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ABSTRACT
A novel method based on the Qiskit[1] Python framework
is used on the Deutsch-Josza and quantum counting algo-
rithms. This method uses a classical method to randomly
place depolarizing channels in the form of X , Y , or Z quantum
gates inside the quantum circuit, randomizing the locations
for each trial. This method bypasses the quantum circuit
implementation of the depolarizing channel by implementing
the effect of the channel should it take affect on the circuit,
instead of using its superposition. The method has shown
that the superposition of measurements of the algorithm does
not necessarily correspond to the actual results of each trial
of the algorithm, as well as the effects of decoherence with
respect to error.
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1 INTRODUCTION
Moore’s law states that the overall processing power of com-
puters will double every two years. For classical computers, it
means shrinking the transistors used so chips can store more
of them and have more processing power. But as transistors
get smaller, they may exhibit behavior such as quantum tun-
neling. The idea of using these quantum mechanical behaviors
for computational power emerged[9].

Quantum computing differs from classical computing by
using qubits instead of classical bits. Like bits, qubits can
store information such as a 0 or 1, but can also store a
value in-between as a superposition. Quantum algorithms can
manipulate these qubits using quantum gates, changing their
states, allowing for computations with lower time complexity
compared to classical algorithms[11, 13], such as the quantum
counting algorithm.

Some studies about quantum computing assume a perfect
quantum system with no decoherence. Decoherence is an
environmental factor that affects quantum systems, negating
some potential power of quantum algorithms[15]. Studies
made on decoherence discover the effect of decoherence on
algorithms and their robustness [6, 8], or find methods to
limit the effects of decoherence[10].

This paper will find the effects of decoherence on the quan-
tum counting algorithm using a novel method. This method

uses the Python framework Qiskit[1], used for simulating
quantum algorithms.

In Section 2, we provide necessary concepts and notions
related to the objective of the paper. We present in Section 3
the methodology used in the experiments and its implemen-
tation. Finally we present the results of the investigation and
experiments in Section 4. We provided in the appendix the
graphs and plots of the simulations done in the experiments.

2 PRELIMINARIES
The following sections use bra-ket notation, otherwise known
as Dirac notation. This notation uses ⟨bra | and | ket⟩ to
represent a row and column vector respectively.

2.1 Quantum bits
Quantum bits, or qubits for short, are the fundamental unit of
information to quantum computation and information, much
like bits are the fundamental unit of information for classical
computation and information. Mathematically, qubits are a
state, like how a bit is either 0 or 1. Qubits may be in the
state | 0⟩ or | 1⟩, but may also be in a linear combination or
superposition:

| 𝜓 ⟩ = 𝛼 | 0⟩ + 𝛽 | 1⟩
Numbers 𝛼 and 𝛽 are complex numbers, and represent

the state of the qubit in a complex vector state. The states
| 0⟩ and | 1⟩ are the computational basis states, and form the
orthonormal basis for the vector space.

| 0⟩ =
[
1
0

]
, | 1⟩ =

[
0
1

]
, 𝛼 | 0⟩ + 𝛽 | 1⟩ =

[
𝛼

𝛽

]
A qubit can be measured, like a classical bit, but the

information examined would not be the quantum state of
the qubit. When examined, the qubit collapses into either a
0 or 1, with probabilities | 𝛼 |2 and | 𝛽 |2 respectively. The
probabilities must sum to one, so | 𝛼 |2 + | 𝛽 |2= 1. Once a
qubit is measured, the information regarding its superposition
is lost.

A system with multiple qubits are similar. A two qubit sys-
tem has four computational basis states, | 00⟩ , | 01⟩ , | 10⟩ , | 11⟩.
The two qubits can also exist in a superposition of those four
states, with the state vector being

| 𝜓 ⟩ = 𝛼00 | 00⟩ + 𝛼01 | 01⟩ + 𝛼10 | 10⟩ + 𝛼11 | 11⟩
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The measurement result of the two qubit system where
x = 00, 01, 10, or 11 is with probability | 𝛼x |2. Similarly with
a single qubit, the sum of all probabilities must equal 1.
Probabilities of states may also be normalized if a subset of
qubits are measured. For a two qubit system, the probability
of measuring a 0 for the first qubit is | 𝛼00 |2 + | 𝛼01 |2, leaving
the post-measurement state as

| 𝜓 ′⟩ = 𝛼00 | 00⟩ + 𝛼01 | 01⟩√
| 𝛼00 |2 + | 𝛼01 |2

The post-measurement state is re-normalized to satisfy the
condition that the probabilities must equal 1.

