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ABSTRACT
As available proteomic data grows, so does our need for compu-

tational methods to process such data for practical applications —

such as drug and therapeutic development. This is critical particu-

larly in cancer treatments, where multiple mutations may obscure

driver proteins and pathways to target for potential treatments.

To identify these driver proteins and pathways, we explore can-

cer networks’ minimum connected dominating sets (MCDS), a set

of topologically significant nodes of a network. We build on exist-

ing heuristic algorithms to find driver proteins of selected cancer

networks via their MCDS.

From sets of known cancer driver proteins (𝑛 = [8, 10]) and es-

sential proteins (𝑛 = [991, 1415]) of breast, ovarian, and pancreatic

cancer, we generated protein interaction networks for each selected

cancer, using balanced and directed graphs to model regulatory

function.

We identified each interaction networks’ driver proteins (𝑛 =

[40, 100]) from their MCDS and validated each against sets of posi-

tive control driver proteins derived by other methods. From these

driver protein sets, we performed pathway analysis to identify path-

ways enriched by these proteins. We then verified whether these

proteins had a documented association with cancer.

Our driver proteins had measures of centrality (betweenness, de-

gree centrality) higher than those of positive control proteins of the

same cancer networks. This confirms their topological significance

in their respective networks.

Pathway analysis identified over 300 pathways enriched with

statistical significance. A survey on these pathways found that

79 − 80% of these pathways are linked to cancer. They were also

almost twice as likely to have a documented association with cancer

than those not enriched by our identified driver proteins.

We not only identify specific potential driver proteins in cancer

networks but also validate the potential of minimum connected

dominating set-finding algorithms to identify driver proteins in

protein regulatory networks. We validate the potential of balanced

signed directed graphs in modeling regulatory functions of protein

interaction networks.

KEYWORDS
signed graphs, balanced graphs, minimum connected dominating

set, protein-protein interactions, cancer

1 INTRODUCTION
Omic research is at the core of the search for drug or therapeutic

targets for diseases such as cancer [7] [6]. Protein-protein interac-

tion (PPI) data is particularly promising, given its crucial role in the

central dogma of molecular biology [7]. Biological regulatory net-

works interact via PPI and influence levels of expression of genes in

a genome. These levels of gene expression affect risk or predisposi-

tion to certain diseases [4], such as cancer. Developing algorithmic

approaches to identifying driver proteins in such networks is thus

necessary, as these may point to proteins to target in treating these

diseases. [8].

If we represent gene regulatory networks as graphs, then driver

proteins may be driver nodes of such graphs. In this study, we iden-

tify such driver proteins. Milenkovic et al. [13] suggested that these

proteins have high connectivity, degree, and centrality within their

network, implying that topology-based methods have potential in

identifying proteins in a network.

Various studies suggest that minimum dominating set-based

methods for determining significant nodes of PPI networks may

identify cancer-related or virus-targeted genes [23] [24] [14]. Ban-

tang, Urog, and Adorna [11] proposed a heuristics-based approach

to identifying the dominating tree of a scale-free network. Dizon et

al. [9] built on this method to develop an algorithm to find the min-

imum connected dominating set of a protein-protein interaction

network. Biones et al. [25] adapted this method to identify driver

proteins considering gene regulatory function in the human PPI

network.

In this paper, we present a method to model protein-protein net-

works regulatory function using balanced, signed, directed graphs,

and an MCDS-based approach to identifying driver proteins in can-

cer networks. We subject the results of these methods to multiple

validation tests to assess their viability in identifying driver proteins

of gene regulatory networks.

2 PRELIMINARIES
2.1 Biological preliminaries

Definition 1 (Genes and Proteins). Genes are chains of DNA
that code instructions to assemble proteins. Proteins build and regulate
various body functions. In this paper, we use the terms ‘genes’ and
‘proteins’ interchangeably.
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Definition 2 (Protein-protein interactions (PPI)). Protein-
protein interactions (PPI) are the physical interactions between pro-
teins in a living organism [20].

Definition 3 (Protein regulatory networks). Proteins inter-
act in various ways. In this paper, we explore up-regulation, down-
regulation, and complex-forming interactions.

A protein up-regulates another protein when it increases a cell’s
sensitivity to this other protein B, while it down-regulates a protein
when it decreases this sensitivity. Groups of proteins form complexes
when they interact with each other at the same time and location.

When groups of proteins interact in the above ways they form gene
regulatory networks [3].

We provide a more detailed explanation of the above interactions
in the Appendix.

Definition 4 (Cancer driver proteins, driver genes). Cancer
driver genes are genes whose mutations cause malignant or tumor
growth. In graphical terms, driver proteins are driver nodes in protein
interaction networks.

Definition 5 (Biological Pathways). A biological pathway is
a series of molecular interactions in a cell. These either result in a
change or a product in that cell.

Definition 6 (Pathway analysis, pathway enrichment anal-

ysis). Pathway analysis is a statistical method that identifies bio-
logical pathways that are enriched in a gene (protein) set more than
would be expected by chance (with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05). This statistical
method maps genotypes to their probable phenotypic manifestations.

Different sets of genes may identify the same or similar sets of
biological pathways with statistical significance.

