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ABSTRACT
Quantum computing has gained great interest due to its
speedup over classical computing. Classical Computing has
been limited to it’s hardware as well as the algorithms it can
utilize, whereas quantum computers take advantage of quan-
tum properties of its corresponding physical implementations.
This is not without some disadvantages, one of which we
focus on which is quantum decoherence. Various models of
decoherence were studied and one was selected that is most
suitable for computational analysis. The paper presents three
findings (1) An alternative method of analysis is proposed
and compared to existing analysis. (2) A demonstration of
the selected method on comparison of distributed vs. non-
distributed quantum algorithms. (3) A comparison of two
different algorithms on the same problem. From these it
is demonstrated that quantum decoherence is a significant
factor in the efficiency of quantum algorithms.
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1 INTRODUCTION
The rise in significance of quantum computing is due to the
fundamental limits of computer miniaturization. Microproces-
sors gets smaller and smaller through advances in technology
and it is only a matter of time that the limit is reached.
At that point the system will behave quantum mechanically
rather than the current macroscopic behavior.

Rather than avoid this change in behavior, it is possible
that the properties of quantum particles are exploited and
used for computational purposes. Quantum computing is a
computational model that is inspired by natural behavior
of quantum systems. Unlike classical computing, however,
quantum computation should be able to account for the
physical limitations of the quantum machine. Perhaps it is
more elegantly stated by David Deutsch, "What computers
can or cannot compute is determined by the laws of physics
alone, and not by pure mathematics."[8]

One such limitation is decoherence. This paper explores the
relationship between decoherence and quantum complexity.
We follow the idea that time and space complexity are defined
in terms of problem size. It answers the basic question:
What is the allowable decoherence per operation per qubit,
given an algorithm and a specific register size?

The inverse can also seen, given an incremental improvement
in the decoherence rate, what improvement can we expect in
the maximum allowable register size for the algorithm to be
efficient?

In the study of qubits and quantum computation, it is gen-
erally assumed that the system is perfectly isolated from the
environment. This assumption, cannot be physically realized
as no system can be truly isolated from the environment. At
the quantum level, even uncontrollable factors such as cosmic
rays can affect the quantum state of the system. This pro-
cess of interaction, or coupling, of the quantum system with
the environment is called decoherence. This section discusses
the various concepts of decoherence, starting with general
concepts (from references [13] [24] [3]) to various papers on
its analysis.

Quantum computation exploit quantum phenomenon such
as entanglement and superposition to be able to perform
better than classical algorithms. By interacting with the
computational system in an undesired way, the environment
basically applies a measurement on the system. This unin-
tentional measurement causes the superposition to diminish
and affect the entanglement of the states as well.

2 PRELIMINARIES
We provide the relevant concepts focusing on Quantum Cir-
cuits as well as the relevant algorithms. The primary purpose
is to establish conventions but it is also to provide background
to the reader. The items in this chapter are derived from
reference books on Quantum Computing [13] [17] [24] [7].

2.1 Quantum Circuits
Quantum Circuits is the quantum analogue of classical cir-
cuits. Similar to classical circuits, it uses gates with input
and output registers. One primary difference, of course, is
that qubits are used instead of bits. Another is that due to
quantum mechanical limitations, there is no fan-in nor fan
out of wires.

Each quantum gate corresponds to a matrix operator in
which the a qubit passing through a gate is equivalent to a
matrix operator on the qubit.
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Definition 2.1 (Hadamard operator[17]).

Hadamard Operator H2 =
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Example 2.1. The corresponding circuit will be the following:
|0⟩

H

Quantum circuits are read from left to right.

Example 2.2. For multiple qubits, each qubit will represent
a wire passing through operators. For example, H |000⟩ will
be represented by:

|0⟩
H

|0⟩
H

|0⟩
H

Or for conciseness,
|0⟩

H
|0⟩

|0⟩

Finally, when a measurement is to be done, a measurement
symbol is added to the horizontal wire.

Figure 1: Quantum Circuit Symbol for Measurement

2.2 Algorithmic Problems
In this paper, all problem sizes will be standardized set to the
variable L, which will correspond to the length of the register.
For classical this will be the number of bits and for quantum,
the number of qubits required to encode the problem. This is
to standardize the comparison of algorithms and the effects
of decoherence.