An important two qubit state is the Bell state.

| 00⟩ + | 11⟩
√
2

The Bell state has the property where when one qubit is
measured, the state of the second qubit will always be corre-
lated to the first qubit. This allows information processing
beyond the possibilities of a classical system.

2.2 Computations
Quantum computers are built using quantum circuits and
quantum gates to manipulate information, like classical com-
puters. Quantum gates are defined as matrices which manip-
ulate the vector state of qubits. Gates may encompass any
amount of qubits, with their matrix size increasing accord-
ingly.

Quantum circuits are diagrams read left to right, where
each horizontal line represents a wire. The wire is not nec-
essarily a physical wire, but can be thought of as a qubit
going through a passage of time. Vertical lines between a
wire and a gate is a control, where the effects of the gate are
determined by the attached wire.

Common Quantum Gates and symbols:

Hadamard H 1√
2

[
1 1
1 −1

]
Pauli-X X

[
0 1
1 0

]
Pauli-Y Y

[
0 −i
i 0

]
Pauli-Z Z

[
1 0
0 −1

]
Measurement Projection onto | 0⟩ and | 1⟩

n qubits /n wire containing n qubits

2.3 Quantum oracle
The oracle or black box is a subroutine in some quantum
algorithms which represents a function. While an oracle may
appear to know the solutions to the problem, it can only
recognize a solution. Mathematically, the oracle is simply

a function whose inner workings are unknown. However,
implementing the oracle is possible using quantum gates.

2.4 Deustch-Jozsa Algorithm
2.4.1 The Deutsch Problem and its Classical Solution. The
Deutsch problem is as follows. We are given a function
f : {0, 1}n → {0, 1}, which is promised to be either of the
following:

(1) Constant; e.g. the function will map to one value (either
0 or 1) no matter the input; or

(2) Balanced; e.g. the chances of getting 0 for any input is
equal to the chances of getting 1.

An intuitive solution for this problem would be to query
the function f for every input on {0, 1}n, which would require
2n queries. However, it is possible to get the answer with only
about half of the domain.

If the function is balanced, this implies that half of the
domain of f will give an output of 1, and the other half will
give 0. This means that if we gather the outputs of 2n−1 + 1
of the possible inputs of f and see that the set of outputs
contains both 0’s and 1’s, then we can conclude that the
function is balanced. Otherwise, if the set contains all 0’s
or all 1’s, then the function is constant. If we consider one
step of the classical algorithm to be a query on f , we could
determine the following:

Lemma 2.1. The number of steps needed to solve the
Deutsch-Jozsa problem is 2n−1 + 1

Lemma 2.2. The time complexity for the classical solution
the Deutsch-Jozsa problem with full certainty is O(2n) .

It is also possible to query random values of {0, 1}n to f ,
as suggested by Deutsch and Jozsa, and guess with a bound
of error whether the function is constant or balanced. After
2 queries on the function f , the probability of guessing the
correct type of function will be about 1/2. However, if we
want to solve the problem with full certainty, we need to
invoke at least 2n−1 + 1 function calls.

Suppose we have a function f : {0, 1}3 → {0, 1} defined as
x1 ⊕ x2 ⊕ x3. This function is balanced, as is shown in the
following mapping:

Input Output
000 0
001 1
010 1
011 0
100 1
101 0
110 0
111 1

Let us also assume that when evaluating the function f ,
we select completely random input values one at a time. If we
select the first two inputs to be 011 and 111, we get outputs
0 and 1, respectively, and thus, may already conclude that
the function is balanced. However, if we select inputs 000
and 101, both outputs will be 0, and thus, it is inconclusive.
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In the worst case, we may select values 001, 010, 100, and
111, which will all give outputs of 1. This is still inconclusive,
and yet we have already used up half of the domain, or
O(2n−1). However, once we query any other input (like 101,
for instance), we get an output of 0, and thus we may conclude
that the function is balanced in O(2n−1 + 1) steps. Since we
are promised that the function is either constant or balanced,
if we ever got an output of 1 in the last step, we may have
conclude that the function is constant.

