 else 𝑒 | 𝑒 op (B1,B2)→B 𝑒

| 𝑓 (−→𝑒) | 𝜒(−→𝑒) | case 𝑒 return 𝜏 of −−−−−→branch
| 𝑒 adj [𝜓] | fit 𝑒 to 𝑥:𝜌𝑘 → 𝑒 | fail → 𝑒

branch ∈ Branch ::= 𝜒(
−−−→
𝑥:𝜏♯) → 𝑒 ce ∈ ConstExpr ⊂ Expr

Module Definitions

𝑀 ∈ Module ::= (T , F ,I,N , Init)
I ::=

−−−−−→
𝑁 : 𝜏𝐶 (Input Nodes)

T ::= · | T , 𝜌 ↦→
−−−−−→
𝜒(

−→
𝑇 𝜌) (Type Definitions)

N ::= · | N , 𝑁 ↦→ (𝜏𝐶 , 𝑒) (Node Types/Updates)

F ::= · | F , 𝑓 ↦→ (
−−−→
𝑥:𝜏♯):𝜏 where {

−→A}[
−→
𝛿] = 𝑒

(Function Definitions)
Init ::= · | Init, 𝑁 ↦→ ce (Initial Values)
Recursion Indices

𝐼 (𝜒) = {𝑖 | 𝑖 ∈ 1 . . . 𝑛,𝑇
𝜌

𝑖
= 𝜌}

where 𝜒(𝑇
𝜌

1
, . . . ,𝑇

𝜌
𝑛) ∈ T (𝜌)

Figure 1: Syntax of EmfrpBCT

4 FORMALIZATION
4.1 Syntax
The syntax of Emfrp

BCT
is shown in Fig. 1. The syntax defined

here is almost the same as the concrete syntax used in Section 3,

but there are some minor differences. For example, the type must

be specified not only in the parameters of the function but also

in all branches of case-expressions. Size parameters are written

superscript of the type name, not in the [] (e.g., L[n] is written as

Ln). The module in the concrete syntax has out nodes for declaring

the outputs, but in the syntax here, the module does not include

out nodes.

We make three kinds of limitations of the syntax. First, let >N
be an ordering on nodes such that for any node 𝑁 , 𝑁 >N 𝑁 ′

if 𝑁 ′

occurs in the update expression of𝑁 (the second elements ofN(𝑁)).
The transitive closure >∗

N should be a strict partial order. Second,

let ≥F be an ordering on functions such that for any function 𝑓 ,

𝑓 ≥F 𝑔 if 𝑔 occurs in the body of 𝑓 in F . The transitive closure

Bounded-Construction-Types for Functional Reactive Programming

Values

𝑙 ∈ Location

𝑣 ∈ Value ::= 𝑐 | 𝜒 [𝑘] (−→𝑙)
Environments

Γ ::= · | Γ, 𝑁 : 𝜏 | Γ, 𝑥 : 𝜏 (Type Env)
𝐸 ::= · | 𝐸, 𝑥 ↦→ 𝑙 (Evaluation Env)
𝐻 ::= · | 𝐻, 𝑙 ↦→ 𝑣 (Heap)
L ::= · | L, 𝑁 ↦→ 𝑙 | L, 𝑁@last ↦→ 𝑙

(Node Locations)
Δ ::= · | Δ, 𝛿 ↦→ 𝑘 (Size Parameter Env)

Figure 2: Values and Environments

𝜏 ∼ 𝜏 ′ 𝑇 𝜌 ∼ 𝜏 ′

B ∼ B = ⊤
𝜌𝜓 ∼ 𝜌𝜓

′
= (𝜓 = 𝜓 ′)

𝜌 ∼ 𝜌𝜓
′

= (𝜓 > 0)

𝜏 ↓

B ↓ = 0

𝜌𝜓 ↓ = 𝜓

[−−−−−→𝛿 ↦→ 𝜓]𝜓 [−−−−−→𝛿 ↦→ 𝜓]A [−−−−−→𝛿 ↦→ 𝜓]𝜏

[−−−−−→𝛿 ↦→ 𝜓]B = B
[−−−−−→𝛿 ↦→ 𝜓]𝜌𝜓 ′

= 𝜌 [
−−−−→
𝛿 ↦→𝜓]𝜓 ′

[−−−−−→𝛿 ↦→ 𝜓] (𝜓 ◦𝜓 ′) = [−−−−−→𝛿 ↦→ 𝜓]𝜓 ◦ [−−−−−→𝛿 ↦→ 𝜓]𝜓 ′

(if ◦ ∈ {+,−,=, <, ≤})
[−−−−−→𝛿 ↦→ 𝜓]𝑘 = 𝑘

[𝛿1 ↦→ 𝜓1, . . . , 𝛿𝑛 ↦→ 𝜓𝑛]𝛿 = 𝛿 (if 𝛿 ≠ 𝛿𝑖 for any 𝑖)
[𝛿1 ↦→ 𝜓1, . . . , 𝛿𝑛 ↦→ 𝜓𝑛]𝛿 = 𝜓𝑖 (if 𝛿 = 𝛿𝑖)

[
−→
𝜏♯ ↦→ −→𝜏]

[𝜏♯
1
, . . . , 𝜏

♯
𝑛 ↦→ 𝜏1, . . . , 𝜏𝑛] =

[{ 𝛿 ↦→ 𝜓 | 1 ≤ 𝑖 ≤ 𝑛, 𝜏
♯
𝑖
∼ 𝜏𝑖 = (𝛿 = 𝜓) }]

(∀𝑖 ∈ 1 . . . 𝑛, 𝜏
♯
𝑖
∼ 𝜏𝑖 is defined)

evΔ [[𝜓]]

evΔ [[𝑘]] = 𝑘

evΔ [[𝛿]] = Δ(𝛿)
evΔ [[𝜓 +𝜓 ′]] = evΔ [[𝜓]] + evΔ [[𝜓 ′]]
evΔ [[𝜓 −𝜓 ′]] = evΔ [[𝜓]] − evΔ [[𝜓 ′]]
evΔ [[

−→
𝛿]] =

∑
𝛿 ∈−→𝛿

evΔ [[𝛿]]

Figure 3: Auxiliary operators for types and constraints: uni-
fication for types (∼), size parameter for types (↓), size substi-
tution (over types), and evaluation rules of size parameter.

≥∗
F should be a partial order. Finally, any node should not occur in

function bodies.

4.2 Operational Semantics
Here we define the operational semantics of the expression in

Emfrp
BCT

. Since Emfrp
BCT

is concerned with resources used in

computation, its semantics specifies the amount used for opera-

tions that require various resources. Resources articulated in the

semantics include references to local variables, heaps to store data

and call stacks to memorize function call contexts.

The semantics is expressed as [𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒 ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′

(Fig. 4), where 𝐸 is the local variable environment, 𝑠 is the free space

of the local variable, 𝐻 is the heap at the start of the expression

evaluation, 𝑡 is the free space of the heap at this time, 𝑒 is the

expression to be evaluated, 𝑢 is the rest of the call stack, 𝑙 is the

location where the evaluation result of 𝑒 is stored, 𝐻 ′
is the heap

after the expression evaluation, and 𝑡 ′ is the free space at the end.
Also, we have declared types (T) and functions (F) in the module as

resources that do not change during an evaluation, and a reference

of nodes (L) where the value of the node is stored. The domain of

L is a union of the domain of N and 𝐼 , i.e., nodes defined in the

module and input nodes.

