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ABSTRACT
Quantum computers have the potential to solve certain prob-
lems exponentially faster than classical computers, with one
of the most simple examples being Deutsch and Jozsa’s
black box algorithm for determining whether a function
f : {0, 1}n → {0, 1} is constant or balanced. However, one
major roadblock in the realization of the quantum computer
is decoherence, or the loss of quantum information through
coupling with the environment. Several methods have been
proposed for incorporating decoherence in the study of quan-
tum algorithms, one of which was introduced by Chuang et. al.
and redefined by Brian De Jesus in 2014. This method, which
had the characteristic of being easily applicable to different
quantum algorithms, was used to find that the decoherence of
the Deutsch-Jozsa algorithm is bounded by 𝛼 < L

3L−1 , which,
for large L, shows it is more tolerant than Shor’s factoring
algorithm and Grover’s unstructured search algorithm. More-
over, it was found that even if the algorithm were to return
the wrong answer 50% of the time, it would still be more
efficient than its classical counterpart.
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1 INTRODUCTION
As classical computers become increasingly efficient over time,
the components that make up these computers get smaller
and smaller. Eventually, transistors may begin to exhibit
quantum mechanical behaviour. The idea of quantum com-
putation was brought about as a way of exploiting these
quantum mechanical properties, such as superposition and
entanglement, in order to solve certain computational prob-
lems [22] [7]. This unconventional model relies on the use
of qubits instead of classical bits, which have the ability to
exhibit these properties during computation. Developments
in quantum algorithms have shown exponential speedup over
classical algorithms for certain problems such as factoring
and discrete logarithm [18].

As an example of how quantum computers could solve
certain problems exponentially faster than classical com-
puters, David Deutsch and Richard Jozsa introduced in
1992 a simple solution to a specific black box problem [6].
The Deutsch-Jozsa algorithm determined whether a function

f : {0, 1}n → {0, 1} is constant, meaning any input would
result in only 0 or only 1, or balanced, meaning the proba-
bility of getting 0 or 1 is equal. Given an input size of 2, a
classical, intuitive algorithm would require 2 queries, while
the Deutsch-Jozsa algorithm would only require one. The
exponential speedup is more evident as the number of inputs
increases: a function with n inputs would require 2n−1 + 1
queries with a classical computer in order to determine with
full certainty whether the function is constant or balanced,
but still would need only one measurement with a quantum
computer.

Research on quantum algorithms, however, assume a per-
fect quantum system that could hold information for long
periods of time. The information stored in a qubit is ex-
tremely fragile, and could be lost once the qubit interacts
with the environment. This phenomenon is known as quan-
tum decoherence, and it is considered a limitation in the
realization of the quantum computer.

Because of the apparent inevitability of decoherence, it
is important to take it into consideration when designing
or analyzing quantum algorithms. Multiple methods have
already been proposed for determining and measuring the
decoherence of some quantum algorithms [1] [19] [3] [5], how-
ever we will apply the methods introduced by Chuang et al.
and refined by De Jesus for determining the decoherence of
the Deutsch-Jozsa algorithm.

The flow of the paper is as follows: first, the problem being
solved by Deutsch and Jozsa will be presented, followed by
a classical algorithm for solving the problem. The quantum
version of the algorithm will then be described and demon-
strated. Afterwards, the concept of quantum decoherence will
be introduced, and will be related to quantum algorithms
through a measure proposed by Chuang et al. in 1995, and
refined by De Jesus in 2014. The decoherence of the Deutsch-
Jozsa algorithm will then be determined using De Jesus’s
method, and the results will be expounded on.

2 PRELIMINARIES
In this section, we go over some preliminaries needed to un-
derstand the basics of quantum computing and the quantum
circuit model, which are needed to derive the decoherence of
a quantum circuit. Information in this section is taken from
textbooks on quantum computing [16] [17] and lecture notes
from R. Jozsa [11].
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2.1 Linear Algebra for Quantum Computing
The Dirac notation, or the bra-ket notation, was introduced
by Paul Dirac to make algebraic computations easier for
quantum physicists. A vector v in an finite n-dimension vector
space is referred to as the ket vector, and is notated as

| v⟩ =
©­­«

a1
.
.
.

an

ª®®¬ .
Its conjugate-transform is called the bra vector, and is

denoted as

| v⟩† = ⟨v | =
(
a∗1 · · · a

∗
n
)

.
To simplify things, bra could be seen as the row vector,

and ket the column vector. Using this notation, the inner
product of two vectors 𝜙 and 𝜓 could be easily notated as
⟨𝜙 | 𝜓 ⟩, and its outer product | 𝜙⟩ ⟨𝜓 |.

In quantum mechanics, it is common to use the following
vectors as an orthonormal basis for a 2-dimensional Hilbert
space:

| 0⟩ =
(
1
0

)
, | 1⟩ =

(
0
1

)
.

Furthermore, a ket vector in this vector space would be
denoted as

| v⟩ = a | 0⟩ + b | 1⟩ =
(
a
b

)
.

When working with multiple vector spaces, it is helpful
to combine them into a single, larger vector space. For this,
the tensor product is used, which can be explicitly calculated
using the Kronecker product.

Definition 2.1. Given an m×n matrix A and a p×q matrix
B, the Kronecker product is defined as

A ⊗ B =


a11B · · · a1nB

. . .

am1B · · · amnB


Definition 2.2. Given two vector spaces V and W of dimen-

sions m and n respectively, the tensor V ⊗W is a vector space
of dimensions m × n, and consists of linear combinations of
the Kronecker products of the elements of each vector space.