2.2.1 Standard Method for Solving the Hidden Subgroup Prob-
lem. The standard method of solving the Hidden Subgroup
problem is a generalization of previous research including the
work of Shor and Simon’s algorithms. The term was coined in
the paper by Gringi, et. al. [11] in their study of non-Abelian
Hidden subgroup problem. The approach of this paper is to
study the general algorithm and present it on how it applies
on the sub-problems of the Hidden Subgroup Problem.

Algorithm:
The algorithm assumes that the elements of the group G

can be encoded into different strings, and therefore can be
represented by a register of length L, where | G |= 2L.

(1) Using Hadamard gates, initialize an L-qubit register M
with an equal superposition if all possible elements.

(2) Apply the function f (a) on M and store the output in
a different register N (We assume N is big enough to
store the output information).

(3) Measure register N to reduce it to only one value. The
values in M will be reduced exactly one coset of H that
corresponds to the value in N . This is because f (a) is
constant on the cosets of H . N is then discarded.

(4) Apply Fourier transform to M to get some property on
the set. (The type of Fourier transform will vary from
problem to problem)

(5) Measure register M to obtain an element of the gener-
ating set for H

(6) The entire algorithm may be repeated to obtain all
elements of H .

M
H

f (a)

QFT

N

Figure 2: Quantum Circuit for the Standard Method

The quantum circuit for the standard method is shown in
Figure 2. The actual function f (a) and the QFT may depend
on the problem.

2.2.2 Shor’s Algorithm. Prime factorization is a seemingly
simple problem in to find the non-trivial (1 and itself) factors
of a given a number N , represented by a register of length L,
where N = O(2L) . Classically, the fastest known algorithm is
the number field sieve by Lenstra, et al and runs at O(eL−1/3 )
[5]. The quantum inspired Shor’s algorithm runs in O(L3)
[20].

To solve prime factorization, Shor’s algorithm reduces the
problem to finding the smallest r such that xr ≡ 1 mod N ,
where x is an arbitrary number that is relatively prime to N .
If r is even, then we can find the factors of N by factoring
the binomial:

xr ≡ 1 mod N (1)
xr − 1 ≡ 0 mod N (2)

(xr/2 + 1) (xr/2 − 1) ≡ 0 mod N (3)
From this we can see that either (xr/2 + 1) or (xr/2 − 1) is

a factor if N , which then can efficiently be verified classically.
If the algorithm returns an odd r or trivial factors 1 or N , we
simply find another x relatively prime to N , and rerun the
algorithm.

The problem of finding r is efficiently done by the Stan-
dard Method. We can interpret that problem as the Hidden
Subgroup Problem where the group is Zm, and the function is
f (a) = xa mod n. The HSP finds the generator r of the hidden
set H .

In Shor’s paper, the Quantum Fourier Transform used is
simply termed as "Quantum Fourier Transform". The more
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precise term would be Cyclical Quantum Fourier Transform,
as pointed out by Lomont[15]. This is because this QFT
is applicable only to cyclic groups, which includes Zn. The
Cyclical Fourier Transform is shown in Equation 4 and the
circuit diagram is shown in Figure 3 [13].

FL =
1

√
N

N−1∑
j,k=0

e
2𝜋 ijk
N |k⟩ ⟨j | (4)

M0
H X1

...
XL−1

M1
• H X1

...
XL−2

M2
• H X1

...
XL−3

. . .

ML−2
H X1

ML−1
• • • • H

Figure 3: Quantum Circuit for the Cyclic Fourier Transform

2.2.3 Grover’s Algorithm. Grover’s Algorithm is a novel ap-
proach to an unstructured database search, as it improves
the optimal classical linear search by quadratic speedup. Its
applicability in multiple problems make it another baseline
algorithm in the field of quantum computing. It has been
generalized by Boyer, et. al. [4], to be able to search any
problem space, but the core of the algorithm was defined by
Grover[12]. We restate the problem here:

Problem: Given an indexed table T with size 2L, whose ith
element is ti such that 0 ≤ i ≤ 2L − 1, and a unique element
K, find the index j such that tj = K.