The result of the evaluation of an expression is not a direct

value, but a location (a pointer) of the heap, and the evaluation

stores a value in the heap. Since the heap changes according to

the evaluation of the expression, the heaps before and after the

evaluation are made explicit in the semantics. During the evaluation

of the expression, the values stored in the heap are not changed

or collected as garbages, so the use of the heap increases as the

evaluation of the expression progresses.

Let-expressions and case-expressions create new variable bind-

ings, so we have to store the location as a result of evaluating the

variable. An environment for variables also consumes resources, so

make it clear how much has been conserved. However, this envi-

ronment, unlike the heap, is a resource that only consumes in the

extents of the variables, so the changes are reverted each time the

evaluation of the expression finishes. A function call switches the

environments and consumes the call stack to preserve the context.

The free spaces of the variable environment, heap, and call stack

used in semantics shall always be greater than or equal to 0. A

negative value shall not be taken, and if it becomes negative, it

shall be considered stuck. Also, these semantics use some partial

functions as auxiliary functions: when a function is applied to an

argument that is not in its domain, it is assumed that the semantics

is stuck.

The size variables specific to Emfrp
BCT

are not involved in the

evaluation of the function at all, only the constants that represent

the size of the constructor and the size of the fit-expression are

used. Therefore, the size variable does not consume any resources

when executing Emfrp
BCT

.

4.3 Type System
Here, we define a type check for an expression. Type judgement

is described as Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C, where 𝑓 is a function name,

Γ is a type variable environment, and C is a constraint for size

parameters and recursiveness of function calls. The inference rules

of type judgment are defined as Fig. 5.

The type system focuses on the sizes of values, but unlike seman-

tics, it does not take into account resources. Without constraints for

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒 ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′

𝑙 ∉ dom(𝐻)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑐B ⇓𝑛 𝑙 ; [𝑡 − 1] (𝐻, 𝑙 ↦→ 𝑐)

(E-CONST)

𝐸 (𝑥) = 𝑙

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑥 ⇓𝑛 𝑙 ; [𝑡]𝐻

(E-VAR)

L(𝑁) = 𝑙

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑁 ⇓𝑛 𝑙 ; [𝑡]𝐻

(E-NODE)

L(𝑁@last) = 𝑙

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑁@last ⇓𝑛 𝑙 ; [𝑡]𝐻

(E-ATLAST)[
[𝑠]𝐸 | [𝑡𝑖−1]𝐻𝑖−1 ⊢T;F

L 𝑒𝑖 ⇓𝑢 𝑙𝑖 ; [𝑡𝑖]𝐻𝑖

]
𝑖∈1...𝑛

𝜒(𝑇
𝜌

1
, . . . ,𝑇

𝜌
𝑛) ∈ T (𝜌)

[𝐻𝑛 (𝑙𝑖) = 𝜒 ′[𝑘𝑖] (. . .)]𝑖∈𝐼 (𝜒) 𝑘 = 1 +∑
𝑖∈𝐼 (𝜒) 𝑘𝑖 𝑙 ∉ dom(𝐻𝑛)

[𝑠]𝐸 | [𝑡0]𝐻0 ⊢T;F
L 𝜒(𝑒1, . . . , 𝑒𝑛) ⇓𝑢 𝑙 ; [𝑡𝑛 − 1] (𝐻𝑛, 𝑙 ↦→ 𝜒 [𝑘] (𝑙1, . . . , 𝑙𝑛))

(E-CTOR)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒 ⇓𝑢 𝑙1; [𝑡1]𝐻1 𝐻1 (𝑙1) = 𝜒𝑎 [𝑘] (𝑙 ′

1
, . . . , 𝑙 ′𝑎𝑟𝑎)

1 ≤ 𝑎 ≤ 𝑛 [𝑠 −𝑚] (𝐸, 𝑥𝑎1 ↦→ 𝑙 ′
1
, . . . , 𝑥𝑎𝑟𝑎 ↦→ 𝑙 ′𝑎𝑟𝑎) | [𝑡1]𝐻1 ⊢T;F

L 𝑒𝑎 ⇓𝑢 𝑙2; [𝑡2]𝐻2

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L case 𝑒 return 𝜏 of {𝜒𝑖(𝑥𝑖1:𝜏𝑖1, . . . , 𝑥𝑖𝑟𝑖 :𝜏𝑖𝑟𝑖) → 𝑒𝑖 }𝑖∈1...𝑛 ⇓𝑢 𝑙2; [𝑡2]𝐻2

(E-CASE)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1 [𝑠 − 1] (𝐸, 𝑥 ↦→ 𝑙1) | [𝑡1]𝐻1 ⊢T;F

L 𝑒2 ⇓𝑢 𝑙2; [𝑡2]𝐻2

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L let 𝑥 = 𝑒1 in 𝑒2 ⇓𝑢 𝑙2; [𝑡2]𝐻2

(E-LET)[
[𝑠 − 𝑛]𝐸 | [𝑡𝑖−1]𝐻𝑖−1 ⊢T;F

L 𝑒𝑖 ⇓𝑢 𝑙𝑖 ; [𝑡𝑖]𝐻𝑖

]
𝑖∈1...𝑛

F (𝑓) = (𝑥1:𝜏1, . . . , 𝑥𝑛:𝜏𝑛):𝜏 where {
−→A}[

−→
𝛿] = 𝑒

[𝑠 − 𝑛] (𝑥1 ↦→ 𝑙1, . . . , 𝑥𝑛 ↦→ 𝑙𝑛) | [𝑡𝑛]𝐻𝑛 ⊢T;F
L 𝑒 ⇓𝑢−1 𝑙 ; [𝑡 ′]𝐻 ′

[𝑠]𝐸 | [𝑡0]𝐻0 ⊢T;F
L 𝑓 (𝑒1, . . . , 𝑒𝑛) ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′

(E-CALL)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1 𝐻1 (𝑙1) = true

[𝑠]𝐸 | [𝑡1]𝐻1 ⊢T;F
L 𝑒2 ⇓𝑢 𝑙2; [𝑡2]𝐻2

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L if 𝑒1 then 𝑒2 else 𝑒3 ⇓𝑢 𝑙2; [𝑡2]𝐻2

(E-IF-THEN)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1 𝐻1 (𝑙1) = false

[𝑠]𝐸 | [𝑡1]𝐻1 ⊢T;F
L 𝑒3 ⇓𝑢 𝑙3; [𝑡3]𝐻3

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L if 𝑒1 then 𝑒2 else 𝑒3 ⇓𝑢 𝑙3; [𝑡3]𝐻3

(E-IF-ELSE)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1 [𝑠]𝐸 | [𝑡1]𝐻1 ⊢T;F

L 𝑒2 ⇓𝑢 𝑙2; [𝑡2]𝐻2

𝐻2 (𝑙1) = 𝑣1 𝐻2 (𝑙2) = 𝑣2 𝑣 = 𝑜𝑝 (𝑣1, 𝑣2) 𝑙 ∉ dom(𝐻2)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 𝑜𝑝

(B1,B2)→B 𝑒2 ⇓𝑢 𝑙 ; [𝑡2 − 1] (𝐻2, 𝑙 ↦→ 𝑣)
(E-OP)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒 ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒 adj[𝜓] ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′

(E-ADJ)

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1

𝐻1 (𝑙1) = 𝜒 [𝑘 ′] (
−→
𝑙 ′) 𝑘 ′ ≤ 𝑘 [𝑠 − 1] (𝐸, 𝑥 ↦→ 𝑙1) | [𝑡1]𝐻1 ⊢T;F

L 𝑒2 ⇓𝑢 𝑙2; [𝑡2]𝐻2

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L fit 𝑒1 to 𝑥:𝜌

𝑘 → 𝑒2 | fail → 𝑒3 ⇓𝑢 𝑙2; [𝑡2]𝐻2

(E-FIT-SUCCESS)

[𝑠]𝐸 | [𝑠]𝐻 ⊢T;F
L 𝑒1 ⇓𝑢 𝑙1; [𝑡1]𝐻1

𝐻1 (𝑙1) = 𝜒 [𝑘 ′] (
−→
𝑙 ′) 𝑘 ′ > 𝑘 [𝑠]𝐸 | [𝑡1]𝐻1 ⊢T;F

L 𝑒3 ⇓𝑢 𝑙3; [𝑡3]𝐻3

[𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L fit 𝑒1 to 𝑥:𝜌

𝑘 → 𝑒2 | fail → 𝑒3 ⇓𝑢 𝑙3; [𝑡3]𝐻3

(E-FIT-FAIL)

Figure 4: Operational semantics for expressions

Bounded-Construction-Types for Functional Reactive Programming

sizes, the inference rules are similar to those in first-order functional

languages.