2.2 Pharmaceutical preliminaries
Definition 7 (Target proteins, drug targets, or protein

targets). Target proteins are molecules associated with particular
diseases in an organism. Pharmaceutical researchers aim to target
these proteins with drugs to produce a desired therapeutic effect.

In this paper, we seek target proteins for human breast, ovarian,
and pancreatic cancer.

Cancer driver genes may not necessarily be viable drug targets
and might not yet have drugs targeting them for therapeutic effect.
Nonetheless, identifying new driver proteins for cancer may suggest
novel targets for drug development.

We refer to these as ‘drug targets’ or ‘known drug targets’ if some
approved drug claims to target these proteins, while we may refer to
these as ‘driver proteins’ otherwise.

2.3 Mathematical preliminaries
2.3.1 General preliminaries.

Definition 8 (Path). A path p is a sequence of alternating vertices
and edges 𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, ..., 𝑒𝑘 , 𝑣𝑘 in G where 𝑒𝑖 = 𝑣𝑖−1, 𝑣𝑖 , such that:

– All edges are distinct (𝑖 .𝑒 . given 𝑒𝑖 , 𝑒∈𝑝,∀𝑖 ≠ 𝑗, 𝑒𝑖 ≠ 𝑒 𝑗 )
– All vertices are distinct (𝑖 .𝑒 . given 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑝,∀𝑖 ≠ 𝑗, 𝑣𝑖 ≠ 𝑣 𝑗 )
– The path starts and ends on distinct nodes (𝑖 .𝑒 . 𝑣0 ≠ 𝑣𝑘 )

Figures 1 and 2 are examples of paths.

Definition 9 (Shortest path tree). A shortest-path tree is a
spanning tree 𝑇 of 𝐺 , rooted at vertex 𝑣 , such that the path distance

from root 𝑣 to any other vertex 𝑢 in 𝑇 is the shortest path distance
from 𝑣 to any 𝑢 in 𝐺 . 𝑇 may span 𝐺 only if 𝐺 is connected.

If 𝐺 is disconnected, then we take 𝑇 that spans vertices that are
reachable by 𝑣 .

2.3.2 Signed graph preliminaries.

Definition 10 (Sign of a path). The sign 𝑆 of a path 𝑝 is the
product of the signs of its edges. This is

𝑆 (𝑝) =
∏

(𝑢,𝑣) ∈𝑝
𝜎 (𝑢, 𝑣)

.
If we let𝑚 be the cardinality of a path’s positive edges, and 𝑛 be the

cardinality of the same path’s negative edges, then we may simplify
this :

𝑆 (𝑝) = (1𝑚) (−1𝑛) note identify property of 1 (1)

𝑆 (𝑝) = −1𝑛 (2)

Figure 1: The sign of the path is 1

Figure 2: The sign of the path is -1

Definition 11 (Balanced path). Path 𝑝 is balanced if its sign
is positive (𝑖 .𝑒 .𝑆 (𝑝) > 0). Otherwise, it is unbalanced. For example,
Figure 1 shows a balanced path, while Figure 2 shows an unbalanced
path.

Definition 12 (Balanced signed directed graph). A signed
directed graph is balanced if the product of all its paths’ signs is
positive (𝑖 .𝑒 .Π𝑝𝑖 ∈𝐺 (𝑆 (𝑝𝑖 )) > 0). Otherwise, the graph is unbalanced.
For example, Figure 3 presents a balanced signed directed graph rooted
at node 1. The product of all paths (𝑒.𝑔.{1, 2}, {1, 3, 5},
{1, 4, 5}, {1, 4, 6, 7}) is positive.

2.3.3 Dominating set preliminaries.

Definition 13 (Dominating set). A dominating set is a subset
𝐷 of the vertex set𝑉 of𝐺 where every vertex in𝑉 not in 𝐷 is adjacent
to at least one vertex in 𝐷 . Figure 4 and Figure 5 show examples of
dominating sets in directed graphs.
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Figure 3: A signed directed graph

Definition 14 (Connected Dominating Set (CDS)). The con-
nected dominating set is a dominating set 𝐷 of nodes that are con-
nected in 𝐺 .

For example, {1, 2, 3, 4} is a connected dominating set in Figure 4,
while {4, 5, 6, 7} or {4, 5, 6, 3} is a connected dominating set in Figure
5.

Definition 15 (MinimumConnectedDominating Set (MCDS)).

An MCDS is a connected dominating set of 𝐺 with the smallest size.
For example, {2, 3} is the MCDS in Figure 4, while {4, 5, 6} is the
MCDS in Figure 5.

2.3.4 Measures of centrality.

Definition 16 (Measures of centrality). Measures of central-
ity of a node 𝑣 in𝐺 empirically reflect how topologically significant 𝑣
is in 𝐺 .

Definition 17 (Degree). The degree of a node 𝑣 (𝑑𝑒𝑔(𝑣)) is its
number of edges. In directed graphs, we may distinguish in degree
(edges coming into 𝑣) and out-degree (edges coming from 𝑣).

Definition 18 (Degree centrality). Degree centrality is the
number of edges incident to a node. In undirected graphs, this is𝑑𝑒𝑔(𝑣).
In directed graphs, this is the sum of the in-degree and out-degree of
𝑣 .