The algorithm is designed with an oracle f (i) in mind,
wherein it accepts an index i and returns 1 if ti = K, and
returns 0 otherwise.

f (i) =
{
1 if ti = K
0 otherwise

Algorithm:
(1) Using Hadamard gates, initialize an L-qubit register

with an equal superposition if all possible indexes i.
(2) Grover Iterate: Incrementally increase the probability

amplitude of the correct index j by performing the
following steps:

(a) Apply the sign changing operator (Vf ). Using the
oracle, only the amplitude of the index corresponding
to the searched item K will be inverted.

(b) Apply the inversion about the average operator (Dn).
The effect is that amplitude of the correct index will
increase.

(3) Steps 1 and 2 are repeated ⌈𝜋4
√
2L⌉ times to maximize

the probability of measuring the correct value of the
index. This is commonly referred to as the Grover
Iterate.

(4) The register is observed and the index value is verified.
If the index is incorrect, the algorithm is repeated.

The sign changing operator (Vf ) and the inversion about
the average (Dn) operators are given by these:

Vf =
1

√
2L

2L−1∑
n=0

(−1)f (i) (5)

Dn =
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M0

H Vf Dn

...

Vf Dn

M1 ...

M2 ...

...

ML−2 ...

ML−1 ...

Figure 4: Quantum Circuit for Grover’s Algorithm

The quantum circuit for Grover’s algorithm is given by
Figure 4.

2.2.4 Distributed Grover’s Algorithms. Although Grover’s al-
gorithm has already been determined to be optimal[25], for
practical reasons there are studies that venture into subdi-
viding a large search problem, one of the most recent is a
paper by Exman and Levy[10]. We are to discuss this section
based on their paper, changing a few naming conventions.

The idea is to divide the search data into P partitions,
and running Grover’s algorithm for each one in parallel. To
determine which subsystem contains the searched item, a
classical method if searching a 1 bit among P bits representing
the result of each partition.

If the database size of a monolithic Grover’s search is 2L,
then for this distributed algorithm, the database size will
2L/P, requiring each partition to have a register size of L− lg P.
Since they are run in parallel, the running time is the same
as the running time of one subsystem. Given the size of the
subsystem, we can determine that the running time is

nop = ⌈𝜋
4

√
2L/P⌉

nop ≈ 2L/2
√
P (7)
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The running time of determining the subsystem is considered
to be much smaller than the first part of the algorithm, and
thus the total running time is dependent on the first part of
the algorithm.

2.2.5 Ettinger and Høyer’s Algorithm for the Dihedral Hidden
Subgroup Problem. The Dihedral Hidden Subgroup Problem
(DSP) is the Hidden Subgroup Problem applied to Dihedral
Groups. Ettinger and Høyer also employed the Standard
Method using a different Fourier Transform that applies to
Dihedral Groups, namely the QFT over Zn × Z2.

The standard method is modified to separate the x and y
components of the group element and put them in separate
registers. After the QFT of the x element, Hadamard gate is
applied to the y element. Figure 5 shows the circuit model.

My
H

f (a)

H
Mx

H QFT

N

Figure 5: Quantum Circuit for Ettinger and Høyer’s Algo-
rithm for DSP

3 DIFFERENT APPROACHES TO ANALYSIS
OF DECOHERENCE

After the discovery of Shor’s and Grover’s algorithms, the
physical study of decoherence is being applied to quantum al-
gorithms as well. The following are some research, theoretical
and experimental, on how decoherence affects computation.

A study by W. G. Unruh, computes that the time taken
in a quantum calculation must be less than the thermal time
scale, ℏ

kBT
, where ℏ is Planck’s constant, kB is the Boltzmann

constant, and T is the temperature[22].
It has been also determined that the rate of decoherence

is proportional to the square of the size of the register This
has also been verified recently thru experimentation [21] [18].

The rate of decoherence is also affected by the separa-
tion of the quantum states of the register [23]. If there are
more varied values within the superposition, there is a bigger
tendency for the register to change values.