Constraints constructed in the type judgment gives the condi-

tions for size parameters, e.g., the sizes of then-clause and else-

clause in if-expression are the same. Also, termination of recursive

calls is guaranteed by decreasing measures of functions. The con-

straints include the condition that the measure of 𝑓 decreases from

the current context in each recursive call. The constraints are in

the category of Presburger arithmetic, and the solver judges their

validity.

The type checking for the module is defined as the type checking

for each element in the module (Fig. 6). Hereafter, we assume that

these three rules defined in Fig. 6 are satisfied and the constraints

constructed by the rules are valid.

4.4 Memory Size Estimation
Type checking guarantees the data type of the Emfrp

BCT
, its size,

and the termination of recursive functions. But there is another

important element in the operational semantics, the amounts of

usage of resources in the evaluation. Our aim is to prove that the

evaluation of the expression is completed in a finite number of steps

if it passes the type checking and resources are properly prepared.

Prior to this proof, we define here the estimation algorithm as the

function M to calculate the amount of concrete resources (Fig. 7).

The ⊔ used here is the operator that returns the maximum value.

The estimate function starts from a node update to estimate

how many resources are necessary for calculating its result. In

the process, the size parameters, which are declared in function

arguments and branches of case expressions, are instantiated as

constants. The branch for a case expression may distribute the size

among multiple parameters, so we try all of the possible patterns

and find the maximum value in M.

The return value of the estimation function is a quadruple, each

representing the size of the evaluation result (on the type system),

the number of local variables, the amount of heap requirements,

and the amount of call stack requirements, respectively. These

parameters are not exact values and return more than what would

be required for any branch to be passed through. The next section

will show that this will provide sufficient resources.

4.5 Soundness
Here, we show the termination of the estimation function M and

the soundness of the type system. Due to the lack of space, we

describe proofs for these theorems in Appendix B and Appendix C.

Definition 4.1. When Γ and Δ satisfy the condition

⋃{FV(Γ(𝑥) ↓
) | 𝑥 ∈ dom(Γ)} ⊆ dom(Δ), we say (Γ,Δ) consistent.

For heap 𝐻 and location 𝑙 , when 𝐻 (𝑙) = 𝑐 , we say that 𝑙 denotes

𝑐 on 𝐻 . Also, when 𝐻 (𝑙) = 𝜒 [𝑘] (𝑙1, . . . , 𝑙𝑛) such that 𝑙𝑖 denotes 𝑒𝑖
on 𝐻 and 𝑘 = Σ𝑖∈𝐼 (𝜒)𝑘𝑖 where 𝐻 (𝑙𝑖) = 𝜒𝑖 [𝑘𝑖] (. . .) for 𝑖 ∈ 𝐼 (𝜒), we
say that 𝑙 denotes 𝜒(𝑒1, . . . , 𝑒𝑛) on 𝐻 .

When 𝐸, 𝐻 , Γ and Δ satisfy the condition, (Γ,Δ) consistent, for
each variable 𝑥 ∈ dom(𝐸), 𝐸 (𝑥) denotes ce𝑥 on 𝐻 , ce𝑥 is typed as

𝜏𝐶 , and 𝜏𝐶 ↓≤ evΔ [[Γ(𝑥) ↓]], we say (𝐸, 𝐻, Γ,Δ) consistent.

Theorem 4.2 (termination of the estimate function). As-
sume that Γ ⊢T;F

𝑓
𝑒 : 𝜏 | C is satisfied, any function 𝑔 occurring

in 𝑒 satisfies 𝑓 ≥∗
F 𝑔, Δ is a model of C, and (Γ,Δ) consistent.

ThenMT;F
Δ;Γ [[𝑒]] terminates in finite steps, and whenMT;F

Δ;Γ [[𝑒]] =
(𝑘, 𝑠, 𝑡, 𝑢), 𝑘 = evΔ [[𝜏 ↓]].

Corollary 4.3. For any node 𝑁 ,MT;F
𝜖 ;ΓN

[[N (𝑁)]] is terminated

in finite steps where ΓN = I, 𝑁1:𝜏
𝐶
1
, . . . , 𝑁𝑛:𝜏

𝐶
𝑛 .

Theorem 4.4 (soundness). Assume that Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C,
(𝐸, 𝐻, Γ,Δ) consistent, any function 𝑔 occurring in 𝑒 satisfies 𝑓 ≥∗

F 𝑔,

Δ is a model of C, and MT;F
Δ;Γ [[𝑒]] = (𝑝M , 𝑠M , 𝑡M , 𝑢M). For any

𝑠 ≥ 𝑠M , 𝑡 ≥ 𝑡M and 𝑢 ≥ 𝑢M , there exist 𝑡 ′, 𝑙 , 𝐻 ′, ce and 𝜏𝐶 such
that [𝑠]𝐸 | [𝑡]𝐻 ⊢T;F

L 𝑒 ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′, 𝑡 ′ ≥ 𝑡 − 𝑡M , 𝑙 denotes ce on
𝐻 ′, ce is typed as 𝜏𝐶 and evΔ [[𝜏𝐶 ↓]] ≤ evΔ [[𝜏 ↓]].

Corollary 4.5. Assume that ΓN (𝑁) = 𝜏𝑁 , (𝐸, 𝐻, ΓN , 𝜖) consis-
tent, and MT;F

𝜖 ;ΓN
[[N𝑁]] = (𝑝M , 𝑠M , 𝑡M , 𝑢M). Then, there exist 𝑡 ′, 𝑙 ,

𝐻 ′, ce and 𝜏𝐶 such that [𝑠M]𝐸 | [𝑡M]𝐻 ⊢T;F
L N(𝑁) ⇓𝑢M 𝑙 ; [𝑡 ′]𝐻 ′,

𝑙 denotes ce on 𝐻 ′, ce is typed as 𝜏𝐶 and evΔ [[𝜏𝐶 ↓]] ≤ evΔ [[𝜏𝑁 ↓]].

4.6 Example
4.6.1 insert function of DupCheck module. We illustrate the size

constraints and resource requirements of insert function (Listing

3). The size constraint 𝐴 ≡ ⊤ → 2 ≤ 𝑚 + 1 ∧𝑚 + 1 =𝑚 + 1 is from

N branch. And the size constraint 𝐵 ≡ 𝑚 = 1 + 𝑛 ∧ 𝑛 > 0 → 𝑛 >

0∧ (𝑛 +1) +1 =𝑚 +1 is from C branch. The 𝑛 > 0 to the right of the

arrow is a constraint for a recursive call. Since l of the case input

is a variable reference, there are no additional size constraints. Thus

we obtain constraint 𝐴 ∧ 𝐵 for the case expression. As a result, we

have ∀𝑚.𝑚 > 0 → 𝐴 ∧ 𝐵 for insert function declaration.