Definition 19 (Betweenness centrality). Betweenness cen-
trality of 𝑣 in 𝐺 is the percent of shortest paths in 𝐺 that pass 𝑣 .

Definition 20 (Clustering coefficient). The clustering coeffi-
cient of 𝑣 in 𝐺 is the percent of triangles in 𝐺 that contain 𝑣 .

3 ALGORITHM TO BALANCE NETWORK
3.1 Requirements and rationale
3.1.1 Use of signed graphs. To model gene regulatory networks,

we use signed directed graphs because signed edges may model

Figure 4: {1, 3} is a dominating set of this graph.

Figure 5: {4, 6} is a dominating set of this graph

their regulatory interactions. Negative edges may model down-

regulation, while positive edges may model other interaction types.

3.1.2 Use of shortest-path tree. We use a shortest-path tree to

model our gene regulatory network considering Occam’s razor,

which suggests that if we are given a multiplicity of solutions, we

must choose the simplest solution. With gene regulatory networks

where multiple paths may exist from any protein to another, this

leads us to select the shortest path between these two proteins.

3.1.3 Need for root node. Our algorithm requires a root node (or a

set of root nodes) to model the regulatory function of known driver

proteins.

3.2 Input
A signed directed graph 𝐺 (𝑉 , 𝐸, 𝜎)
A root 𝑣𝑠 ∈ 𝑉

3.3 Output
A balanced, shortest path tree 𝑇 of 𝐺 , rooted at 𝑣𝑠

3.4 Setup
At the i-th iteration of our algorithm, we define the following:

– Let 𝐸𝑖 be the set of edges to keep from our original signed

graph, where 𝐸0 = 𝐸.
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Table 1: The paths in the tree and their corresponding signs

Signs Number

of of

Target edges negative

j node 𝒑0,𝒋 in 𝒑0,𝒋 edges (P)
- 1 1 is not reachable from 0.

0 2 0 → 8 → 7 → 2 -1, -1, 1 2 1

1 3 0 → 8 → 7 → 2 → 3 -1, -1, 1, -1 3 -1
2 4 0 → 4 1 0 1

3 5 0 → 8 → 9 → 5 -1, 1, -1 2 1

4 6 0 → 4 → 6 1, -1 1 -1
5 7 0 → 8 → 7 -1, -1 2 1

6 8 0 → 8 -1 1 -1
7 9 0 → 8 → 9 -1, 1 1 -1

– Let 𝑉𝑖 be the set of nodes reachable from 𝑣𝑠 , considering all

pruned edges

– Let 𝐺𝑖 be the connected component of all nodes reachable

from 𝑣𝑠 , considering 𝐸𝑖 i.e. 𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 )
– 𝑇𝑖 is the shortest path tree of 𝐺𝑖 , rooted at 𝑣𝑠 .

– Let 𝑃𝑖 be the set of all shortest paths in 𝑇𝑖 . 𝑃𝑖 contains paths

𝑝𝑖, 𝑗 .

– Let 𝑄𝑖 be the set of edges we must prune to balance paths

in 𝑃𝑖 . 𝑄𝑖 start each run as an empty set. Throughout the

iteration, it is populated with negative edges that unbalance

𝑇𝑖 .

3.5 Algorithm Definition
(1) Find the shortest path tree 𝑇𝑖 of 𝐺 given 𝐸𝑖 .

(2) Find 𝑃𝑖 from 𝑇𝑖 . Let 𝑄𝑖 = ∅
(3) For all paths 𝑝𝑖, 𝑗 ∈ 𝑃𝑖 , if the sign of 𝑝𝑖, 𝑗 is −1 (if 𝑛 is odd

in (𝑝𝑖, 𝑗 ) = −1𝑛), then add to 𝑄𝑖 the negative edge that is

furthest from 𝑣𝑠 in path 𝑝𝑖, 𝑗 .

(4) After iterating through all 𝑝𝑖, 𝑗 ∈ 𝑃𝑖 , remove from𝐺 all edges

in 𝑄𝑖 such that 𝐸𝑖+1 = 𝐸𝑖 −𝑄𝑖 .

(5) Let 𝐺𝑖+1 be the connected component to 𝑣𝑠 .

(6) If 𝑄𝑖 is not an empty set, then find 𝑇𝑖+1, considering 𝐸𝑖+1,
and repeat from step 2.

3.6 Sample run of the algorithm
In Figure 6, we present a sample signed graph. We set node 0 as

our root. At 𝑖 = 0, we identify the shortest path tree 𝑇0 of 𝐺0 from

our root to every other node in 𝐺0. Because there are paths in 𝑇0
with a negative sign, 𝑇𝑖 is unbalanced. The paths in this tree and

their corresponding signs are found in Table 1. We set 𝑄0 = ∅.
The sign of 𝑝0,1 is negative. To balance this branch of our tree,

we prune the negative edge in this path furthest from our root node.

In 𝑝0,1, this edge is 2 → 3. We add this edge to 𝑄0.

In 𝑝0,4, edge 4 → 6 is the negative edge furthest from our root.

We add 4 → 6 to 𝑄0 as well. We repeat this for all paths 𝑝0, 𝑗 with a

negative sign.