Example 2.3. If we have two vectors | 𝜙⟩ = a | 0⟩ + b | 1⟩
and | 𝜓 ⟩ = c | 0⟩ + d | 1⟩, then its corresponding tensor product
would be

| 𝜙⟩ ⊗ | 𝜓 ⟩ =
(
a
b

)
⊗

(
c
d

)
=

©­­­«
a
(

c
d

)
b
(

c
d

) ª®®®¬ =

©­­­«
ac
ad
bc
bd

ª®®®¬ .
| 𝜙,𝜓 ⟩ = ac | 00⟩ + ad | 01⟩ + bc | 10⟩ + bd | 11⟩

Example 2.4. The tensor product of two 2 × 2 matrices is(
a b
c d

)
⊗

(
p q
r s

)
=

©­­­«
a
(
p q
r s

)
b
(
p q
r s

)
c
(
p q
r s

)
d

(
p q
r s

) ª®®®¬
=

©­­­«
ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds

ª®®®¬ .
Example 2.5. A vector | v⟩ tensored with itself n times is

notated as | v⟩⊗n.

| v⟩⊗2 = | v⟩ ⊗ | v⟩ =
(
a
b

)
⊗

(
a
b

)
=

©­­­«
a
(
a
b

)
b
(
a
b

) ª®®®¬ =

©­­­«
aa
ab
ba
bb

ª®®®¬ .
A linear mapping between two vector spaces V and W can

be described as a function A : V → W . This operator may be
described as linear if applying the function A to the whole
tensor space yields the same result as applying it to each
element of that space.

Definition 2.6. A linear operator between two vector spaces
V and W is defined as a function mapping A : V → W which
satisfies the condition

A

(∑
i
ai | vi⟩

)
=

∑
i
aiA | vi⟩ .

Example 2.7. The identity operator I on a vector space V
is a linear operator, such that for all | v⟩ ∈ V , I | v⟩ = | v⟩ .

I =
(
1 0
0 1

)
Note that if the linear operator A is applied to every basis

vector of V , and the result expressed as a linear combination
of the basis vectors of W , it is possible to construct a matrix
representation of A.

2.2 Postulates of Quantum Mechanics
The most basic unit of quantum information is a quantum
bit, or qubit. It can be described as a unit vector in a 2-
dimensional vector space:

| 𝜓 ⟩ = 𝛼 | 0⟩ + 𝛽 | 1⟩
| 𝛼 |2 + | 𝛽 |2= 1

Classical bits are represented by the presence of electricity,
and thus may easily be assigned arbitrary values like 1 or
0. The quantum bit, however, is physically represented by
quantum mechanical properties like electron spin or photon
polarization, and thus the values assigned to it will also
exhibit the same quantum phenomena.

Quantum systems with multiple qubits may be represented
by a tensor product of all qubits in the system.
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Example 2.8. A system of two qubits | 𝜙⟩ and | 𝜓 ⟩ can be
described as

| 𝜙,𝜓 ⟩ = | 𝜙⟩ ⊗ | 𝜓 ⟩ =
©­­­«
𝛼

𝛽

𝛾

𝛿

ª®®®¬ = 𝛼 | 00⟩ + 𝛽 | 01⟩ + 𝛾 | 10⟩ + 𝛿 | 11⟩ .

2.2.1 Superposition. Just like how the position of an electron
within an atom is shrouded within a cloud of probability, the
value of a qubit may exist in a superposition of states until
it is observed.

The qubit | 𝜓 ⟩ may be described as having a probability
amplitude 𝛼 of being in state | 0⟩, and a probability amplitude
𝛽 of being in state | 1⟩. Likewise, given the quantum system
in example 2.8, the outcome has a probability amplitude 𝛼 of
being in state | 00⟩, amplitude 𝛽 of being in state | 01⟩, and
so on.

2.2.2 State Evolution. Change in the state of a quantum
mechanical system over time may be described by a unitary
operation on the vector space of the state.

Definition 2.9. An operator U is unitary if U †U = UU † = I .

If an operator is unitary, the inner product is preserved.
Moreover, the definition of a unitary operator implies the exis-
tence of its inverse, thus, we may say that unitary operations
are reversible.

Some examples of unitary operators include the Hadamard
gate (H), and the Pauli matrices, which together form a basis
for a 2-dimensional vector space.

H =

( 1√
2

1√
2

1√
2

− 1√
2

)
𝜎0 =

(
1 0
0 1

)
= I

𝜎x =

(
0 1
1 0

)
= X

𝜎y =

(
0 −i
i 0

)
= Y

𝜎z =

(
1 0
0 −1

)
= Z

Example 2.10. The Hadamard gate, H, puts a qubit in
state | 0⟩ into an equal superposition. By multiplying the
Hadamard matrix to | 0⟩, the resulting probability amplitudes
all become equal.

H | 0⟩ =
( 1√

2
1√
2

1√
2

− 1√
2

) (
1
0

)
=

( 1√
2
1√
2

)
For an operator to be applied to multiple qubits, it must

be scaled to a higher order by getting its tensor product.

Example 2.11. Scaling the Pauli X gate to be applied to 2
qubits:

𝜎x ⊗ 𝜎x =

©­­­«
0
(
0 1
1 0

)
1
(
0 1
1 0

)
1
(
0 1
1 0

)
0
(
0 1
1 0

) ª®®®¬
=

©­­­«
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

ª®®®¬
2.2.3 Measurement. Once a qubit under superposition is
observed, it collapses into one of the basis states of the
vector space, with a probability distribution directly tied to
the amplitudes 𝛼 and 𝛽. Unlike other quantum operations,
this is not unitary, and therefore not reversible; once the
qubit is measured, the information about its superposition is
destroyed. This may be generalized as follows:

Definition 2.12. The probability of measuring an outcome
j = 1, . . . , n in an quantum system with an n-dimension vector
space is given by P (j) =| aj |2, where aj is the amplitude
associated with outcome j.