When function call with𝑚 = 1, size 1 list, the result of the esti-

mation algorithm M is (2, 0, 2, 0) because C branch is not executed.

The amount of resources required to call insert function when

𝑚 = 𝑛 is calculated using the information at𝑚 = 𝑛 − 1. That is, the

result ofM for𝑚 = 2 is (3, 2, 3, 1);

4.6.2 sumHeap function of Top10Sum module. We also show an

example of sumHeap function (Listing 4). As in the first example,

we find the constraints of the case expressions. The size constraint
on N branch is 𝐴 ≡ ⊤ → 0 = 0. The size constraint on T branch

is 𝐵 ≡ 𝑛 = 1 + 𝑝 + 𝑞 ∧ 𝑝 > 0 ∧ 𝑞 > 0 → 𝑝 > 0 ∧ 𝑞 > 0 ∧ 0 = 0

because the decomposition produces two tree structures. Thus we

obtain the size constraint ∀𝑛.𝑛 > 0 → 𝐴 ∧ 𝐵 for sumHeap function

declaration.

sumHeap is called at node y with 𝑛 = 21. In this case, Algorithm

M finds the amount of resources required by the T branch by

doing an exhaustive search for size 𝑝 and 𝑞. That is, let (𝑝, 𝑞) be
(1, 19) . . . (10, 10) . . . (19, 1) and search recursively for the branch

expression. The result ofM is the parameter for the most resource-

intensive case.

5 RELATEDWORKS
The notion of Sized Types [14], types enhanced with size infor-

mation, has a strong influence on Bounded-Construction Types.

Some essential properties of embedded systems, such as deadlock

freedom and termination, can be guaranteed statically using Sized

Types. Like Sized Types, our method attaches size information to

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C

Γ ⊢T;F
𝑓

𝑐B : B | ⊤
(T-CONST)

Γ(𝑥) = 𝜏

Γ ⊢T;F
𝑓

𝑥 : 𝜏 | ⊤
(T-VAR)

Γ(𝑁) = 𝜏

Γ ⊢T;F
𝑓

𝑁 : 𝜏 | ⊤
(T-NODE)

Γ(𝑁) = 𝜏

Γ ⊢T;F
𝑓

𝑁@last : 𝜏 | ⊤
(T-ATLAST)

𝜒(𝑇
𝜌

1
, . . . ,𝑇

𝜌
𝑛) ∈ T (𝜌)

[
Γ ⊢T;F

𝑓
𝑒𝑖 : 𝜏𝑖 | C𝑖

]
𝑖∈1...𝑛

𝜓 = 1 +∑
𝑖∈𝐼 (𝜒) 𝜏𝑖 ↓

Γ ⊢T;F
𝑓

𝜒(𝑒1, . . . , 𝑒𝑛) : 𝜌𝜓 | ∧𝑖∈1...𝑛 (C𝑖 ∧𝑇
𝜌

𝑖
∼ 𝜏𝑖)

(T-CTOR)

Γ ⊢T;F
𝑓

𝑒0 : 𝜌𝜓 | C0

[
Γ ⊢T;F

𝑓
branch𝑖 :∼ 𝜏 | C𝑖

]
𝑖∈1...𝑛

Γ ⊢T;F
𝑓

case 𝑒0 return 𝜏 of {branch𝑖 }𝑖∈1...𝑛 : 𝜏 | ∧𝑖∈0...𝑛 C𝑖
(T-CASE)

Γ ⊢T;F
𝑓

𝑒1 : 𝜏1 | C Γ, (𝑥 : 𝜏1) ⊢T;F
𝑓

𝑒2 : 𝜏2 | C′

Γ ⊢T;F
𝑓

let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2 | C ∧ C′
(T-LET)

F (𝑔) = (𝑥1:𝜏
♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛):𝜏 where {A1, . . . ,A𝑚}[

−→
𝛿] = 𝑒[

Γ ⊢T;F
𝑓

𝑒𝑖 : 𝜏𝑖 | C𝑖
]
𝑖∈1...𝑛

𝜃 = [𝜏♯
1
, . . . , 𝜏

♯
𝑛 ↦→ 𝜏1, . . . , 𝜏𝑛]

R =

{∑
𝛿 ∈−→𝛿

(𝜃𝛿) < ∑
𝛿 ∈−→𝛿

𝛿 (𝑓 = 𝑔)
⊤ (otherwise)

Γ ⊢T;F
𝑓

𝑔(𝑒1, . . . , 𝑒𝑛) : 𝜃𝜏 | ∧𝑖∈1...𝑛 C𝑖 ∧
∧

𝑖∈1...𝑚 (𝜃A𝑖) ∧ R
(T-CALL)

Γ ⊢T;F
𝑓

𝑒1 : Bool | C1 Γ ⊢T;F
𝑓

𝑒2 : 𝜏 | C2 Γ ⊢T;F
𝑓

𝑒3 : 𝜏 ′ | C3

Γ ⊢T;F
𝑓

if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏 | 𝜏 ∼ 𝜏 ′ ∧ C1 ∧ C2 ∧ C3

(T-IF)

Γ ⊢T;F
𝑓

𝑒1 : B1 | C1 Γ ⊢T;F
𝑓

𝑒2 : B2 | C2

Γ ⊢T;F
𝑓

𝑒1 𝑜𝑝
(B1,B2)→B 𝑒2 : B | C1 ∧ C2

(T-OP)

Γ ⊢T;F
𝑓

𝑒 : 𝜌𝜓
′ | C

Γ ⊢T;F
𝑓

𝑒 adj [𝜓] : 𝜌𝜓 | C ∧𝜓 ′ ≤ 𝜓
(T-ADJ)

Γ ⊢T;F
𝑓

𝑒1 : 𝜌𝜓 | C1 Γ, (𝑥 : 𝜌𝑘) ⊢T;F
𝑓

𝑒2 : 𝜏 | C2 Γ ⊢T;F
𝑓

𝑒3 : 𝜏 ′ | C3

Γ ⊢T;F
𝑓

fit 𝑒1 to 𝑥:𝜌
𝑘 → 𝑒2 | fail → 𝑒3 : 𝜏 | C1 ∧ C2 ∧ C3 ∧ 𝜏 ∼ 𝜏 ′

(T-FIT)

Γ ⊢T;F
𝑓

branch :∼ 𝜏 | C

𝜒(𝑇
𝜌

1
, . . . ,𝑇

𝜌
𝑛) ∈ T (𝜌)

−→
𝛿 = {𝜏♯

𝑖
↓ |𝑖 ∈ 1 . . . 𝑛, 𝜏

♯
𝑖
↓ ∈ SizeVar}

Γ, 𝑥1:𝜏
♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛 ⊢T;F

𝑓
𝑒 : 𝜏 ′ | C′

R =

{
𝜏 ↓= 1 +∑

𝑖∈𝐼 (𝜒) 𝜏
♯
𝑖
↓ (𝐼 (𝜒) ≠ ∅)

⊤ (otherwise)
C = R ∧∧

𝑖∈1...𝑛 𝑇
𝜌

𝑖
∼ 𝜏

♯
𝑖

Γ ⊢T;F
𝑓

𝜒(𝑥1:𝜏
♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛) → 𝑒 :∼ 𝜏 | ∀−→𝛿 . C → (C′ ∧ 𝜏 ′ ∼ 𝜏)

(T-BRANCH)

Figure 5: Typing rules for expressions

types and guarantees that a program will continue to run with

bounded memory space. The main difference between Bounded-

Construction Types (BCTs) and Sized Types is fit-expression, which

accesses the size information from a program. For example, the

type of filter function is (Int → Bool) → List[m] → List[m]
(in both BCTs and Sized Types) because we cannot know whether

some elements are filtered out from a given list. In Sized Types, we

cannot add another element to the returned list without size grow-

ing, even if the list is smaller. In contrast, in BCTs, we can check

the returned list smaller than expected size (10, for example) by

fit-expression (fit l to l':List [9]), and add another element in

a type-safe manner. This expression is useful in functional reactive

programming because the size of the values in the previous state

may be less than the sizes that the types say. In Sized Types, such

situations are avoided by filling the dummy data instead of filtering

out. This is not natural. Our method is straightforward from the

standard manner.