Processing all such negative paths for 𝑖 = 0, gives us is 𝑄0 =

{2 → 3, 4 → 6, 0 → 8, 8 → 9}.

To balance our shortest-path tree, we remove all edges in 𝑄0 from

𝐸0. 𝐸1 then becomes 𝐸1 = 𝐸0−𝑄0. Expanding this gives us 𝐸−{2 →
3, 4 → 6, 0 → 8, 8 → 9}.

After we remove these edges, node 3 becomes unreachable from

our root node. Thus 𝑉1 = 𝑉0 − {3}. We then set𝐺1 as the subgraph

of 𝐺 with reduced edges 𝐸1 and nodes 𝑉1.

From 𝐺1, we find 𝑇1, and repeat the above steps until 𝑇𝑖+1 is bal-
anced. This occurs when we may have no shortest paths to balance.

This occurs when we may add no more edges to 𝑄𝑖 to prune.

Figure 7 presents the results of this algorithm on our graph. The

shortest path tree of this graph is balanced because it contains no

unbalanced paths. The MCDS of the network is shown in Figure 8.

Figure 6: A signed directed graph

3.7 Proof of correctness
3.7.1 Proof of balance within a single path. Let 𝐺 be a signed di-

rected graph

Let 𝑣𝑠 be some root node in 𝐺 (i.e. 𝑣𝑠 ∈ 𝑉 )

Let 𝑝 be any path that exists from 𝑣𝑠 to a target node 𝑣𝑡 ∈ 𝑉 reach-

able from 𝑣𝑠
Let 𝑛 be the number of negative edges along with such single path 𝑝

Recall that the sign of a path is 𝑆 (𝑝) = −1𝑛 , where 𝑛 is the number

of negative edges along with 𝑝 .
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Figure 7: Pruned and balanced directed signed graph

Figure 8: MCDS of the graph

Base case.

(1) 𝑛 = 0. There are no negative edges in 𝑝 . It is balanced as is.

(2) 𝑛 = 1. There is 1 negative edge in 𝑝 . Prune this negative edge.

Let 𝑝 be the path that remains reachable from 𝑣𝑠 . Path 𝑝 now

has �̂� = 1 − 1 = 0 negative edges. Thus, 𝑝 is balanced.

General cases.
(1) The path 𝑝 is balanced. This implies that path 𝑝 has an even

number of negative edges. We can express this number of

negative edges as 𝑛 = 2𝑘 , for some 𝑘 ≥ 0.

(2) The path 𝑝 is unbalanced. This implies that path 𝑝 has an

odd number of negative edges. We can express this number

of negative edges as 𝑛 = 2𝑘 + 1, for some 𝑘 ≥ 0.

Inductive hypothesis. Let 𝑛 be the number of negative edges in

some path 𝑝 , where 𝑛 > 1.

(1) If 𝑛 is even, then we can express it as 𝑛 = 2𝑘 for some 𝑘 ≥ 0.

The sign of path 𝑝 is then 𝑆 (𝑝) = (−1)2𝑘 = ((−1)2)𝑘 = 1
𝑘 =

1, which is positive. Path 𝑝 is thus balanced as-is and does

not require pruning.

(2) If 𝑛 is odd, then we can express it as 𝑛 = 2𝑘 + 1 for some

𝑘 ≥ 0. The sign of path 𝑝 is then:

𝑆 (𝑝) = (−1)2𝑘+1 (3)

= (−1)2𝑘 ∗ −1 (4)

= ((−1)2)𝑘 ∗ −1 (5)

= 1
𝑘 ∗ −1 note identify property of 1 (6)

𝑆 (𝑝) = −1 (7)

𝑆 (𝑝) is negative. To balance this negative path, we prune the
negative edge furthest from our root 𝑣𝑠 .

Let 𝑝 be the path that remains reachable from 𝑣𝑠 after prun-

ing. Since we removed 1 negative edge, now �̂� = (2𝑘+1)−1 =
2𝑘 , which is even. As proved above, the sign of 𝑝 is thus pos-

itive and balanced.

Inductive step. Let𝑚+1 be the number of negative edges in some

𝑝 , where𝑚 > 1.

(1) If𝑚 is even, then we can express it as𝑚 = 2𝑘 for some 𝑘 ≥ 0.

Given this𝑚, then𝑚 + 1 = 2𝑘 + 1, which is odd.

We then prune the edge as defined above, to produce path 𝑝 .

Path 𝑝 will have𝑚+1−1 negative edges, where (𝑚+1) −1 =

(2𝑘 + 1) − 1 = 2𝑘 , which is even.

Thus, the sign of the path will be positive, as proved above.

Path 𝑝 is then balanced after pruning.

(2) If𝑚 is odd, then we can express it as𝑚 = 2𝑘 + 1, for some

𝑘 ≥ 0. If𝑚 = 2𝑘+1, then𝑚+1 = (2𝑘+1)+1 = 2𝑘+2 = 2(𝑘+1),
which is even.

Thus, the sign of the path would be positive. Thus 𝑝 is bal-

anced without pruning.

Therefore, for 𝑛 ≥ 0, the above algorithm will produce a balanced

path.
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3.7.2 Proof of balance throughout the graph. Let 𝐺 be a signed

directed graph. Let 𝑣𝑠 be some source node in 𝐺 (i.e. 𝑣𝑠 ∈ 𝑉 ).