Decoherence is dependent on the technology used. As an
example, photons have a low decoherence rate at low energies
but may have difficulty exhibiting entanglement. Ion traps
and superconductors have relatively high decoherence rates
[19].

Another factor of decoherence is the interaction with the
external system, called the heat bath. It is the noise that
affects the state of the system to give undesirable computa-
tional results.

It is worth mentioning that there are multiple ways to cor-
rect decoherence. Error correcting methods has been proposed
[1] [6] as well as other novel ideas such as qubit recycling[16].

At this point of the study we focus on the effects of decoher-
ence and not yet on a method for error correction.

Studying the effects of decoherence will require some math-
ematical model. As decoherence has multiple factors, re-
searchers tend to focus on one or two factors for simplicity.
All results in the previous section have different models for
decoherence. The author recommends a simple method to
deal with the quantum mechanical details in an abstract
manner, and focus on the computational complexity aspect.
The three papers mentioned below follow this paradigm.

A peturbative approach assumes a small deviation (e.g.
slight change in probability amplitudes) and applies the error
throughout the algorithm to determine the overall effect on
the solution. This will determine the upper bound of the
acceptable unit error without affecting the results of the
computation [2].

A Markovian Master Equation approach can also be used
to determine the relationship between the current values of
the register and the decoherence of the system at that point
in time [23].

Chuang, et al. [5] altogether abstracted away decoherence
by defining 𝛼, which is defined to be the coherence lost per
operation per qubit. The number of trials from the resulting
decoherence is computed based on the fully coherent proba-
bility P and the decoherence factor 𝛼 . The register size L and
the number of operations at full coherence nop are included
as parameters.

In terms of computation, the primary concern of the study
of algorithms is the complexity of the algorithm. Two primary
factors are how the problem size affects time complexity as
well as space complexity. The goal of this research will be to
find some relationship between problem size and decoherence.
Because of this, the method of Chuang, et al. will be used
and will be be described in detail.

4 CHUANG, ET. AL. MODEL OF
DECOHERENCE

The model of Chuang, et. al. [5], has been chosen for the fol-
lowing reasons: (1) It’s parameters focus on problem size and
number of operations, both already being used for analysis of
complexity. (2) It’s simple approach can easily be applied to
various algorithms. (3) Speed of computation and material
type is abstracted away and thus the study is not limited to
specific technologies.

In the paper the model of decoherence is in the form
of adding the environment as extra qubits in the system.
Equation (7) of the paper shows this.

���𝜓2〉 =
1
√
L

L−1∑
a−0

��a, ya mod N
〉 ⊗

|Y⟩

The study focuses on the effects of decoherence on the first
register M and obtain the reduced density matrix.

𝜌red =

L−1∑
a=0

L−1∑
a=0

(1 − 𝛽aa′) |a⟩
〈
a′

��
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This equation can apply to any register of length L and
will not be dependent on the algorithm to be used.

The term (1 − 𝛽aa′) |a⟩ ⟨a′ | will be nonzero if a and a′ are
of different values, so the equation can be simplified if it is
assumed if (1 − 𝛽aa′) is constant. It can be approximated by
a constant error we define to be E.

1 − 𝛽aa′ ≈ exp
[
−E

(
a XOR a′

) ]
The analysis is then further simplified to instead of using

𝛽aa′ , 𝛽 = 0 is used to representing a state of complete coher-
ence and 𝛽 = 1 representing a state of complete decoherence.
The methodology is described in the following section.

To represent the qualitative effect of decoherence, 𝛼 is
defined as the coherence lost per bit in a single logic operation.
This variable will represent, in an abstract manner, the type
of technology used with respect to maintaining coherence. For
conciseness, in this text we will refer to 𝛼 as unit decoherence.

It is assumed that the effect of the environment has a
Markovian character and the relationship between 𝛼 and 𝛽

is established with 𝛽 ≈ 1 − e−nop𝛼L. The required number of
trials with decoherence (which we label as ntrial) is calculated
by:

ntrial = O(L/(1 − 𝛽))
Which we can formulate in terms of 𝛼:

ntrial = O(L/(e−nop𝛼L))

The numerator L is derived from the reciprocal of the prob-
ability of the correct answer, given perfect operation (no
decoherence). Decoherence ultimately affects the probability
of getting the correct result. Since getting incorrect results
can be expected due to the probabilistic nature of quantum
computers, it is natural to simply rerun the program. This is
how decoherence affects the computational complexity of the
algorithm.