Juniper [8] is an FRP language designed for Arduino, which

is a microcomputer board using ATmega328. Juniper’s template

mechanism allows us to set a parameter called capacity variable [7]
in addition to the usual type parameter in C++ as well. By using

this parameter, it is possible to set the size of the array in the record.

However, this parameter is translated to a C++ template. Thus, it

does not guarantee the maximum size of the recursive data types.

Bounded-Construction-Types for Functional Reactive Programming

F =⇒ C [
F (𝑓) = (𝑥1:𝜏

♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛):𝜏 where {A1, . . . ,A𝑚}[

−→
𝛿] = 𝑒

𝑥1:𝜏
♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛 ⊢T;F

𝑓
𝑒 : 𝜏 | C𝑓

]
𝑓 ∈dom(F)

F =⇒ ∧
𝑓 ∈dom(F) ∀

−−→
𝜏
♯
𝑖
↓.(∧𝑖∈1...𝑚 A𝑖) → C𝑓

(C-FUNC)

N =⇒ C

dom(N) = {𝑁1, . . . , 𝑁𝑛}
[

N(𝑁𝑖) = (𝜏𝐶
𝑖
, 𝑒𝑖)

I, 𝑁1:𝜏
𝐶
1
, . . . , 𝑁𝑛:𝜏

𝐶
𝑛 ⊢T;F

− 𝑒 : 𝜏𝐶
𝑖

| C𝑖

]
𝑖∈1...𝑛

N =⇒ ∧
𝑖∈1...𝑛 C𝑖

(C-NODE)Init =⇒ [
N(𝑁) = (𝜏𝐶 , 𝑒)

· ⊢T;F
− Init (𝑁) : 𝜏𝐶 | C𝑁

]
𝑁 ∈dom(N)

[
· ⊢T;F

− Init (𝑁) : 𝜏𝐶 | C𝑁
]
(𝑁,𝜏𝐶) ∈I

Init =⇒ ∧
𝑁 ∈dom(N) C𝑁 ∧∧

(𝑁,𝜏𝐶) ∈I C𝑁
(C-INIT)

Figure 6: Typing Constraints on Modules

RT-FRP [19] and E-FRP [20] by Wan et al. are FRP languages for

real-time systems, which can statically check the upper bound of

the resources (term size) used by a program. These languages allow

static estimates of the total amount of resources required by the

program, but do not allow the size of the data structure to be set

in advance. In addition, these languages do not have any language

features that correspond to the recursive data types. On the other

hand, the proposed method can control the amount of resources in

each data structure by using size parameters.

Futhark [10] is a purely functional language for GPUs. It can

treat arrays as primitive data structures and is statically checked for

size consistency by a type called Size Types [9]. It behave as a kind

of dependent type, which can contain values passed as arguments to

a function. On the contrary, all of our size parameters are processed

at the type level. That is, the value of the size parameter cannot

propagate to the value level or vice versa. This is a design choice to

statically analyze the upper bound of memory usage at runtime.

Lucid Synchrone [2] and its advances, Lustre [6, 16] and Zélus [1],

are synchronous data flow languages for real-time reactive systems.

This language has a lot in common with Emfrp, such as combining

time-varying values to describe a program, and being able to refer

to values one time step earlier (@last in Emfrp, pre in Lustre). These

languages, as well as Emfrp, prohibit loops (recursive calls) and

recursive data structures such as lists in order to estimate the (worst)

execution time and memory usage. Instead, they provide arrays

and primitive operations (e.g., map, reduce, etc.) to manipulate them.

The examples using the lists (Fig. 3) can also be implemented using

arrays. However, if we want to use data structures such as trees,

we represent it more naturally by using BCTs.

Krishnaswami et al. [15] controlled the memory allocation in

FRP programs by using some kind of linear type. In their proposed

language, we can control the special values representing memory

resources by linear types to handle the list structure in a bounded

memory space. While linear types can control the passing of mem-

ory resources, resource objects must be managed by programmers.

In our method, we do not track memory resources, but determine

the upper bounds of memory by statically evaluating the behavior

of the program on size parameters.

Our memory estimation algorithm measures the worst-case

memory consumption by scanning the program based on the size

information. Automatic Amortized Resource Analysis (AARA), in-

troduced by Hofmann et al [12], is a different method of this issue.

Hoffman et al. [11] proposed an AARA method for OCaml and

derived a multivariable polynomial bounds for some examples.

6 CONCLUSION
In this paper, we introduce a size-bounded recursive data type called

Bounded-Construction-Types (BCTs) for Emfrp, an FRP language

for resource-bounded embedded systems. After showing the ef-

fectiveness of BCTs with examples, we give a formal definition of

Emfrp
BCT

, an extension of Emfrp with BCTs as well as the proof

of the soundness of the language.

Several tasks remain for future work. One is to expand BCTs to

have polymorphism with type and size. Another is to implement

the extended language to show the benefit of BCTs through ac-

tual applications. We also plan to extend the memory estimation

algorithm using different approaches (e.g., AARA).

REFERENCES
[1] Timothy Bourke and Marc Pouzet. 2013. Zélus: A Synchronous Language with

ODEs. In 16th International Conference on Hybrid Systems: Computation and
Control (HSCC’13). Philadelphia, USA, 113–118. http://www.di.ens.fr/~pouzet/

bib/hscc13.pdf

[2] Paul Caspi, Grégoire Hamon, and Marc Pouzet. 2010. Synchronous Func-
tional Programming with Lucid Synchrone. 207 – 247. https://doi.org/10.1002/

9780470611012.ch7

[3] Evan Czaplicki. 2016. A Farewell to FRP: Making signals unnecessary with

The Elm Architecture. http://elm-lang.org/blog/farewell-to-frp. http://elm-

lang.org/blog/farewell-to-frp

[4] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reac-

tive Programming for GUIs. In 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2013). ACM, 411–422. https:

//doi.org/10.1145/2499370.2462161

[5] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In 2nd ACM
SIGPLAN International Conference on Functional Programming (ICFP 1997). ACM,

263–273. https://doi.org/10.1145/258949.258973

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous data

flow programming language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320.