Recall, at the 𝑖-th iteration of our algorithm, we have:

(1) Let 𝑇𝑖 be the shortest path tree of 𝐺 rooted at 𝑣𝑠
(2) Let 𝑃𝑖 the set of paths in 𝑇𝑖 , rooted at 𝑣𝑠
(3) Let 𝑄𝑖 be the set of edges to prune to balance paths in 𝑃𝑖 .

Base cases. The following are base cases for our proof of balance:

(1) If |𝑄𝑖 | = 0 then 𝑃𝑖 contains no paths with a negative sign.

The graph is balanced at the 𝑖-th iteration of the algorithm.

(2) If |𝑄𝑖 | = 1 then one path 𝑝 in 𝑃𝑖 has a negative sign. Path

𝑝 must then have an odd number of negative edges. In this

case, if we prune 𝑝 as illustrated above, then the resulting

𝑝 is balanced. Thus, |𝑄𝑖+1 | = |𝑄𝑖 | − 1 = 1 − 1 = 0, and the

graph is balanced at step 𝑖 + 1.

Proof of balance when |𝑄𝑖 | > 1. If we remove a single edge in 𝑇𝑖 ,

only the following are possible:

We remove an edge in 𝑇𝑖 that makes at least one node unreachable

from 𝑣𝑠 . Therefore, |𝑉𝑖+1 | < |𝑉𝑖 |.
We remove an edge in 𝑇𝑖 but no nodes become unreachable from

𝑣𝑠 . Therefore, |𝑉𝑖+1 | = |𝑉𝑖 |. Thus, in either case, |𝑉𝑖+1 | ≤ |𝑉𝑖 |.

There are only as many shortest paths in 𝑃𝑖 as there are vertices

reachable from 𝑣𝑠 in 𝑇𝑖 . Because of this, 𝑃𝑖 is bound by |𝑃𝑖 | ≤ |𝑉𝑖 |.
As the number of vertices is bound by a decreasing interval, then

the number of paths is similarly bound by |𝑃𝑖+1 | ≤ |𝑃𝑖 |. In other

words, the number of shortest paths in 𝑇𝑖 cannot increase.

Note that we may prune at most one edge per path in 𝑃𝑖 . Paths in

𝑃𝑖 thus map to edges in 𝑄𝑖 by some one-to-one mapping. There-

fore, the size of 𝑄𝑖 is bound by |𝑄𝑖 | ≤ |𝑃𝑖 |. Thus the number of

unbalanced paths in 𝑇𝑖 also cannot increase in size. The number of

edges to prune from these shortest paths also cannot increase and

is bound by |𝑄𝑖+1 | ≤ |𝑄𝑖 |.

At step 𝑖 , if 𝑇𝑖 is unbalanced, then there must be at least 𝑗 un-

balanced paths in 𝑃𝑖 , where 𝑗 ≥ 1. We may convert each of these

unbalanced paths 𝑝𝑖, 𝑗 in 𝑃𝑖 into a balanced path ˆ𝑝𝑖, 𝑗 . To balance all

𝑝𝑖, 𝑗 unbalanced paths in 𝑃𝑖 , we must prune 𝑗 negative edges in 𝑄𝑖 .

If we prune at least 1 unbalanced edge in 𝑄𝑖−1 at each 𝑖 step, then
the remaining number of unbalanced paths in 𝑇𝑖 converges to:

|𝑄𝑖 | ≤ |𝑄𝑖−1 | − 1 since j ≥ 1 (8)

≤ |𝑄𝑖−2 | − 1 − 1 = |𝑄𝑖−2 | − 2 (9)

. . . (10)

≤ |𝑄0 | − 11 − 12 − 13 . . . − 1𝑖
Prune ≥ 1 edge at each

𝑖 step
(11)

≤ |𝑄0 | − 𝑖 (12)

|𝑄𝑙𝑖𝑚𝑖→∞ | ≤ |𝑄0 | − 𝑙𝑖𝑚𝑖→∞
Note that 𝑄0 is a finite

set. |𝑄0 | is finite.
(13)

|𝑄𝑙𝑖𝑚𝑖→∞ | ≤ 0 (14)

This shows that at each step 𝑖 , a decreasing interval bounds the

size of set 𝑄𝑖+1. This eventually converges to 0, where there are

only balanced paths in𝑇𝑖 . Thus our algorithm terminates in 𝑖 (finite

number) iterations with balanced shortest path tree 𝑇𝑖 .

3.7.3 Practical relaxation of balance. Complete balance in these

graphs eliminates all negative (down-regulating) interactions in

our model. This harms rather than improves the accuracy of our

model. For practicality with real data sets, we relax our algorithm

to balance only the shortest path branches to leaf nodes. We then

remove only the furthest down-regulating edges from our root node

and maintain, rather than closer down-regulating edges which may

ultimately be balanced further along a path.

4 ALGORITHM TO FIND THE MINIMUM
CONNECTED DOMINATING SET OF
NETWORK

We use a topology-based MCDS-finding algorithm defined by Dizon

et al. [11] [9] [25].