The limit in which we tolerate decoherence is when the
running time of the algorithm is worse than the best known
classical algorithm. The reasoning for this benchmark is that
there is no reason to use quantum technology if it is not better
than the corresponding classical algorithm. The comparison
is specific to the algorithm, and not the problem. Since we
are using the best known classical algorithm as a benchmark,
advances in that field of research will affect the comparison.

From the paper we can derive a step by step description on
how we find the relationship between the unit decoherence
and problem size.

Consistent with the entire text, all algorithms are to be
assumed to use the same register size, L. This will make it
easier to compare the relationship between L and 𝛼.

(1) Obtain information on the algorithms to be used.
• nop, the number of operations to complete the algo-

rithm, in terms of the register size L.
• P, the probability of obtaining the correct result at

the end of the algorithm, in terms of the register size
L

• nop(classical) , the fastest known classical algorithm in
terms of the register size.

(2) Compute for ntrial , the number of trials to complete
the algorithm, taking account for decoherence.

ntrial = O
(
enop𝛼L/P

)
(8)

(3) As per our criteria, compare ntrial and nop(classical) . This
equation will determine the relationship between L and
𝛼.

ntrial < nop(classical) (9)
A summary of the results by [5] is shown in Table 1.

IT shows the step by step computation from number of
operations to the unit decoherence 𝛼.

Register Size L

nop L2

P O
(
1
L

)
ntrial O

(
LeL

3𝛼
)

nop(classical) O
(
2L

1/3
)

𝛼 Condition 𝛼 < 1
L8/3

Table 1: Decoherence Analysis of Chuang, et. al. Shor’s Algo-
rithm

5 PROPOSED CHANGE IN ANALYSIS
We suggest a slight modification of the methodology to get
more accurate results. Since 𝛼 is the decoherence lost per bit
per operation, instead of obtaining 𝛽 by the product nopL, we
look into the actual circuit used and count the actual number
of operations at the qubit level, which we define to be nqop.
The factor 𝛽 is therefore changed as well as the formula for
ntrial :

𝛽 = 1 − e𝛼nqop (10)

ntrial =
e𝛼nqop

P
(11)

If applicable, we now apply this new methodology to the
past algorithms we discussed.

5.1 Shor’s Algorithm
Using this alternative analysis, we show the following:

Theorem 5.1. For Shor’s Algorithm, given a problem size
L, the allowable decoherence per operation per qubit 𝛼 is bound
by 𝛼 < 1

L5/3
.

Proof. The number of operations on a qubit can be de-
rived from the quantum circuit. Each gate will correspond to
a matrix operation and therefore the number of operations
is simply the total number of gates of the circuit. Gates with
two inputs will count as two operations. If we refer to the
design of the Cyclical Quantum Fourier Transform Circuit
(Figure 3), we can compute nqop. The first wire will contain
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L − 1 Phase Shift Gates and 1 Hadamard gate, while the last
wire only contains a Hadamard gate. In general, wire x will
contain L − x Phase Shift Gates and 1 Hadamard Gate. Shift
gates operate on two qubits, and thus counts as 2 operations
per qubit.

nqop =

L∑
x=1

2(L − x) + 1

nqop = 2
L∑

x=1
L − 2

L∑
x=1

x +
L∑

x=1
1

nqop = 2L2 − 2
(L) (L − 1)

2
+ L

nqop = 2L2 − L2 − L + L

nqop = L2

We then proceed with computing ntrial and 𝛼. We summa-
rize the straightforward computation using the rest of the
methodology as follows:

nqop = L2

P = O
(
1
L

)
(12)

ntrial = O
(
LeL

2𝛼
)

(13)

𝛼 <
1

L5/3
(14)
□

What counts for the discrepancy? The formula 𝛽 = e𝛼nopL

assumes that for every operation, all qubits will be involved.
In the Cyclic QFT for example, it runs in O(L2) steps, but
for each step, only one or two qubits are involved. As de-
coherence is a physical limitation, the design of the actual
circuit may help in obtaining actual results. As we have seen
less operations per qubit, we can expect less decoherence in
the results, and therefore a higher tolerance for decoherence
given a certain problem size L.