[7] Caleb Helbling. 2016. Juniper Language Documentation (ver. 2.2.0). http://www.

juniper-lang.org/language_docs.html. http://www.juniper-lang.org/index.html

[8] Caleb Helbling and Samuel Z Guyer. 2016. Juniper: A Functional Reactive

Programming Language for the Arduino. In 4th International Workshop on
Functional Art, Music, Modelling, and Design (FARM 2016). ACM, 8–16. https:

//doi.org/10.1145/2975980.2975982

[9] Troels Henriksen. 2019. Towards Size Types in Futhark. https://futhark-lang.org/

blog/2019-08-03-towards-size-types.html. https://futhark-lang.org/blog/2019-

08-03-towards-size-types.html

http://www.di.ens.fr/~pouzet/bib/hscc13.pdf
http://www.di.ens.fr/~pouzet/bib/hscc13.pdf
https://doi.org/10.1002/9780470611012.ch7
https://doi.org/10.1002/9780470611012.ch7
http://elm-lang.org/blog/farewell-to-frp
http://elm-lang.org/blog/farewell-to-frp
http://elm-lang.org/blog/farewell-to-frp
https://doi.org/10.1145/2499370.2462161
https://doi.org/10.1145/2499370.2462161
https://doi.org/10.1145/258949.258973
http://www.juniper-lang.org/language_docs.html
http://www.juniper-lang.org/language_docs.html
http://www.juniper-lang.org/index.html
https://doi.org/10.1145/2975980.2975982
https://doi.org/10.1145/2975980.2975982
https://futhark-lang.org/blog/2019-08-03-towards-size-types.html
https://futhark-lang.org/blog/2019-08-03-towards-size-types.html
https://futhark-lang.org/blog/2019-08-03-towards-size-types.html
https://futhark-lang.org/blog/2019-08-03-towards-size-types.html

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

MT;F
Δ;Γ [[𝑒]] = (𝑘, 𝑠, 𝑡, 𝑢)

MT;F
Δ;Γ [[𝑐B]] = (0, 0, 1, 0) MT;F

Δ;Γ [[𝑥]] = (evΔ [[Γ(𝑥) ↓]], 0, 0, 0)

MT;F
Δ;Γ [[𝑁]] = MT;F

Δ;Γ [[𝑁@last]] = (evΔ [[Γ(𝑁) ↓]], 0, 0, 0)

MT;F
Δ;Γ [[let 𝑥 = 𝑒1 in 𝑒2]] = (𝑘2, 𝑠1 ⊔ (1 + 𝑠2), 𝑡1 + 𝑡2, 𝑢1 ⊔ 𝑢2)
where (𝑘1, 𝑠1, 𝑡1, 𝑢1) = MT;F

Δ;Γ [[𝑒1]], (𝑘2, 𝑠2, 𝑡2, 𝑢2) = MT;F
(Δ,𝜏♯↓↦→𝑘1) ;(Γ,𝑥 :𝜏♯) [[𝑒2]]

MT;F
Δ;Γ [[if 𝑒1 then 𝑒2 else 𝑒3]] = (𝑘2, 𝑠1 ⊔ 𝑠2 ⊔ 𝑠3, 𝑡1 + (𝑡2 ⊔ 𝑡3), 𝑢1 ⊔ 𝑢2 ⊔ 𝑢3)
where (𝑘𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) = MT;F

Δ;Γ [[𝑒𝑖]] (1 ≤ 𝑖 ≤ 3)

MT;F
Δ;Γ [[𝑒1 op (B1,B2)→B 𝑒2]] = (0, 𝑠1 ⊔ 𝑠2, 1 + 𝑡1 + 𝑡2, 𝑢1 ⊔ 𝑢2)
where (𝑘𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) = MT;F

Δ;Γ [[𝑒𝑖]] (1 ≤ 𝑖 ≤ 2)

MT;F
Δ;Γ [[𝑓 (𝑒1, . . . , 𝑒𝑛)]] = (𝑘 ′, 𝑛 + (𝑠 ′ ⊔ ⊔

𝑖∈1...𝑛 𝑠𝑖), 𝑡 ′ +
∑
𝑖∈1...𝑛 𝑡𝑖 , (1 + 𝑢 ′) ⊔

⊔
𝑖∈1...𝑛 𝑢𝑖)

where (𝑘𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) = MT;F
Δ;Γ [[𝑒𝑖]] (1 ≤ 𝑖 ≤ 𝑛),

F (𝑓) = (𝑥1:𝜏
♯
1
, . . . , 𝑥𝑛:𝜏

♯
𝑛):𝜏 where {

−→A}[
−→
𝛿] = 𝑒,

(𝑘 ′, 𝑠 ′, 𝑡 ′, 𝑢 ′) = MT;F
{𝜏♯

𝑖
↓ ↦→𝑘𝑖 }𝑖∈1...𝑛 ;{𝑥𝑖 :𝜏♯𝑖 }𝑖∈1...𝑛

[[𝑒]]

MT;F
Δ;Γ [[𝜒(𝑒1, . . . , 𝑒𝑛)]] = (1 +∑

𝑖∈𝐼 (𝜒) 𝑘𝑖 ,
⊔

𝑖∈1...𝑛 𝑠𝑛, 1 +∑
𝑖∈1...𝑛 𝑡𝑖 ,

⊔
𝑖∈1...𝑛 𝑢𝑖)

where (𝑘𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) = MT;F
Δ;Γ [[𝑒𝑖]] (1 ≤ 𝑖 ≤ 𝑛), 𝜒(

−→
𝑇 𝜌) ∈ T (𝜌)

MT;F
Δ;Γ [[case 𝑒0 return 𝜏 of {branch𝑖 }𝑖∈1...𝑛]] = (evΔ [[𝜏 ↓]], ⊔𝑖∈0...𝑛 𝑠𝑖 , 𝑡0 +

⊔
𝑖∈1...𝑛 𝑡𝑖 ,

⊔
𝑖∈0...𝑛 𝑢𝑖)

where (𝑘0, 𝑠0, 𝑡0, 𝑢0) = MT;F
Δ;Γ [[𝑒0]], (𝑘𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) = MT;F

𝑘0;Δ;Γ (branch𝑖) (1 ≤ 𝑖 ≤ 𝑛)

MT;F
Δ;Γ [[𝑒 adj [𝜓]]] = (evΔ [[𝜓]], 𝑠, 𝑡, 𝑢) where (𝑘, 𝑠, 𝑡, 𝑢) = MT;F

Δ;Γ [[𝑒]]

MT;F
Δ;Γ [[fit 𝑒1 to 𝑥:𝜌

𝑘 → 𝑒2 | fail → 𝑒3]] = (𝑘2, 𝑠1 ⊔ (1 + 𝑠2) ⊔ 𝑠3, 𝑡1 + (𝑡2 ⊔ 𝑡3), 𝑢1 ⊔ 𝑢2 ⊔ 𝑢3)
where (𝑘1, 𝑠1, 𝑡1, 𝑢1) = MT;F

Δ;Γ [[𝑒1]], (𝑘2, 𝑠2, 𝑡2, 𝑢2) = MT;F
Δ;Γ,𝑥 :𝜌𝑘

[[𝑒2]], (𝑘3, 𝑠3, 𝑡3, 𝑢3) = MT;F
Δ;Γ [[𝑒3]]

MT;F
𝑚;Δ;Γ (𝜒(𝑥1 : 𝜏

♯
1
, . . . , 𝑥𝑛 : 𝜏

♯
𝑛) → 𝑒) =

if𝑚 ≤ |𝐼 (𝜒) | then (0, 0, 0, 0) else (⊔𝑎∈A 𝑘𝑎, 𝑛 + ⊔
𝑎∈A 𝑠𝑎,

⊔
𝑎∈A 𝑡𝑎,

⊔
𝑎∈A 𝑢𝑎)

where 𝜒(𝑇
𝜌

1
, . . . ,𝑇

𝜌
𝑛) ∈ T (𝜌),

A = { {𝜏♯
𝑖
↓ ↦→ 𝑝𝑖 }𝑖∈𝐼 (𝜒) | (∀𝑖 ∈ 1 . . . 𝑛, 𝑝𝑖 > 0) ∧𝑚 = 1 +∑

𝑖∈𝐼 (𝜒) 𝑝𝑖 ∨ 𝐼 (𝜒) = ∅},
𝑏 = {𝜏♯

𝑗
↓ ↦→ 𝑘 𝑗 | 𝑗 ∈ 1 . . . 𝑛,𝑇

𝜌

𝑗
= 𝜌 ′𝑘 𝑗 },

(𝑘𝑎, 𝑠𝑎, 𝑡𝑎, 𝑢𝑎) = MT;F
(Δ,𝑎,𝑏) ;(Γ,𝑥1:𝜏

♯

1
,...,𝑥𝑛 :𝜏

♯
𝑛)
[[𝑒]] (𝑎 ∈ A)