Given graph 𝐺 (𝑉 , 𝐸), let 𝑈 be a set of visited nodes, and𝑊 be

a set of covered nodes. At the start of our algorithm,𝑈 and𝑊 are

empty sets.

4.1 Algorithm definition
(1) Identify node 𝑣 of highest degree in 𝐺 .

(2) Initialize the MCDS as the set containing only 𝑣 .

(3) Initialize a set of visited nodes 𝑈 as a set containing only 𝑣 .

(4) Identify the neighborhood of 𝑣 and add this neighborhood

to both set𝑈 and𝑊 .

(5) Find𝑤 in𝑊 which covers the most unvisited nodes and𝑤

to the MCDS.

(6) Add the neighborhood of𝑤 to𝑈 .

(7) Subtract𝑤 from𝑊 , but add the neighbors of𝑤 to𝑊 .

(8) If𝑈 = 𝑉 , then all nodes have been visited and the MCDS is

found. Otherwise, set 𝑣 as𝑤 and repeat from step 4.

5 DATA
5.1 Protein-protein interaction (PPI) data
We use PPI data from the Signaling Network Open Resource (SIG-

NOR) database [17]. For this study, we limit our analysis to in-

teractions between proteins, complexes, and protein families that

up-regulate, down-regulate, or form complexes.

5.2 Modeling PPI data
To model these networks, we set proteins as nodes and their inter-

actions as edges in a signed directed graph, where interaction type

(up-regulation, down-regulation) defines edge sign.

5.3 Test data sets
5.3.1 A priori known cancer networks. Kanhaiya et al. [10] iden-
tified driver protein networks of breast, ovarian, and pancreatic

cancer based on these networks’ structural controllability.

To accomplish this, they determined essential protein networks

associated with these cancers (|𝑉 | = 900 to 1600 nodes, |𝐸 | = 1500
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Table 2: Network properties at each step of our test runs

Network Root
nodes

Original
node
count

Original
edge
count

Node count
after

balancing

Edge
count after
balancing

Driver
proteins
found

Percent of
nodes removed

to balance

Percent
of MCDS
in Pruned

a priori known breast breast driver proteins 1415 2435 550 1085 100 61.13% 18.18%

a priori known ovarian ovarian driver proteins 1047 1579 294 458 44 71.92% 14.97%

a priori known pancreatic pancreatic driver proteins 991 1484 241 367 51 75.68% 21.16%

naive network breast driver proteins 5681 16414 2628 8977 599 53.74% 22.79%

naive network ovarian driver proteins 5681 16414 2627 9064 595 53.76% 22.6%

naive network pancreatic driver proteins 5681 16414 2621 8902 596 53.86% 0.227394124

to 2500 edges). In our paper, we refer to these as ‘a priori known

networks’.

From each of these, they identified minimum node sets with full

controllability of their entire network (|𝑉 | = 130 to 170 nodes). In

this paper, we compare these node sets to the MCDS we find from

the same networks.

5.3.2 Naive networks. Besides our a priori known networks, we

test our algorithm on naive networks. These are networks are

not informed with prior knowledge of PPI regulatory functions.

Our naive networks contain all proteins in the SIGNOR dataset

(|𝑉 | = 3051, with |𝐸 | = 10892 edges).

5.3.3 Driver proteins as root nodes. From their set of driver pro-

teins, Kanhaiya et al. [10] identified US Food and Drug Adminis-

tration approved drug targets for each cancer. We use these drug

targets as root nodes for our algorithm.

5.4 Validation data sets
5.4.1 Positive control data sets from cancer literature. We validate

our results against positive control driver proteins from Bailey et al

[1]. This paper identified 299 unique cancer driver genes across 33

cancer types from a consensus of driver protein-finding algorithms.

From these, we use proteins related to our selected cancers (|𝑉 | =
239 proteins total).

We further validate our results against driver protein sets derived

by several other algorithmic methods. These sets are from Nikzainal

et al. [15] for breast cancer ( |𝑉 | = 93), Ryland et al. [21] for ovarian
cancer ( |𝑉 | = 15), and Biankin et al. [2] for pancreatic cancer

( |𝑉 | = 16).

5.4.2 Pathway database. We use the Reactome database [5] — a

curated and peer-reviewed pathway database — to perform pathway

analysis.

6 METHODS
6.1 Representing PPI cancer networks with

signed directed graphs
We represent cancer networks as signed directed graphs𝐺 (𝑉 , 𝐸, 𝜎)
[16]. In this graph, we set nodes as proteins and the interactions

between them as edges. Interaction type (up-regulation, down-

regulation) defines edge sign. Only down-regulating edges receive

a negative sign, while other interaction types receive a positive

sign.

6.2 Finding driver proteins of cancer networks
For each of our test cancer networks, we find driver proteins as

follows:

(1) Balance the cancer network with our relaxed balancing al-

gorithm; then

(2) Find the MCDS of the balanced network as defined above.

6.3 Experimental setup
For each cancer, we apply the above algorithms on the following

networks:

(1) A naive network of all proteins in SIGNOR dataset

(2) An a priori defined cancer network

We use driver proteins from Kanhaiya et al. [10] (|𝑉 | = 9 to 11

nodes) as roots for our algorithm.