5.2 Ettinger and Høyer’s Algorithm for the
Dihedral Hidden Subgroup Problem

In this section we analyze the algorithm used in the paper
by Ettinger and Høyer [9]. We cite the Theorem as stated in
the paper, with the conventions adapted to this paper.

Theorem 5.2. (Ettinger, Høyer) Let f : DN → R be a
function that fulfills the dihedral subgroup promise with respect
to H . There exists a quantum algorithm that given f , uses
Θ(L) evaluations of f and outputs a subset X ⊆ DN such that
X is a generating set for H with probability at least 1 − 2

2L .

The approach is to use an abelian subgroup within the
dihedral subgroup and solve the HSP for the abelian sub-
group. For this, the QFT is used and therefore the number of
operations will be the same as what we get from the analysis
of Shor’s algorithm.

The computation for Ettinger and Høyer’s algorithm [9]
will be similar to the analysis for Shor’s algorithm, since

it also used the Cyclic Fourier Transform for Zn. The Z2
component of the algorithm is a constant time so it can be
removed from this analysis.

Theorem 5.3. For Ettinger and Høyer’s Algorithm for
the Dihedral Hidden Subgroup Problem, given a dihedral group
D2L , the allowable decoherence per operation per qubit 𝛼 is
bound by 𝛼 < 1

2L .

Proof. The DHSP for a problem of size L (or N = 2L)
will have the same number of gates in the QFT part, but
the probability of getting the Hidden Subgroup is 1 − 1

2L .
The following equations show the calculations based on the
proposed methodology.

nqop = L2

P = O
(
1 − 1

2L

)
= O

(
2L − 1
2L

)
(15)

ntrial = O
((

2L

2L − 1

) (
LeL

2𝛼
))

We remove lower order terms and cancel out exponential
orders in 2 and e.

ntrial = O
(
eL

2𝛼
)

(16)

As the benchmark is nop(classical) = O
(
(2L/2)

)
, 𝛼 will have the

following limit:
𝛼 <

1
2L

(17)
□

It is worth noting that the overall algorithm is still exponen-
tial in running time, but the quantum section is polynomial.
In addition, the probability of getting the correct generating
subgroup is significantly higher than that of Shor’s algorithm.

5.3 Kuperberg’s Algorithm for the Dihedral
Hidden Subgroup Problem

Kuperberg improved upon the performance of Ettigner and
Høyer’s algorithm. The running time is sub-exponential but
the number of qubits is also sub-exponential. We use his first
algorithm in [14] for analysis with respect to decoherence.

Theorem 5.4. (Kuperberg) There is a quantum algorithm
that finds a hidden reflection in the dihedral group G = DN

(of order 2N) with time and query complexity 2O (
√
logN )

2O (logN ) translates to 2
√
L in terms of the problem size L.

We perform the same method of analysis and arrive at the
following result:

Theorem 5.5. For Kuperberg’s Algorithm for the Dihedral
Hidden Subgroup Problem, given a dihedral group D2L , the
allowable decoherence per operation per qubit 𝛼 is bound by
𝛼 <

L/2
4
√
L
.

Proof.
nop = 2

√
L

P = 1 − 1
e2m/3−1
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To simplify, we can actually assume a probability close to 1.

P ≈ 1 (18)

Since the amount of space used is O(2
√
L), the number of

trials with decoherence becomes:

ntrial = O
(
e𝛼4

√
L
)

(19)

Having the same benchmark which is (2L/2), 𝛼 will have an
exponential limit as follows:

𝛼 <
L/2
4
√
L

(20)

□

Figure 6: Comparison of Kuperberg’s and Ettinger/Høyer’s
Algorithms (𝛼/L)

We can compute the boundary in which this happens by
equating the results of the 𝛼

L/2
4
√
L
=

1
2L

4
√
L = L2

Which is satisfied by L = 16 and L = 4. For L > 16 and L < 4,
Ettinger/Høyer’s algorithm will have higher tolerance for
decoherence than Kuperber’g algorithm. This demonstrates
that different algorithms yield different tolerance for decoher-
ence. We can see that for large L, Ettinger/Høyer’s algorithm
can have higher decoherence rates.