Figure 7: Estimation Algorithm

[10] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-

min E. Oancea. 2017. Futhark: Purely Functional GPU-programming with

Nested Parallelism and In-place Array Updates. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 556–571.

https://doi.org/10.1145/3062341.3062354

[11] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic

Resource Bound Analysis for OCaml. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 359–373. https:

//doi.org/10.1145/3009837.3009842

[12] Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage

for First-Order Functional Programs. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (New Orleans,

Louisiana, USA) (POPL ’03). Association for Computing Machinery, New York,

NY, USA, 185–197. https://doi.org/10.1145/604131.604148

[13] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Arrows,

Robots, and Functional Reactive Programming. In Advanced Functional Program-
ming. Lecture Notes in Computer Science, Vol. 2638. Springer-Verlag, 159–187.

https://doi.org/10.1007/978-3-540-44833-4_6

[14] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of

Reactive Systems Using Sized Types. In 23rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’96). ACM, 410–423. https:

//doi.org/10.1145/237721.240882

[15] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann. 2012. Higher-

Order Functional Reactive Programming in Bounded Space. In Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Philadelphia, PA, USA) (POPL ’12). Association for Computing

Machinery, New York, NY, USA, 45–58. https://doi.org/10.1145/2103656.2103665

[16] LustreV6 2020. Verimag Lustre V6. Retrieved May 23, 2020 from http://www-

verimag.imag.fr/Lustre-V6.html

[17] Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University

Press.

[18] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: A Functional Reactive

Programming Language for Small-Scale Embedded Systems. In MODULARITY
Companion 2016: Companion Proceedings of the 15th International Conference on
Modularity. ACM, 36–44. https://doi.org/10.1145/2892664.2892670

[19] Zhanyong Wan, Walid Taha, and Paul Hudak. 2001. Real-Time FRP. In Inter-
national Conference on Functional programming (ICFP 2001). ACM SIGPLAN,

146–156. https://doi.org/10.1145/507635.507654

[20] ZhanyongWan,Walid Taha, and Paul Hudak. 2002. Event-Driven FRP. In Practical
Aspects of Declarative Langauges (Lecture Notes in Computer Science, Vol. 2257).
Springer-Verlag, 155—172. https://doi.org/10.1007/3-540-45587-6_11

https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/604131.604148
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/2103656.2103665
http://www-verimag.imag.fr/Lustre-V6.html
http://www-verimag.imag.fr/Lustre-V6.html
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/507635.507654
https://doi.org/10.1007/3-540-45587-6_11

Bounded-Construction-Types for Functional Reactive Programming

A SOURCE CODE OF TOP10SUMMODULE

1 # The sum of the top 10 of the input data
2 module Top10Sum
3 in x: Int # input value
4 out y: Int # sum
5

6 # Leftist Heap
7 type Heap = E # terminal
8 | T(Int,Int,Heap,Heap) # (rank,v,left,right)
9

10 # get tree rank
11 func rank(e: Heap[n]) : Int where {n > 0} =
12 case e return Int of E -> 0 | T(r, x, a, b) -> r
13

14 # make a heap tree
15 func make(x:Int,a:Heap[n],b:Heap[m]):Heap[1+n+m]
16 where {n > 0, m > 0} =
17 if ra > rb then T(rank(b)+1, x, a, b)
18 else T(rank(a)+1, x, b, a)
19

20 # merge heap trees
21 func merge(h1:Heap[n],h2: Heap[m]):Heap[n+m-1]
22 where {n > 0, m > 0} [n,m] =
23 case h1 return Heap[n+m-1] of E -> h2 adj[n+m-1]
24 | T(r1, x1, a1, b1) ->
25 case h2 return Heap[n+m-1] of E -> h1 adj[n+m-1]
26 | T(r2, x2, a2, b2) ->
27 if x1 <= x2 then
28 make(x1, a1, merge(b1, h2))
29 else
30 make(x2, a2, merge(h1, b2))
31

32 # insert value
33 func insert(x: Int, h: Heap[n]): Heap[n+2]
34 where {n > 0} = merge(T(1, x, E, E), h)
35

36 # get min value
37 func findMin(h: Heap[n]): Int where {n>0} =
38 case h return Int of E -> 0 | T(r, x, a, b) -> x
39

40 # delete min value
41 func delMin(h:Heap[n]):Heap[n-2] where {n>2} =
42 case h return Heap[n-2] of E -> E adj[n-2]
43 | T(r, x, a, b) -> merge(a, b)
44

45 # sum of values in heap tree
46 func sumHeap(h: Heap[n]): Int where {n>0} =
47 case h return Int of E -> 0
48 | T(r, x, a: Heap[p], b: Heap[q]) -> x+sumHeap(a)+

sumHeap(b)
49

50 # heap tree node
51 node h: Heap[21] init (E adj[21]) =
52 fit h@last to hl: Heap[19] -> insert(x, hl)
53 | fail -> if x <= findMin(h@last) then h@last
54 else insert(x, delMin(h@last))
55

56 # sum of heap node
57 node y: Int init 0 = sumHeap(h)

Listing 5: Duplication Checking Module using List

B PROOF OF TERMINATION OF THE
ESTIMATE FUNCTION

Theorem B.1. Assume that Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C is satisfied, any
function 𝑔 occuring in 𝑒 satisfies 𝑓 ≥∗

F 𝑔, Δ is a model of C, and
(Γ,Δ) consistent. Then MT;F

Δ;Γ [[𝑒]] terminates in finite steps, and

whenMT;F
Δ;Γ [[𝑒]] = (𝑘, 𝑠, 𝑡, 𝑢), 𝑘 = evΔ [[𝜏 ↓]].

Proof. We prove this by induction on the lexicographic order

of triple (𝑓 , evΔ [[
−→
𝛿]], 𝑒) where −→𝛿 is the measure of 𝑓 . The order-

ing of functions is defined as ≥∗
F ∪{(−, 𝑓) |𝑓 ∈ dom(F)} (− is a

special symbol used for node typing rules). Also, for the term 𝑒 , the

subterms of 𝑒 are considered to be smaller than 𝑒 .

We divide the cases for the last rules used for deriving Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C. The cases of T-CONST, T-VAR, T-NODE and T-ATLAST

are clear. The cases of T-CTOR, T-LET, T-IF, T-OP, T-ADJ and T-FIT

are directly proven with induction hypothesis (decreasing the third

of the triple).

The case of T-CASE is also proven with induction hypothesis,

but we should check the conditions in the assertion of this theorem.

The estimation function applied to a case-expression invokes itself

with the body of each branch and size parameters of the constructor.

The number of branches and the patterns of size parameters (A
inM) are finite, the number of these recursive invocations of the

estimate function are also finite. Each invocation terminates in

finite steps (by induction hypothesis), and therefore the case of

T-CASE also terminates. The assertion about 𝑘 is straightforward.