With 2 (balanced and naive) networks each for 3 cancers (breast,

ovarian, and pancreatic), we produced 6 sets of driver proteins.

6.4 Validating our driver protein sets
We validate our driver protein sets:

(1) Compare the measures of centrality of our protein sets with

those of controlling proteins from [10].

(2) Identify the consensus of our protein sets with validation

data sets from cancer literature [15] [21] [2].

(3) Identify pathways enriched by our protein sets with statisti-

cal significance.

(4) Identity in which pathways enriched by statistical signifi-

cance have been associated with cancer.

6.5 Pathway analysis and pathway association
with cancer

We identify the pathways enriched in our geneset with statisti-

cal significance using the Reactome Pathway database. To identify

which pathways have a documented association with cancer, we

performed a systematic review of cancer literature using the United

States National Library of Medicine’s PubMed literature database.

This database hosts over 30 million citations and abstracts of life

science and biomedical literature. We quantify a pathway’s associa-

tion with cancer as the number of PubMED-curated publications

linking such pathways to cancer, tumors, metastasis, or oncogenes.
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7 RESULTS AND DISCUSSIONS
7.1 MCDS of naive networks do not identify

cancer-specific driver proteins
Table 2 presents the properties of our networks throughout each test

run. Naive networks resulted in driver protein sets of similar size.

The variance between driver protein set size of naive networks is

only 4.33, while that of a priori networks is 931. All naive networks

shared 580 nodes (96.83 − 97.48% of these sets) despite these sets

having distinct root sets.

We suspect that the large number of edges in naive networks

caused this limited specificity across networks. Having more edges

implies that more paths would exist between any pair of nodes. In

this case, pruning an edge is less likely to cause a disconnect in

the graph to any target node, as there would likely be an alternate

shortest path towards this target node. The search space for our

MCDS algorithm does not gain specificity from a balancing step in

dense graphs.

This suggests thatMCDS-based driver protein-finding algorithms

on balanced naive networks do not find cancer-specific driver pro-

teins, despite being balanced to cancer-specific proteins. These

proteins may be driver proteins for the human proteome in general

rather than for specific cancers.

Based on their variance in set size and composition, we found

greater specificity in driver proteins found with a priori known

cancer networks. We focus on driver proteins found from these

networks in the following sections.

7.2 MCDS-derived driver proteins are more
topologically significant than control
groups

We performed an independent t-test on our driver protein sets’

measures of centrality against those of Kanhaiya’s driver protein

networks, to assess the significance of their difference. Table 3

presents the truncated results of this test. From this, we determined

that the means for all measures except the clustering coefficient are

significantly different.

The median values of our measures are higher than Kanhaiya’s

across all measures. From this, we claim that our driver proteins

are more topologically significant than those of Kanhaiya, though

they cluster similarly. Figures 9 and 10 show the distributions of

these measures across breast networks. These are consistent across

all cancers.

Among all networks, a priori known cancer networks scored the

highest median range of all measures of centrality except clustering

coefficient (Figure ??). A priori known networks also had the highest

betweenness centrality among networks tested.

In a study on S. cerevisiae protein interaction networks [12],

Dirk observed that high betweenness centrality may identify global

regulators of a network. They explain these proteins regulate their

respective networks because their position in multiple shortest

paths allows them to monitor communication between vertices via

these shortest paths.

Koschützki and Schreiber also found that essential proteins have

higher mean measures of centrality than non-essential proteins.

Table 3: Independent T-test on measures of centrality of our
driver proteins and those of Kanhaiya

Network Measure of
centrality P-value

Means are
significantly
different?

breast

Betweenness 2.49𝑥10−6 yes

Clustering coefficient 0.15 no

Total degree/degree centrality 2.69𝑥10−7 yes

ovarian

Betweenness 7.13𝑥10−4 yes

Clustering coefficient 3.85𝑥10−4 yes

Total degree/degree centrality 5.42𝑥10−4 yes

pancreatic

Betweenness 2.45𝑥10−4 yes

Clustering coefficient 0.23 no

Total degree/degree centrality 6.06𝑥10−4 yes

Figure 9: Betweenness centrality of breast cancer networks

Figure 10: Degree centrality of breast cancer networks

Protein network global regulators and essential proteins may show

potential as drug targets for further study.
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7.3 MCDS-derived driver proteins identify
known driver proteins

We validate our driver proteins sets against driver protein sets

from Bailey et al [1], a comprehensive list of cancer driver proteins.

Figure 11 shows the percent of Bailey proteins in our test results.

Figure 11: Common proteins with Bailey cancer driver pro-
teins.

Naive network’s MCDS identifies the largest percent of Bailey et

al oncogenes. This shows the potential of MCDS-based methods in

identifying driver proteins in the human proteome. Thoughwe have

shown that theseMCDS do not identify cancer-specific proteins, the

large percent of proteins captured by our naive network’s MCDS

suggest that MCDS-based methods may still show potential in

finding oncogenes in naive PPI networks.

7.4 MCDS-based methods may complement
other driver protein-finding methods to
find consensus driver protein sets

Figure 12 shows a Venn diagram of driver protein sets from our

test runs and validation sets.

Our results for a priori known networks defined more specific

sets of driver proteins when complemented by other driver protein-

finding algorithms. The consensus of multiple driver-protein find-

ing methods can be used to determine the most significant driver

proteins from large sets of driver proteins.