5.4 Grover’s Algorithm and Distributed
Grover’s Algorithm

In this section, we demonstrate how distributed computing
decreases the effect of decoherence. We use Grover’s algorithm
and a recent distributed as comparison.

Theorem 5.6. For Grover’s Algorithm, given a database
size of 2L, the allowable decoherence per operation per qubit
is bound by 𝛼 < 1

2L/2 .

Proof. For the analysis of Grover’s algorithm, we turn
to the results of Zalka [25] wherein he calculated the optimal
number of iterations that will maximize the probability of
observing the correct solution. We use the variable nop for
this text and the value is: 1

nop = ⌈𝜋
4

√
2L⌉ (21)

Also included in his results is the probability of getting the
correct solution, which we call P.

P ≈ sin2
(
2T
√
2L

+ 1
√
2L

)
(22)

Where T is the number of iterations. To get the optimal
probability we combine equations 21, 22.

P ≈ sin2
(
2T
√
2L

+ 1
√
2L

)
P ≈ sin2

(
2( 𝜋4

√
2L)

√
2L

+ 1
√
2L

)
P ≈ sin2

(
𝜋

2
+ 1
√
2L

)
P ≈ cos2

(
1

√
2L

)
To determine the unit decoherence, we analyze the number

of operations in Grover’s algorithm. The number of iterations
is mostly dependent on the number of Grover iterates, which
is Equation 21. The initialization and operations within the
iterate uses much less time and can be ignored.

Unlike what we determined in the Cyclic QFT, the Grover
Iterate operates on all qubits per iteration, and therefore
Equation 13 applies. Substituting 21 in 13 brings:

ntrial = O
©«

e
𝜋
4 2

L/2L𝛼

cos2
(

1
2L/2

) ª®®¬
For large values of L we can assume that the cos term ap-
proaches 1. And to simplify the equation, we focus on the
term with the highest order, which is the super exponential
part. The formula is then reduced to:

ntrial = O
(
e2

L/2𝛼
)

(23)

Using the linear search as the classical comparison (O(2L)),
we are left with the inequality:

22
L/2𝛼 < 2L

Finding 𝛼 we get:

𝛼 <
1

2L/2
(24)

□

1We change the conventions to to be consistent with our own



Brian Kenneth A. de Jesus and Henry N. Adorna

Compared to Shor’s algorithm, the unit decoherence 𝛼

exponentially decreases with the increase of the number of
Qubits in Grover’s algorithm. The primary reason is that
while the effect of decoherence is the same for both algo-
rithms, they have different speedups versus their classical
counterpart.

Grover’s algorithm shows only a quadratic speedup and
therefore less tolerable to decoherence before it gets less
feasible versus a classical linear search.

Analysis of Distributed Grover’s algorithm works similarly.
Based on the proposed algorithm by Exman and Levy[10],
the problem is divided into P partitions. We quickly perform
the same calculations but using equation 7 as the problem
size. For this we are only interested in the decoherence in
one partition as we expect the solution to be in one partition
only. We presents the results here:

Theorem 5.7. For Exman and Levy’s Algorithm for Dis-
tributed unstructured Search, given a database size of 2L,
divided into P partitions, the allowable decoherence per oper-
ation per qubit is bound by 𝛼 <

√
P

2L/2 .

Proof. If we divide the database size of 2L into P par-
titions, we will have 2L/P data per partition, which can be
indexed by a register of size L− ln P. Preprocessing of dividing
the problem and post processing of selecting the correct par-
tition with the correct answer (O(ln P)) are both considered
faster than the main algorithm, and thus will not have an
effect on the running time. The rest of the calculations follow
the same steps as the analysis for Grover’s algorithm.