It is also possible to only measure certain qubits in the
quantum system. Consider the 2-qubit system | 𝜓 ⟩ in equal
superposition:

| 𝜓 ⟩ = 1
2
| 00⟩ + 1

2
| 01⟩ + 1

2
| 10⟩ + 1

2
| 11⟩

Because it is in equal superposition, the probability of
getting | 0⟩ when measuring the 2nd qubit is 50% (likewise
with | 1⟩). Suppose that the 2nd qubit collapses to | 0⟩. The
quantum system then transforms into

| 𝜓 ⟩′ = 1
√
2
| 00⟩ + 1

√
2
| 10⟩ .

By removing the 2nd qubit, we get

| 𝜓 ⟩′ = 1
√
2
| 0⟩ + 1

√
2
| 1⟩ .

2.2.4 Entanglement. It is possible for the measurement of
one qubit to directly affect the measurement of another. If
this is the case, then we say the two qubits are entangled.
Consider the two-qubit system

| 𝜓 ⟩ = 1
√
2
| 00⟩ + 1

√
2
| 11⟩ .

If we observe the 2nd qubit to be | 0⟩ then the amplitude
of the state | 11⟩ is diminished entirely, and we are left with
the term | 00⟩, in which the 1st qubit will collapse to | 0⟩ with
a 100% probability. Likewise, if we get an outcome of | 1⟩,
then the 1st qubit will collapse to | 1⟩ as well. Thus, the two
qubits in the system are entangled.

There exists unitary operators that operate on multiple
qubits. One example is the Controlled-NOT gate (or CNOT),
which flips the state of the 2nd qubit only if the 1st qubit
reads | 1⟩.
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Example 2.13. The Controlled-NOT Gate.

CNOT =

©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
2.3 Quantum Circuit Model
A quantum algorithm consists of successions of quantum
operators applied to a register of qubits. A quantum circuit
is a visual representation of a quantum algorithm, which is
the standard for how quantum algorithms are described and
visualized (examples may be seen in Figures 1, 2 and 3).

Each qubit is represented by a horizontal wire with its
initial state on the left. Quantum operators, or gates, are
applied to the qubit, and are executed from left to right.

| 0⟩ H Z

Figure 1: Quantum circuit with one Hadamard gate and one
Pauli Z gate

Multiple qubits are represented with multiple wires. Con-
trolled gates that span multiple qubits (such as the CNOT
gate) are connected via a vertical wire, while single gates that
span multiple qubits may either be separated or combined
into one. A meter at the end of a wire denotes a measurement
on the indicated qubit.

| 0⟩
H

• H

| 1⟩ H

Figure 2: Two-qubit quantum circuit with two scaled
Hadamard gates and one CNOT gate. Note that both ver-
sions of the scaled Hadamard gate are the same.

Qubits with similar circuitry may be merged. The circuitry
of a qubit that is duplicated is indicated by a slash, followed
by the number of times it is to duplicated, n.

| 0⟩ /n H ⊗n

| 0⟩ X

Figure 3: A quantum circuit with n + 1 qubits.

3 DEUTSCH-JOZSA ALGORITHM
3.1 The Deutsch Problem and its Classical

Solution
The Deutsch problem is as follows. We are given a function
f : {0, 1}n → {0, 1}, which is promised to be either of the
following:

(1) Constant; e.g. the function will map to one value (either
0 or 1) no matter the input; or

(2) Balanced; e.g. the chances of getting 0 for any input is
equal to the chances of getting 1.

An intuitive solution for this problem would be to query
the function f for every input on {0, 1}n, which would require
2n queries. However, it is possible to get the answer with only
about half of the domain.

If the function is balanced, this implies that half of the
domain of f will give an output of 1, and the other half will
give 0. This means that if we gather the outputs of 2n−1 + 1
of the possible inputs of f and see that the set of outputs
contains both 0’s and 1’s, then we can conclude that the
function is balanced. Otherwise, if the set contains all 0’s
or all 1’s, then the function is constant. If we consider one
step of the classical algorithm to be a query on f , we could
determine the following:

Lemma 3.1. The number of steps needed to solve the
Deutsch-Jozsa problem is 2n−1 + 1

Lemma 3.2. The time complexity for the classical solution
the Deutsch-Jozsa problem with full certainty is O(2n) .

It is also possible to query random values of {0, 1}n to f ,
as suggested by Deutsch and Jozsa, and guess with a bound
of error whether the function is constant or balanced. After
2 queries on the function f , the probability of guessing the
correct type of function will be about 1/2. However, if we
want to solve the problem with full certainty, we need to
invoke at least 2n−1 + 1 function calls.

Suppose we have a function f : {0, 1}3 → {0, 1} defined as
x1 ⊕ x2 ⊕ x3. This function is balanced, as is shown in the
following mapping:

Input Output
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 1

Let us also assume that when evaluating the function f ,
we select completely random input values one at a time. If we
select the first two inputs to be 011 and 111, we get outputs
0 and 1, respectively, and thus, may already conclude that
the function is balanced. However, if we select inputs 000
and 101, both outputs will be 0, and thus, it is inconclusive.