The case of T-CALL is proven with induction hypothesis un-

der three patterns of decrease of the triple. Let 𝑒 be 𝑔(𝑒1, . . . , 𝑒𝑛).
By induction hypothesis (decreasing the third of the triple), the

estimation of each argument terminates and for 𝑖-th argument,

𝑘𝑖 = evΔ [[𝜏𝑖 ↓]]. When 𝑔 = 𝑓 , because Δ is a model of R in

T-CALL, evΔ [[Σ
𝛿 ∈−→𝛿

(𝜃𝛿)]] < evΔ [[
−→
𝛿]]. From the definition of 𝜃

and

−→
𝛿 , 𝜃𝛿 is equivalent to 𝜏𝑖 ↓ for some 𝑖 , i.e., evΔ [[𝜃𝛿]] = 𝑘𝑖 . In

the estimation of the function body of 𝑔, ev {𝜏♯
𝑖
↓ ↦→𝑘𝑖 }𝑖∈1...𝑛

[[−→𝛿]] =
ev {𝜏♯

𝑖
↓ ↦→𝑘𝑖 }𝑖∈1...𝑛

[[Σ
𝜏
♯

𝑖
↓∈−→𝛿

𝜏𝑖 ↓]] = ev {𝜏♯
𝑖
↓ ↦→𝑘𝑖 }𝑖∈1...𝑛

[[Σ
𝜏
♯

𝑖
↓∈−→𝛿

𝑘𝑖]] =

evΔ [[Σ
𝛿 ∈−→𝛿

(𝜃𝛿)]]. This means that, in the estimation of the func-

tion body of 𝑔, the second of the triple decreases. When 𝑔 ≠ 𝑓 , from

the assumption of occurrence of functions, 𝑔 is less than 𝑓 with

respect to the function ordering. In both cases the triple decreases in

the estimation of the function body, and type judgement of the func-

tion body is guaranteed by the typing conditions for F . Therefore,

from the induction hypothesis, the estimation terminates. □

C PROOF OF SOUNDNESS
Theorem C.1. Assume that Γ ⊢T;F

𝑓
𝑒 : 𝜏 | C, (𝐸, 𝐻, Γ,Δ) consis-

tent, any function 𝑔 occurring in 𝑒 satisfies 𝑓 ≥∗
F 𝑔, Δ is a model of C,

and MT;F
Δ;Γ [[𝑒]] = (𝑝M , 𝑠M , 𝑡M , 𝑢M). For any 𝑠 ≥ 𝑠M , 𝑡 ≥ 𝑡M and

𝑢 ≥ 𝑢M , there exist 𝑡 ′, 𝑙 , 𝐻 ′, ce and 𝜏𝐶 such that [𝑠]𝐸 | [𝑡]𝐻 ⊢T;F
L

𝑒 ⇓𝑢 𝑙 ; [𝑡 ′]𝐻 ′, 𝑡 ′ ≥ 𝑡 − 𝑡M , 𝑙 denotes ce on 𝐻 ′, ce is typed as 𝜏𝐶 and
evΔ [[𝜏𝐶 ↓]] ≤ evΔ [[𝜏 ↓]].

Proof. We use the same lexicographic order of the triple

(𝑓 , evΔ [[
−→
𝛿]], 𝑒) as that in the proof of termination of the estimation

function. We also use the same devision of the cases, i.e., the last

rules used for deriving Γ ⊢T;F
𝑓

𝑒 : 𝜏 | C. Since the assumptions of

this theorem include those of the termination, it is the same way to

show how the triple decreases.

The cases of T-CONST, T-VAR, T-NODE and T-ATLAST are clear

(𝐻 ′ = 𝐻, 𝑙 ↦→ 𝑐 and 𝑡 ′ = 𝑡 − 1 in T-CONST, 𝐻 ′ = 𝐻 and 𝑡 ′ = 𝑡 in

the other cases).

Akihiko Yokoyama, Sosuke Moriguchi, and Takuo Watanabe

The case of T-CTOR is proven as follows: Let 𝐻 = 𝐻0, 𝑡 = 𝑡0,

𝑒 = 𝜒(𝑒1, . . . , 𝑒𝑛), andMT;F
Δ;Γ [[𝑒𝑖]] = (𝑝M𝑖 , 𝑠M𝑖 , 𝑡M𝑖 , 𝑢M𝑖) for 1 ≤

𝑖 ≤ 𝑛. From the definition ofM, for any 1 ≤ 𝑖 ≤ 𝑛, 𝑠 ≥ 𝑠M ≥ 𝑠M𝑖

and 𝑢 ≥ 𝑢M ≥ 𝑢M𝑖 . Since 𝑡0 ≥ 𝑡M = 1 + Σ𝑖∈1...𝑛𝑡M𝑖 ≥ 𝑡M1
,

there exist 𝑡1, 𝑙1, 𝐻1, ce1 and 𝜏𝐶
1
such that [𝑠]𝐸 | [𝑡0]𝐻0 ⊢T;F

L 𝑒1 ⇓𝑢
𝑙1; [𝑡1]𝐻1, 𝑡1 ≥ 𝑡0 − 𝑡M1

≥ 1 + Σ𝑖∈2...𝑛𝑡M𝑖 , 𝑙1 denotes ce1 on 𝐻1, ce
is typed as 𝜏𝐶

1
and evΔ [[𝜏𝐶

1
↓]] ≤ evΔ [[𝜏1 ↓]]. Repeating the same

process, we obtain 𝑡𝑛 ≥ 𝑡0 − Σ𝑖∈1...𝑛𝑡M𝑖 ≥ 1 and 𝐻𝑛 , and applying

E-CTOR, we obtain 𝑡 ′ = 𝑡𝑛 − 1 ≥ 𝑡0 − (1 + Σ𝑖∈1...𝑛𝑡M𝑖) = 𝑡 − 𝑡M ,

𝐻 ′ = 𝐻𝑛, 𝑙 ↦→ 𝜒 [𝑘] (𝑙1, . . . , 𝑙𝑛), ce = 𝜒(ce1, . . . , ce𝑛).
The cases of T-IF, T-OP and T-ADJ are similar way as above. The

cases of T-LET and T-FIT (more specifically, E-FIT-SUCCESS) are

almost similar, and in addition, consistency about newly bound

variables (𝑥 in the both cases) are derived from induction hypothe-

ses for 𝑒1. The case of T-CALL is similar for arguments to T-CTOR,

and consistency about arguments is similar for T-LET.

In the case of T-CASE, induction hypothesis for the scrutinee 𝑒0

says that there exist 𝑡 ′
0
, 𝑙0,𝐻

′
0
, ce0 and 𝜏

𝐶
0
such that [𝑠]𝐸 | [𝑡]𝐻 ⊢T;F

L
𝑒0 ⇓𝑢 𝑙 ; [𝑡 ′

0
]𝐻 ′

0
, 𝑡 ′

0
≥ 𝑡 − 𝑡M0

, 𝑙 denotes ce0 on 𝐻
′
, ce0 is typed as 𝜏

𝐶
0

and evΔ [[𝜏𝐶
0
↓]] ≤ evΔ [[𝜏0 ↓]]. Let 𝐻 ′

0
(𝑙) = 𝜒 [𝑘] (𝑙1, . . . , 𝑙𝑛). Since

ce0 (denoted by 𝑙) is typed as 𝜏
𝐶
0
, so the subterm ce1, . . . , ce𝑛 (which

are denoted by 𝑙1, . . . , 𝑙𝑛 , respectively) are also typed. From this fact,

we can show the consistency of the environments at the body of

branch for 𝜒 . The rest of the proof can be done in the same way

with induction hypothesis. □