P ≈ cos2
(

1√
2L/P

)

ntrial = O
©«
e𝛼 (L−ln P)2

L/2/
√
P

cos2
(

1√
2L/P

) ª®®®®¬
nop(classical) = O

(
2L

)
𝛼 <

√
P

2L/2

□

The unit decoherence is only quadratically improved by
dividing the problem into sub-problems. Figure 7 shows the
relationship. The overall decoherence of the entire system
will increase, as there are more qubits than the monolithic
approach. The difference is that due to distribution, only the
partition with the correct solution needs to have the proper
solution, and thus the decoherence in other systems will not
matter. While it helps in avoiding decoherence, it is more
attributed to the reduction of the problem size rather than
the distributed nature of the algorithm.

Figure 7: Relationship between the unit decoherence (𝛼) and
number of partitions (P)

6 CONCLUSION AND FUTURE WORKS
The general approach for decoherence is to leave it as an
implementation problem and ignore the issue from a computa-
tional standpoint. However, the nature of quantum mechanics
makes it very difficult to do so and we suggest that decoher-
ence not be ignored. We establish decoherence as a parameter
in the analysis of quantum algorithms. Here we summarize
our results.

Using the modified technique employed in [5], a similar
analysis has been done and it shows that Shor’s algorithm
may potentially be more tolerant to decoherence as previously
known. We compare the results of Chuang, et. al. in Table
2. In the study of decoherence, the Quantum Circuit, that
closely models actual implementation, is a viable basis for
analysis.

We explore the effect of decoherence on distributed comput-
ing. We use a recent but straightforward solution by Exman
and Levy [10] dividing the problem into P partition and later
probing the results. The communication and final process-
ing is considered faster and thus the more critical section of
the algorithm is the Grover Iterate. We present the results
here and see that dividing the problem into partitions will
allow for quadratic improvement with respect to P. This is a
demonstration on how distributed computing can reduce the
effects of decoherence.

We compare two algorithms of the same problem and ob-
serve that they behave differently with respect to decoherence.
This is similar to a time and space complexity but for this,
we determine the effect of decoherence on problem size. From
this we hypothesize that there may be instance that one
algorithm may be faster than the other depending on the
problem size. Also that for certain decoherence levels (e.g.
certain technologies), one algorithm may be preferable to
another.



Alternative method of analysis of Quantum Decoherence

Chuang, et al [5] Proposed Method

Register Size L L

nop L2 N/A

nqop N/A L2

P O
(
1
L

)
O

(
1
L

)
ntrial O

(
LeL

3𝛼
)

O
(
LeL

2𝛼
)

nop(classical) O
(
2L

1/3
)

O
(
2L

1/3
)

𝛼 Condition 𝛼 < 1
L8/3

𝛼 < 1
L5/3

Table 2: Comparison of Modified Technique in the Analysis of
Shor’s Algorithm

Algorithm GBBHT [12] [4] Distributed [10]

Database 2L divided

Problem Size size of 2L into P partitions

Register Size L L − lg P

nop 2L/2 2L/2/
√
P

P O
(
cos2

(
1

2L/2

))
O

(
cos2

(
1√
2L/P

))
ntrial O

(
e
𝜋
4 2L/2L𝛼

cos2
(

1
2L/2

) ) O
©« e

𝛼 (L−ln P )2L/2/
√
P

cos2
(

1√
2L/P

) ª®®¬
nop(classical) O

(
2L

)
O

(
2L

)
𝛼 Condition 𝛼 < 1

2L/2 𝛼 <

√
P

2L/2

Table 3: Comparative Analysis of Distributed versus non-
Distributed Grover’s algorithm

Algorithm Ettinger/ Høyer [9] Kuperberg [14]

Register Size L L

nop L2 2
√
L

P 1 − 2
2L ≈ 1 1 − e−2

m/3−1 ≈ 1

ntrial O
(
eL

2𝛼
)

O
(
e𝛼4

√
L
)

nop(classical) O
(
2L/2

)
O

(
2L/2

)
𝛼 Condition 𝛼 < 1

2L 𝛼 <
L/2
4
√
L

Table 4: Comparison of Decoherence of Ettinger/Høyer vs.
Kuperberg’s Algorithms

For further study, the method may be applied to other
algorithms, creating a hierarchy of algorithms with respect to
decoherence. We may also look into other methods of analysis
and consider other parameters such as size of entanglement
and separation of states.
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