In the worst case, we may select values 001, 010, 100, and
111, which will all give outputs of 1. This is still inconclusive,
and yet we have already used up half of the domain, or
O(2n−1). However, once we query any other input (like 101,
for instance), we get an output of 0, and thus we may conclude
that the function is balanced in O(2n−1 + 1) steps. Since we
are promised that the function is either constant or balanced,
if we ever got an output of 1 in the last step, we may have
conclude that the function is constant.
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3.2 The Quantum Algorithm
Because the function f on its own is not unitary, it cannot be
put directly onto the quantum circuit. Thus, a mechanism
called a quantum oracle is required, which applies the black
box function on a single output ancilla bit, while keeping the
input itself intact. The quantum oracle Uf maps the input
| x⊗n, y⟩ to | x⊗n, y ⊕ f (x)⟩, ensuring a copy of x is left behind
even after the function f is applied.

This algorithm, along with other quantum algorithms such
as Shor’s factoring algorithm, has been revisited by Cleve
et. al. in 1997 to more clearly define the quantum circuit [4].
Given a quantum register of size n + 1, the Deutsch-Jozsa
algorithm is as follows (refer to Figure 4 for the Quantum
circuit diagram):

(1) Initialize each qubit to | 0⟩, and the ancilla bit to | 1⟩.
(2) Apply the Hadamard Gate H to each qubit.
(3) Apply the oracle function Uf to each qubit.
(4) Apply H to each of the first n qubits.
(5) Perform a measurement on each of the n qubits.

| 0⟩ /n

H ⊗n+1 Uf

H ⊗n

| 1⟩

Figure 4: Quantum circuit for the Deutsch-Jozsa Algorithm

The transformation of a quantum register with n qubits
throughout is algorithm is summarized below. First the
Hadamard gate is applied to all qubits, which puts all n
qubits in equal superposition, and the ancilla bit in state
| 0⟩ − | 1⟩:

𝜓1 : | 0⟩⊗n | 1⟩
H⊗(n+1)
−−−−−−→

∑
x∈{0,1}n

| x⟩ (| 0⟩ − | 1⟩),

Next the oracle gate Uf is applied, which maps | x⊗n, y⟩ to
| x⊗n, y ⊕ f (x)⟩:

𝜓2 :
∑

x∈{0,1}n
| x⟩ (| 0⟩ − | 1⟩)

Uf
−−→

∑
x∈{0,1}n

(−1)f (x) | x⟩ (| 0⟩ − | 1⟩)

Finally, applying the last Hadamard transform to all but
the ancilla bit, the system evolves into

𝜓3 :
∑

x∈{0,1}n
(−1)f (x) | x⟩ (| 0⟩ − | 1⟩)

yH ⊗n

∑
x,y∈{0,1}n

(−1)f (x) ⊕(x ·y) | y⟩ (| 0⟩ − | 1⟩).

To determine whether the function is constant or balanced,
we must look at the probability of measuring | 0⊗n⟩:

P ( | 0⊗n⟩) =

������ ∑
x∈{0,1}n

(−1)f (x)
2n

������
2

.

From here, it can be deduced that if the function is con-
stant, the state will be (−1)f (0⊗n) | 0⊗n⟩ (| 0⟩ − | 1⟩), whereas
if the function is balanced, the amplitude of the state | 0⊗n⟩
will be zero in the first place. By expounding on these two
possible cases, the following Lemma could be demonstrated:

Lemma 3.3. The Deutsch-Jozsa problem could be solved
with certainty with only 1 measurement [4].

Case 1: Constant. A constant function means that f (x)
will yield either only 0 or only 1 for all inputs x. This means
that the term (−1)f (x) does not change with input x, which
means that it will exhibit constructive interference. Getting
its summation over all values of x will eventually yield a value
of 1.

Case 2: Balanced. A balanced function means that for all
inputs x, f (x) will yield 0 half the time, and 1 otherwise.
This means that for all values of x, the term (−1)f (x) will
yield -1 half of the time, and 1 otherwise, meaning it will
exhibit destructive interference. Getting its summation over
all values of x will eventually yield a value of 0. Therefore,
we could determine with full certainty whether the function
is constant or balanced with only a single measurement.

3.3 Uses of the Algorithm
Although the algorithm was designed primarily to demon-
strate the potential speedup of quantum computers over
classical computers, it inspired others to design more sophis-
ticated algorithms, like the Quantum Fourier transform and
Shor’s factoring algorithm. Nonetheless, the algorithm itself
has been used as baselines for other solutions.

Nagata and Nakamura in 2015 used the algorithm as an
intermediary for quantum key exchange [15]. Alice would
send an N + 1-qubit register in superposition to Bob, who
would then apply the transformation Uf on the register and
return the N qubits. Alice would then be able to determine
whether the shared function was constant or balanced.

Samir Lipovaca in 2009 was able to use the Deutsch-Jozsa
algorithm to partition an array and apply the specified func-
tion to each partition [13].

Stephan Gulde et. al. in 2003 implemented the Deutsch-
Jozsa algorithm on an ion-trap quantum computer in order
to test the system’s reliability [10]. The evolution of the
quantum system throughout the algorithm was determined
by measuring the probability of detecting the qubit in a D5/2
electronic state.

4 QUANTUM DECOHERENCE
Research on quantum algorithms assume a perfect quan-
tum system that could hold information for long periods of
time. However, the information stored in a qubit is extremely
fragile, and could be lost once the qubit interacts with the
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environment. This phenomenon is known as quantum decoher-
ence, and it is a limitation in the realization of the quantum
computer. While developments in preventing environment-
induced decoherence focus on isolating the qubits, it was also
shown that decoherence may occur even when said qubits are
perfectly isolated [9]. This therefore shows the importance of
taking decoherence into consideration when designing quan-
tum algorithms.