2.4.2 The Quantum Algorithm. Because the function f on
its own is not unitary, it cannot be put directly onto the
quantum circuit. Thus, a mechanism called a quantum oracle
is required, which applies the black box function on a single
output ancilla bit, while keeping the input itself intact. The
quantum oracle Uf maps the input | x⊗n, y⟩ to | x⊗n, y ⊕ f (x)⟩,
ensuring a copy of x is left behind even after the function f
is applied.

This algorithm, along with other quantum algorithms such
as Shor’s factoring algorithm, has been revisited by Cleve et.
al. in 1997 to more clearly define the quantum circuit [7], as
shown in Figure 1. Given a quantum register of size n+ 1, the
Deutsch-Jozsa algorithm is as follows:

(1) Initialize each qubit to | 0⟩, and the ancilla bit to | 1⟩.
(2) Apply the Hadamard Gate H to each qubit.
(3) Apply the oracle function Uf to each qubit.
(4) Apply H to each of the first n qubits.
(5) Perform a measurement on each of the n qubits.

| 0⟩ /n

H ⊗n+1 Uf

H ⊗n

| 1⟩

Figure 1: Quantum circuit for the Deutsch-Jozsa Algorithm

The transformation of a quantum register with n qubits
throughout is algorithm is summarized below. First the
Hadamard gate is applied to all qubits, which puts all n
qubits in equal superposition, and the ancilla bit in state
| 0⟩ − | 1⟩:

𝜓1 : | 0⟩⊗n | 1⟩
H⊗(n+1)
−−−−−−→

∑
x∈{0,1}n

| x⟩ (| 0⟩ − | 1⟩),

Next the oracle gate Uf is applied, which maps | x⊗n, y⟩ to
| x⊗n, y ⊕ f (x)⟩:

𝜓2 :
∑

x∈{0,1}n
| x⟩ (| 0⟩ − | 1⟩)

Uf
−−→

∑
x∈{0,1}n

(−1)f (x) | x⟩ (| 0⟩ − | 1⟩)

Finally, applying the last Hadamard transform to all but
the ancilla bit, the system evolves into

𝜓3 :
∑

x∈{0,1}n
(−1)f (x) | x⟩ (| 0⟩ − | 1⟩) H⊗n

−−−→

∑
x,y∈{0,1}n

(−1)f (x) ⊕(x ·y) | y⟩ (| 0⟩ − | 1⟩).

To determine whether the function is constant or balanced,
we must look at the probability of measuring | 0⊗n⟩:

P ( | 0⊗n⟩) =

������ ∑
x∈{0,1}n

(−1)f (x)
2n

������
2

.

From here, it can be deduced that if the function is con-
stant, the state will be (−1)f (0⊗n) | 0⊗n⟩ (| 0⟩ − | 1⟩), whereas
if the function is balanced, the amplitude of the state | 0⊗n⟩
will be zero in the first place. By expounding on these two
possible cases, the following Lemma could be demonstrated:

Lemma 2.3. The Deutsch-Jozsa problem could be solved
with certainty with only 1 measurement [7].

Case 1: Constant. A constant function means that f (x)
will yield either only 0 or only 1 for all inputs x. This means
that the term (−1)f (x) does not change with input x, which
means that it will exhibit constructive interference. Getting
its summation over all values of x will eventually yield a value
of 1.

Case 2: Balanced. A balanced function means that for all
inputs x, f (x) will yield 0 half the time, and 1 otherwise.
This means that for all values of x, the term (−1)f (x) will
yield -1 half of the time, and 1 otherwise, meaning it will
exhibit destructive interference. Getting its summation over
all values of x will eventually yield a value of 0. Therefore,
we could determine with full certainty whether the function
is constant or balanced with only a single measurement.