Below we can see that the consensus (intersection) size of our

results is comparable in size to those between other methods. Simi-

lar Venn diagrams for ovarian and pancreatic cancer may be found

in the appendix.

7.5 MCDS-derived driver protein sets enrich
pathways linked to cancer

We performed pathway enrichment analysis on our driver protein

sets for our networks. The list of pathways enriched with statis-

tical significance for each network are Reactome pathways from

Cytoscape.

Our driver protein sets identified proteins enriched for biological

processes such as gene transcription, signal transduction, immunity,

Figure 12: Venn diagram of our driver proteins for breast
cancer, and those of Bailey et al, Nikzainal

and apoptosis. Enriched pathways related to breast cancer included

pathways for growth signaling and cell cycle regulation.

In our driver protein set for our a priori known breast cancer

network, we identified breast cancer-linked pathways for MAPK

targets and nuclear events mediated by MAP kinases (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =

2.37𝑥10−8). This driver protein set also enriched pathways for other

breast cancer-related pathways such as VEGFR2 mediated cell pro-

liferation, oxidative stress-induced senescence, apoptotic cleavage

of cellular proteins, PLCG1 events in ERBB2 signaling, among oth-

ers [19].

According to Smolle et al. [22], the EGFR receptor protein is

over-expressed in 30% to 98% ovarian cancer cases are present in

the pathway for signaling by Receptor Tyrosine Kinases.

In our driver proteins for our a priori known ovarian cancer net-

work, the ovarian cancer-linked pathway for signaling by Receptor

Tyrosine Kinases was enriched (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 6.0𝑥10−15). In our

driver protein sets for pancreatic cancer networks, we identified

pathways for MAPK/MAPK3 signaling and Negative regulation

of the PI3K/AKT network, which are among the most regularly

activated signaling pathways in pancreatic cancer [18].

7.6 Majority of pathways enriched in
MCDS-based driver protein set have
documented link with cancer

We comprehensively surveyed each pathway enriched in our driver

protein sets for their documented association with cancer. To quan-

tify a pathway’s association with cancer, we measured the number

of publications that linked that pathway to cancer.

Percent of pathways with a modest amount of literature (< 100

publications) associated with cancer is comparable across pathway

sets. A larger percent of pathways enriched in our driver protein

sets have a fair amount of literature (100 publications) linking

these pathways to cancer, compared to the same percentage of all

pathways. Pathways enriched in our driver protein sets also have a

smaller percent of pathways with no documented association with

cancer, compared to the same percentage of all pathways.
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Table 4: Percentage of pathways enriched in a priori networks with documented link to cancer

Pathway set from driver proteins set Association documented
in <100 publications

Association documented
in >100 publications

No documented
association

pathways enriched in breast 43.57% 36.12% 20.32%

pathways enriched in ovarian 42.26% 38.49% 19.24%

pathways enriched in pancreatic 41.51% 38.23% 20.26%

pathways not enriched in breast 50.08% 19.90% 30.18%

pathways not enriched in ovarian 49.77% 19.91% 30.48%

pathways not enriched in pancreatic 50.16% 20.09% 29.91%

All pathways 42.55% 32.46% 24.98%

Our driver protein sets also enriched double the percent of path-

ways with a fair amount of literature linking these pathways to

cancer. Our driver protein sets had 38-38% of pathways enriched

with a fair amount of literature linking such pathways to cancers,

while only 19.9-20% of pathways not enriched by our driver had

a fair amount of literature linking these pathways to cancer. Over

10% fewer pathways had no documented association with cancer

in pathways enriched by our driver protein sets.

Figure 13: Publication linking pathway to cancer from path-
ways of breast driver proteins

8 CONCLUSION AND RECOMMENDATIONS
We developed a targeted approach to identifying driver proteins of

cancer regulatory networks.

In this approach, we model protein-protein interaction networks

as balanced signed directed graphs, rooted in a small (|𝑉 | < 10)

set of root nodes. We then identify driver proteins from as the

minimum connected dominating set of this balanced graph. The

balancing of networks aims to model the regulatory behavior of

gene regulatory networks.

From networks we modeled, we found that resulting driver pro-

teins sets had highermeasures of centrality or topological properties

than sets of known driver proteins. We observed that the results

from a priori defined target disease networks had higher measures

of centrality than those from networks with no prior knowledge of

their target diseases.

Networks with no prior knowledge (naive networks) may be

dense and would not gain specificity from balancing as much as

less dense, a priori defined disease target networks may.

Pathway enrichment analysis on our set of driver proteins con-

firms high enrichment for several pathways linked with specific

cancers. A comprehensive literature survey of pathways enriched

by our driver proteins showed that a larger percentage of these

pathways have a well-documented link with cancer, compared to

the same percentage across all pathways. Our driver proteins’ path-

ways also had a smaller percentage of pathways with no link to

cancer, compared to the same percentage of all pathways.

Extensions for this study include exploring other cancer net-

works and cancer-related pathways. Our method may also be used

to complement and identify consensus among drug-target databases

of these cancer networks. Our algorithm can be further improved

by exploring alternate approaches to modeling regulatory behavior.
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