While the study of Gulde et. al. showed favorable results,
it was stated that there were slight deviations between the
actual result and what was expected. The authors attributed
this deviation to the decoherence of the quantum system.

One other study done by Cao et. al. in 2018 highlights
a possible imperfection of the Deutsch-Jozsa algorithm. By
considering the actual implementation of the quantum oracle,
it was shown that the results of it being applied to a qubit
in superposition are inconsistent with the assumptions made
in the design of the original algorithm [2]. If the physical
realization of the oracle function Uf is faulty, the algorithm
could yield imperfect results. This inconsistency could be one
possible cause of decoherence for the implementation of the
algorithm.

4.1 Background and History
Heinz-Deiter Zeh enumerated and defined some forms of deco-
herence [21]. The first one is decoherence due to measurement
or observation. The second one is labelled as virtual decoher-
ence, which happens in the microscopic level. The third type
of decoherence is real decoherence, which is caused by the
qubit’s interactions with the environment. Real decoherence
is unavoidable and non-unitary.

Zurek’s study on decoherence in 1991 revolved around the
flaws of Neils Bohr’s Copenhagen interpretation of quantum
mechanics and took into consideration Hugh Everett III’s
many worlds interpretation [22]. Bohr argued that a clas-
sical measuring device is needed to collapse and measure
a quantum state, thus implying a fine line between quan-
tum and classical computing. On the other hand, Everett
insisted that the entire universe is continuously evolving via
tha Schrödinger equation, and implied that the boundary
between classical and quantum computing might have been
more inclusive than previously thought. This dillema is also
known as the quantum measurement problem. Zurek showed
how, using Von Neumann’s hypothesized process of nonuni-
tary reduction, the addition of the environment in the simple
quantum measurement system could lead to a loss of excess
information (decoherence) which allows the quantum state
to be interpreted classically.

Another study on the quantum measurement problem
was done by Eric Galapon in 2016 [9]. It was shown that,
given a simple measurement system consisting of a probe
and a pointer, there exists a finite time to achieve exact
decoherence and orthogonality without coupling with the
environment. While other studies of decoherence made use
of the environment-induced decoherence theory (EIDT), the
system studied here had no correlation with the environment

whatsoever and only consisted of one internal degree of free-
dom. It was determined that there exists a decoherence time
Δ𝜏D when the system loses all coherence, and an orthogonality
time Δ𝜏O when all pointer states become mutually orthogonal.
By comparing these times, we could see that Δ𝜏O > Δ𝜏D, and
so for Δ𝜏D < Δ𝜏 < Δ𝜏O , the measurement reading would have
an ambiguous outcome.

The apparent inevitability of quantum decoherence presents
a major roadblock in the realization of the quantum com-
puter. Many error-correcting methods have been studied in
order to circumvent erroneous quantum computers, some of
which have been summarized by Kempe in 2007 [12]. Some
methods hold similarities with classical error-correcting ap-
proaches, such as hamming codes and bit allocation. Others
deal with the actual realization of a decoherence-free quantum
computer in order to avoid errors altogether.

A study by Flores and Galapon in 2016 explored a scheme
to maintain entanglement between two qubits by adding
additional qubits [8]. By considering the exact evolution of
multiple qubits in a common reservoir, it was shown that
increasing the number of qubits N preserves the entanglement
of two initially-entangled qubits. One possible error correction
scheme would be to add a qubit before the decoherence time
of the isolated system, Δ𝜏D, is reached.

4.2 Decoherence Measures for Quantum
Algorithms

Due of the apparent inevitability of quantum decoherence,
researchers have been taking this into consideration in the
design and analysis of quantum algorithms. Some methods
and papers are listed below.

A perturbative approach introduced by Azuma [1] assumes
that each qubit in each step of the algorithm interacts inde-
pendently with the environment, giving an error of 𝜎z with a
probability p. The limit of this is then taken as the number of
qubits n reaches infinity, thus providing an upper bound for
the amount of error an algorithm could have without losing
vital information.

Another method proposed by Walls and Milburn [20] is
a master-equation approach to determine the effect of dissi-
pation on a macroscopic level. Here they explore the use of
Markovian master equations based on the effects of damping
on a harmonic oscillator in order to determine the relation-
ship between the decoherence and the quantum state of the
system.

Utsunomiya et. al. analyzed the decoherence of some quan-
tum algorithms by studying the collective, rather than indi-
vidual, interactions between the qubits and its environment
[19]. The proposed method of analyzing different basis states
in order to determine the relaxation rate of the algorithm was
executed on the Deutsch-Jozsa algorithm, as well as Grover’s
algorithm for data search. It was shown that minor changes
in the sequence of gates (as well as the choice of initial states
of the qubits) could help avoid unstable (superradiant) states,
favor stable (subradiant) states, and decrease the effect of
collective decoherence altogether.
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Chuang et. al., along with Shor himself, explored the ef-
fects of decoherence on Shor’s factoring algorithm [3]. By
introducing the environment as a separate qubit | 𝜖⟩ (defined
as the "degrees of freedom from the environment"), the quan-
tum states of Shor’s factoring algorithm could be rewritten
as:

| 𝜓1⟩ =
1
√
L

L−1∑
a=0

| a, 0⟩ × | 𝜖⟩

| 𝜓2⟩ =
1
√
L

L−1∑
a=0

| a, xamodN ⟩ × | 𝜖a⟩

Because there is no adverse effect from decoherence for
the second state, the study focused on the effects on the first
state, and thus the following reduced density matrix could
be obtained, which could be applied to any quantum register
of length L:

𝜌red =

(L−1)′∑
a=0

(L−1)′∑
a=0

[1 − 𝛽aa′] | a⟩ ⟨a′ |

As long as a and a′ are diagonal to the pointer basis,
the term (1 − 𝛽aa′) will remain constant, and thus may be
approximated as follows:

1 − 𝛽aa′ ≈ exp[−𝜉 (a XOR a′)],
where 𝜉 is a decoherence parameter that will depend on

the quantum computer itself. This measurement will result
in a probability distribution where originally impossible out-
comes would have some nonzero probability, and the originally
nonzero probabilities will have a smaller value.