2.5 Quantum Fourier Transform (QFT)
The discrete Fourier transform takes an input vector of com-
plex numbers, x0, ..., xN−1 where N is the length of the vector,
and outputs a vector of complex numbers y0, ..., yN−1, defined
by

yk ≡ 1
√
N

N−1∑
j=0

xje2𝜋 ijk/N

The quantum Fourier transform is the same transforma-
tion, except it works on an orthonormal basis | 0⟩ , ..., | N − 1⟩
with the action

| j⟩ −→ 1
√
N

N−1∑
k=0

e2𝜋 ijk/N | k⟩

2.6 Quantum Phase Estimation
The quantum Fourier transform is the key to phase estimation,
which is used in many quantum algorithms. It estimates an
unknown 𝜙 on a unitary operator U with an eigenvector
| u⟩ with eigenvalue e2𝜋 i𝜙 . The estimation assumes there are
oracles capable of preparing the state | u⟩ and performing the
controlled-U 2j operation for suitable non-negative integers j.

This algorithm uses two registers. The first register con-
tains t qubits initially state | 0⟩. The number t itself depends
on the desired accuracy and the desired probability of success
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| 0⟩ / H
| j⟩

• QFT†

| u⟩ / U j | u⟩

Figure 2: Schematic of the phase estimation procedure

n qubits | 0⟩ /n H ⊗n
G

· · ·
G

oracle workspace / · · ·

Figure 3: Circuit for Grover’s Algorithm. There are O(
√
N )

Grover iterations. The oracle may use work qubits for its im-
plementation, but analysis only involves the n qubit register.

of the procedure. The second register contains as many qubits
necessary to store | u⟩.

The circuit begins by applying a Hadamard gate to the
first register, then a series of controlled-U operations on the
second register, with U raised to successive powers of two.
The state of the first register will be
1

2t/2
( | 0⟩ + e2𝜋 i2

t−1𝜙 | 1⟩)(| 0⟩ + e2𝜋 i2
t−2𝜙 | 1⟩)...( | 0⟩ + e2𝜋 i2

0𝜙 | 1⟩)

=
1

2t/2

2t−1∑
k=0

e2𝜋 i𝜙k | k⟩

Afterwards, the inverse quantum Fourier transform is ap-
plied to the first register. After the transform, the state of
the first register is measured, giving an estimate of 𝜙. The
circuit for the phase estimation procedure can be seen in
Figure 2.

2.7 Grover’s Algorithm [11]
Grover’s algorithm, also known as the quantum search algo-
rithm, searches for the index of an item in an N item search
problem. The algorithm uses an oracle which marks which
index contains a solution. For convenience, it is assumed that
N = 2n, so the index can be stored in n bits, and the search
problem has exactly M solutions, with 1 ≤ M ≤ N . The circuit
is shown by Figure 3.

The Grover iteration, denoted G, has four steps:
(1) Apply the oracle O. | x⟩ → (−1)f (x) | x⟩
(2) Apply the Hadamard transform H ⊗n

(3) Perform a conditional phase shift, where every compu-
tational basis state except | 0⟩ receives a phase shift of
−1. | x⟩ → − | x⟩ for x > 0

(4) Apply the Hadamard transform H ⊗n

The Grover iteration G (circuit in Figure 4) may be written
as G = (2 | 𝜓 ⟩ ⟨𝜓 | − I )O, where 𝜓 is the starting vector and O
is the oracle operation. The effect of G can be seen as the
effects of these normalized states, where

∑′
x indicates a sum

over all x which are solutions to the search problem, and∑′′
x indicates a sum over all x which are not solutions to the

search problem.

n qubits /n
oracle

H ⊗n Phase H ⊗n

oracle workspace /

Figure 4: Circuit for the Grover iteration

| 𝛼⟩ ≡ 1
√
N −M

∑
x

′′ | x⟩

| 𝛽⟩ ≡ 1
√
M

∑
x

′ | x⟩

The initial state 𝜓 can be expressed as

| 𝜓 ⟩ =
√

N −M
N

| 𝛼⟩ +
√

M
N

| 𝛽⟩

The effect of the Grover iteration G is that the oracle
O performs a reflection about the vector | 𝛼⟩ in the plane
defined by | 𝛼⟩ and | 𝛽⟩. Afterwards, 2 ⟨𝜓 | | 𝜓 ⟩ − I performs
a reflection in the same plane defined by | 𝛼⟩ and | 𝛽⟩ about
the vector | 𝜓 ⟩. This shows that the state Gk | 𝜓 ⟩ remains in
the space spanned by | 𝛼⟩ and | 𝛽⟩ for all k.