Furthermore, the approximation may be simplified to 𝛿aa′ +
(1 − 𝛿aa′)𝛽, with 𝛽 = 0 representing complete coherence, and
𝛽 = 1 representing a state of complete decoherence.

Chuang et al. defined the value 𝛼 as the amount of informa-
tion lost per qubit per operation, assuming an environment
that is Markovian in nature, and a relationship between 𝛼

and 𝛽 that is established as 𝛽 ≈ 1 − enop𝛼L, where nop is the
operation count of the quantum algorithm. This is used to
further simplify the definition of decoherence in a quantum
algorithm.

Naturally, decoherence would increase the number of times
needed to run the program in order to get the desired result.
The required number of trials needed to get a desirable result
would be increased from O(L) to O(L/(1 − 𝛽)). In terms of 𝛼 ,
the number of trials would be:

ntrial = O
(

L

enop𝛼L

)
In computing for this, the value for L could be derived from

the probability P of getting the correct answer. For Shor’s
factoring algorithm, the probability of getting a factor for
N for each execution is O(logN ) for a perfect system (i.e. a
system with no decoherence). Introducing decoherence will
raise that number to O

(
logN
1−𝛽

)
.

In order for a quantum algorithm to be advantageous
over its classical counterpart, the value ntrial must not be
greater than the performance of the classical algorithm. Thus,
these two values are compared. For Shor’s algorithm, this
comparison is as follows:

ntrial ∼
L

1 − L2𝛼

L
1 − L2𝛼

≤ 2L
1/3

From here, the value 𝛼 may be obtained in terms of L:

𝛼 <
1

L8/3

Due to its simplicity as compared to other approaches, the
method introduced by Chuang et. al. was chosen by De Jesus
for his paper, where he quantified and analyzed the decoher-
ence of some quantum algorithms. Moreover, its parameters,
such as the number of trials needed to get to a solution, are
already being used in the analysis of computational complex-
ity.

De Jesus described 𝛼 as the unit decoherence of the quan-
tum algorithm, which acts as a boundary for the algorithm
will perform better than its classical counterpart. An alter-
native method of analysis was proposed, which was deemed
more suitable for computational analysis, and was applied to
some well-established quantum algorithms such as Shor’s fac-
toring algorithm and Grover’s search algorithm. It was also
shown that distributed counterparts of quantum algorithms
could potentially increase the tolerance for decoherence [5].

The step-by-step description on deriving 𝛼 is as follows:
(1) Acquire the following values:

• nqop, the number of operations in the qubit level,
• nop(classical) , the number of operations needed to

solve the problem using the fastest known classical
solution, and

• P, the probability of getting the correct result at the
end of the algorithm (in terms of L).

(2) Compute for ntrial = O
(
enqop𝛼

P

)
(3) Compare ntrial and nop(classical) (ntrial < nop(classical) ).
Note that instead of defining nop as a function of L, De Jesus

chose to manually count the number of quantum operations by
looking at the actual quantum circuit. Thus, the relationship
between 𝛽 and 𝛼 is changed to 𝛽 = 1−e𝛼nqop , and the number of
trials to enqop𝛼/P. This changes 𝛼 = 1

L5/3
for Shor’s algorithm.

5 RESULTS AND ANALYSIS
5.1 Decoherence of the Deutsch-Jozsa Algorithm
Here we apply the aformentioned method to the Deutsch-
Jozsa algorithm.

Theorem 5.1. For the Deutsch-Jozsa algorithm, the al-
lowable decoherence per operation per qubit 𝛼 is bounded by

L
3L−1 .
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Proof. First, we find nop(classical) . This is given in Lemmas
3.2 and 3.1.

nop(classical) = 2L−1 + 1 = O
(
2L

)
(1)

Next, we consider the quantum algorithm. The sequence of
operations is to apply a Hadamard gate to all L qubits, then
apply the oracle gate Uf (which operates on all qubits), then
finally, another Hadamrd gate to all but one qubit. Thus:

nqop = L + L + (L − 1) = 3L − 1 (2)
It was stated in Lemma 3.3 that only one measurement

was necessary to get the answer with certainty. Thus:

P = 1 (3)
We then compute for ntrial as follows:

ntrial = O
(
e𝛼nqop

P

)
= O

(
e𝛼 (3L−1)

)
(4)

To get a relationship between 𝛼 and L, we compare ntrial <
nop(classical) :

e𝛼 (3L−1) < 2L < eL

𝛼 (3L − 1) < L

𝛼 <
L

3L − 1
(5)

□

5.2 Boundary of Input Size N
The value 𝛼 may also be used to derive the largest input that
a certain quantum computer can take without decoherence.
In a zero-temperature environment, the off-diagonal terms of
the density matrix may be reduced by the amount [3]

𝛼 ∼ 𝜇2 𝜂

2𝜋

[
− C − 𝜋2

4
+ log

(Δ
Λ

)]
.

Theorem 5.2. For the Deutsch-Jozsa algorithm, the largest
input size is bounded by 𝜇2 𝜂

3 𝜇2 𝜂−2𝜋 .

Expressing equation (5) in terms of L, we get the relation

L <
𝛼

3𝛼 − 1
. (6)

It is already established that the register size L is equal to
the length of the input string. With N being the size of the
input string, and by substituting 𝛼 with the decrease in the
off-diagonal term of a zero-temperature system, we get

L <

𝜇2 𝜂
2𝜋

3 𝜇
2 𝜂
2𝜋 − 1

N <
𝜇2 𝜂

3 𝜇2 𝜂 − 2𝜋
(7)

5.3 Implementation
In order to apply the acquired unit decoherence 𝛼 to the
algorithm, a simulator was implemented using the NumPy
package of Python. The program takes the function f as its
input, and by breaking down the quantum circuit into its
basic matrix forms, determines whether the given function
was balanced or constant. Although one could easily solve the
problem by looking at the input file, the aim is to effectively
simulate the evolution of the quantum state of the system
when running the algorithm; this includes the assumption
that the quantum computer has restricted access to the
function itself.

A helper function was designed in order to implement the
quantum oracle Uf , which takes a function mapping for f
as its input and returns a matrix version of Uf . The design
draws inspiration from [14]. The sample output may be seen
in Figure 5, while a snippet of the Python code for the oracle
function may be seen in Figure 6.

CASE 1: BALANCED
CASE 2: BALANCED
CASE 3: CONSTANT
CASE 4: CONSTANT
CASE 5: BALANCED

Figure 5: Sample output of the Deutsch-Jozsa simulator

d e f g e n e r a t e _ o r a c l e ( f_map , num_qubits ) :
U = np . z e r o s ( ( 2 ∗ ∗ num_qubits , 2∗∗ num_qubits ) )

f o r i n p u t _ s t a t e i n r a n g e (2∗∗ num_qubits ) :
i n p u t _ s t r i n g = i n p u t _ s t a t e >> 1
output_qubit = ( i n p u t _ s t a t e & 1 ) ^ ( f_map [ i n p u t _ s t r i n g ] )
o u t p u t _ s t a t e = ( i n p u t _ s t r i n g << 1) + output_qubit
U[ i n p u t _ s t a t e , o u t p u t _ s t a t e ] = 1

r e t u r n U}

Figure 6: Python code of oracle function generator

5.3.1 Adding Decoherence. Because the Oracle function re-
quires access to the function f , is may be considered as the
weakest point of the algorithm, and therefore could be the
most prone to decoherence. Moreover, by the definition of
the problem, the function should either all map to a single
value, or the output generated should be evenly split be-
tween 1 and 0. Therefore, if the function mapping passed
onto generate_oracle() contains one single error, the final
output will lose confidence. This loss in confidence could be
attributed to the algorithm’s decoherence.

To test this, the input to the program was manipulated
to include decoherence. The register size was set to 6 qubits,
with a 5-bit function f . The following inputs were passed:

(1) Constant-0 function (all inputs map to 0)
(2) Constant-0 function with 3 errors
(3) Balanced function (constant probability)
(4) Balanced function with 4 errors
(5) Balanced function (scattered probability)
(6) Balanced function with 4 errors
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Constant-0 Function (Figures 7 and 8). Without decoher-
ence, the probability of getting | 0⊗n⟩ is at 100%, meaning
there is full confidence in getting the right result. However,
by modifying 3 out of 32 bits in the function mapping, the
probability of getting the right answer diminishes to almost
70%, while the probability of getting other states increased
ever so slightly.

Balanced Function 1 (Figures 9 and 10). Similar to the
previous test case, the probability of getting | 0⊗n⟩ is at 0%,
meaning there is no chance of error. Once decoherence was
introduced, the amplitude of | 0⊗n⟩ increased ever so slightly,
indicating a loss in certainty.

Balanced Function 2 (Figures 11 and 12). Although the
probability distribution without decoherence seems scattered
and chaotic, the amplitude of | 0⊗n⟩ is still zero, meaning there
is no chance of error. Modifying 4 bits, however, increases
the amplitude to about 7%.

5.3.2 Error. The most notable effect of decoherence on a
quantum algorithm is the decrease in probability of getting
the correct answer. For the Deutsch-Jozsa algorithm, it is
the discrepancy in the amplitude of | 0⊗n⟩ . We expect the
amplitude to be 1 if the function is constant, and 0 if it is
balanced. Thus, if the amplitude is anything in between 0
and 1, we can attribute it to decoherence, and define the
discrepancy as the error of the system.

Definition 5.3. The error 𝜖 of the quantum system af-
ter running the Deutsch-Jozsa algorithm is P ( | 0⊗n⟩) if the
function is balanced, and 1 − P ( | 0⊗n⟩) if it is constant.

To get a relationship between 𝜖 and 𝛼, data had to be
taken from a single input that consistently lost coherence per
test run. A constant 6-bit function passed onto the program
was made to slowly lose 1 bit of coherence per test run, and
the error 𝜖 was measured per run. A graph was generated
from the result (see Figure 13).

5.4 Analysis
It is understood through its derivation that if the quantum
algorithm’s decoherence exceeds 𝛼 , it is just as efficient as its
classical counterpart, if not less efficient. In the case of the
Deutsch-Jozsa algorithm, once the value of 𝛼 exceeds L

3L−1 ,
the quantum algorithm only becomes just as efficient as its
brute force counterpart.