The rotation angle can also be shown. Let cos(𝜃/2) =√
(N −M)/N , so that | 𝜓 ⟩ = cos(𝜃/2) | 𝛼⟩ + sin(𝜃/2) | 𝛽⟩. The

two reflections of G transform | 𝜓 ⟩ to

G | 𝜓 ⟩ = cos
3𝜃
2

| 𝛼⟩ + sin
3𝜃
2

| 𝛽⟩

Continued application of G is

Gk | 𝜓 ⟩ = cos( 2k + 1
2

𝜃 ) | 𝛼⟩ + sin( 2k + 1
2

𝜃 ) | 𝛽⟩

Repeated application of G brings the state vector close to
| 𝛽⟩, which produces with high probability that one of the
measured outcomes is a solution to the search problem when
observed in the computational basis.

In the | 𝛼⟩ , | 𝛽⟩ basis, the Grover iteration can be written
as

G =

[
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

]
(1)

where 𝜃 is a real number in the range 0 to 𝜋/2.
Rotating the initial state of the system arccos

√
M/N radians

takes the system to | 𝛽⟩. Repeating the Grover iteration to the
closest integer to arccos

√
M/N (where halves are round down)

rotates 𝜓 to within the angle 𝜃/2 ≤ 𝜋/4 of | 𝛽⟩. Knowing the
number of solutions M helps decide how many Grover itera-
tions to implement, which the quantum counting algorithm
is for.

2.8 Quantum Counting Algorithm
2.8.1 Counting Problem. What is the number of solutions,
M, to an N item search problem? Here, the value and in-
dexes of solutions is not needed, only the quantity. This has
applications such as knowing the M for Grover’s algorithm,
speeding up solutions to NP-complete problems, as well as
finding if a problem has an existing solution.
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2.8.2 Classical Solutions. The classical solution iterates through
the entire N item list, determining the number of solutions
M after Θ(N ) consultations.

2.8.3 Quantum Solution. The quantum algorithm to the
counting problem is an implementation using Grover itera-
tions and the quantum phase estimation[5, 13]. It finds the
number of solutions M to a search problem by using phase
estimation on a Grover iteration G to find its corresponding
eigenvalues ei𝜃 and ei (2𝜋−𝜃 ) based on equation 1. It is also
assumed that the oracle has been augmented to expand the
size of the search space to 2N , allowing sin2 (𝜃/2) = M/N .1
This algorithm requires Θ(

√
N ) oracle calls.

The circuit estimates 𝜃 to m bits of accuracy, with a success
probability of at least 1 − 𝜖. The first register contains t ≡
m + ⌈log(2 + 1/2𝜖)⌉ qubits, and the second register contains n
qubits2, enough to implement the Grover iterations on the
augmented search space.

The circuit has these steps:
(1) Initialize both registers t and n to | 0⟩.
(2) Apply to both registers the Hadamard transform.
(3) Apply controlled-G operators on the second register

according to the first register, 2n times.
(4) Apply the inverse quantum Fourier transform to the

first register.
(5) Measure the first register for an estimation of 𝜃 .
Controlled-G operators are commutative can be reorga-

nized to have the Grover iterations go from the 0th to the
2n−1th (known as the ascending order algorithm, as shown
in Figure 5), or from the 2n−1th to the 0th (known as the
descending order algorithm, as shown in 6). Without deco-
herence, these two algorithms are equivalent[12].