A graph of the function 𝛼 (L) was generated (see Figure
14). It was found that the limit of the unit decoherence 𝛼

reaches the value 1
3 as the register size L increases.

Once 𝛼 reaches a certain value, it is only just as efficient
as its classical counterpart. Meaning, with enough decoher-
ence, the time complexity of the quantum algorithm would
approach the time complexity of the classical algorithm; in
the case of the Deutsch-Jozsa algorithm, O(1) would eventu-
ally become O(2n). Looking at Figure 14, this occurs when 𝛼

approaches 1/3, for very large registers.
The vertical line in Figure 13 indicates the boundary for

𝛼 for very large registers; any value to the left of the line
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Figure 7: Probability distribution of a Constant-0 function
without decoherence.
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Figure 8: Probability distribution of a Constant-0 function
with 9% decoherence. Notice how the probability of measuring
| 0⟩ is diminished while the probabilities of measuring other
states increase.

yields better efficiency than its classical counterpart. The
maximum error 𝜖 for a system exhibiting the maximum
allowable amount of decoherence is roughly 55.56%. This
means that at 𝛼 ≈ 1

3 , the algorithm will arrive at the wrong
result half of the time, and yet it will still be more efficient
than its classical counterpart.

At a glance, the value of 𝛼 for this algorithm would seem
more tolerant to larger register sizes than those of Shor’s
factoring algorithm and Grover’s search algorithm [5]. The
values are tabulated in Table 1. A graph comparing the 𝛼

functions of the 3 algorithms could be found in Figure 15.
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Figure 9: Probability distribution of a balanced function with-
out decoherence.
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Figure 10: Probability distribution of a balanced function with
12.5% decoherence. Note the presence of the red bar at | 0⟩.

Table 1: 𝛼 boundaries of the 3 quantum algorithms.

Algorithm Deutsch-Jozsa Shor Grover

𝛼 Boundary L
3L − 1

1
L5/3

1
2L/2

With a register size of 1 qubit, the tolerance for decoherence
is much greater for Shor’s algorithm than it is for the Deutsch-
Jozsa algorithm. However, Shor’s factoring algorithm requires
much more than 1 qubit in order to be effective; the amount
of qubits needed depends on the size of the number being
factored [5]. Increasing the register size to 4, the Deutsch-
Jozsa algorithm becomes more tolerant.
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Figure 11: Probability distribution of a balanced function
without decoherence. Despite the seemingly chaotic probabil-
ity distribution, the probability of measuring | 0⟩ is still 0.
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Figure 12: Probability distribution of a balanced function with
12.5% decoherence.

Similarly, Grover’s algorithm requires a register size L
which depends on the size of the search space, and thus is
impractical for registers of size 1 or 2. With a register size of
4, the Deutsch-Jozsa algorithm also becomes more tolerant.

Moreover, as the register becomes infinitely larger, the 𝛼

functions of Shor’s and Grover’s algorithms approach 0; mean-
ing there approaches a register size where there is virtually no
tolerance for decoherence. The O(L3) running time of Shor’s
factoring algorithm [5] would become O(eL−1/3 ) even with
very little decoherence. On the other hand, the 𝛼 function
of the Deutsch-Jozsa algorithm approaches 1

3 as L becomes
infinitely larger, meaning there will always be some tolerance
for decoherence.
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Figure 13: Probability of getting a wrong measurement, with
respect to the amount of decoherence in the system. Note
that anything to the left of the dashed line will be faster than
a classical algorithm, while everything to the right will be
slower or just as efficient.
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Figure 14: Visualization of the decoherence function 𝛼 . Note
the limit of overall decoherence, 1/3.

6 CONCLUSION
Applying the method proposed by Chuang et. al. and De
Jesus, we were able to obtain the unit decoherence 𝛼 for the
Deutsch-Jozsa algorithm. Moreover, we defined the error 𝜖

of the quantum system, and derived the largest amount of
error allowable for the algorithm to be more efficient than
its classical counterpart. We were also able to obtain the
largest input size N based on the realization of the quantum
computer. The results are tabulated in Table 2.
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Figure 15: Visualization of the decoherence function 𝛼 of the
Deutsch-Jozsa algorithm over Shor’s and Grover’s algorithms.

Table 2: Summary of results.

Decoherence 𝛼 <
L

3L − 1

Maximum Error 𝜖 < 55.56%

Largest Input Size N <
𝜇2 𝜂

3 𝜇2 𝜂 − 2𝜋

As the register size L increases, the value 𝛼 approaches 1
3 ,

meaning that the Deutsch-Jozsa algorithm can still tolerate
some amount of decoherence even on infinitely large inputs. It
could also be said that the Deutsch-Jozsa algorithm is more
tolerant to decoherence than Shor’s factoring algorithm and
Grover’s search algorithm, due to the latter two approaching
0 on large L.

These results imply that even if the algorithm returns
the wrong answer half of the time, it will still be more effi-
cient than its classical counterpart. It is still advantageous
to repeatedly run the algorithm again and again until the
correct answer is obtained than it is to execute the brute-
force classical algorithm, so long as the error does not exceet
55.56%.

Further research recommendations include applying the
method to other quantum algorithms in order to construct
a larger database of decoherence values, which could even-
tually lead to the establishment of a hierarchy based on 𝛼.
Experimentation could also be done with an actual quantum
computer in order to find any correlations between the values.
Finally, error-correcting methods, such as those proposed
in [12], as well as procedures for preserving coherence, like
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the one proposed by Flores and Galapon [8], may be ap-
plied to the algorithm in order to see how it affects the unit
decoherence 𝛼.
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