2.9 Decoherence
Quantum computers, like classical computers, have physical
components and are subjected to the environment around
them. The environment could affect the physical represen-
tation of a qubit, the effect being known as decoherence or
quantum noise[13]. Studies have been done to model the ro-
bustness of algorithms against decoherence, such as Azuma[4]
on Grover’s algorithm. Other studies have simulated the ef-
fect of decoherence such as Obenland and Despain[14] which
uses a third state to affect the circuit in an ion state quantum
computer. Other studies try to limit the effect of decoherence
such as Flores and Galapon [10] which use additional qubits
to preserve entanglement.

Most studies on decoherence are on either Grover’s algo-
rithm or Shor’s algorithm. Hasegawa and Yura[12] worked
on a theoretical analysis on the quantum counting algorithm.

2.9.1 Depolarizing Channel[13]. The depolarizing channel is
a type of decoherence where a single qubit with state 𝜌 has
a probability p to be depolarized, meaning it is replaced by a
mixed state I/2, while it has a probability 1−p to be unaffected.

1Some references have sin2 (𝜃/2) = M/2N , depending on how many qubits
they consider the second register to have.
2Some references use n+1 as the number of qubits in the second register.

| 0⟩

H ⊗t

• · · ·

QFT†
| 0⟩ • • · · ·

| 0⟩ · · · •

| 0⟩ · · · •
· · ·

| 0⟩

H ⊗n G20 G21 G22

· · ·

G2n−2 G2n−1
| 0⟩ · · ·

| 0⟩ · · ·

| 0⟩ · · ·

Figure 5: Representation of the quantum counting circuit in
the Qiskit Textbook[3]. This is the ascending-order quantum
counting circuit.

| 0⟩

H ⊗t

· · · •

QFT†
| 0⟩ · · · •

| 0⟩ · · ·

| 0⟩ • • • · · ·
· · ·

| 0⟩

H ⊗n G2n−1 G2n−2 G2n−3

· · ·

G21 G20
| 0⟩ · · ·

| 0⟩ · · ·

| 0⟩ · · ·

Figure 6: Descending-order quantum counting circuit.

𝜌 ×
I/2 ×

(1 − p) | 0⟩ ⟨0 | + p | 1⟩ ⟨1 | •

Figure 7: Circuit implementation of the depolarizing channel

Quantum circuits simulating the depolarizing channel use
two ’environment’ qubits to implement a controlled switch
gate, with the idea that the third qubit, with the state | 0⟩
with probability 1− p and state | 1⟩ with probability p acting
as a control if the mixed state I/2 is mixed with the qubit.
The circuit can be seen in Figure 7.

The depolarizing channel can be parametrized as shown,
for any arbitrary 𝜌, and E(𝜌) as the quantum state:

E(𝜌) = (1 − p)𝜌 + p
3
(X𝜌X + Y𝜌Y + Z𝜌Z) (2)
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𝜌 G 𝜎

Figure 8: Implementation of the depolarizing channel on a
chosen arbitrary qubit 𝜌, done after any arbitrary gate or
operation G. The 𝜎 gate is one of the X , Y , or Z gates, chosen
at random.

This is interpreted as the state 𝜌 being unaffected with prob-
ability 1 − p, and with state 𝜌 undergoing either an X , Y , or
Z gate, with equal probability p/3.[13]

3 IMPLEMENTATION AND
METHODOLOGY

The quantum circuits used are modified versions of the Qiskit
textbook versions of the Deutsch-Josza algorithm[2] and the
quantum counting algorithm[3]. Two versions of the quantum
counting circuit are used for analysis, ascending order, and
descending order. Both circuits both have t = 4 and n = 4, as
well as the oracle pointing to 5/16 solutions existing in the
item list. For calculations, let the second register use n[3, 12],
instead of n + 1 qubits of other calculations[13].

3.1 Decoherence Model
For modelling decoherence, the depolarizing channel is used[12].
However, this implementation does not use the environmental
controlled swap qubits in Figure 7. This implementation uses
a classical algorithm to insert a depolarizing channel to qubits
after a gate operation. This depolarizing channel is either an
X , Y , or Z gate chosen at random. This model bypasses the
probability qubit by predetermining whether the 𝜌 cubit is
affected or not. This allows the effect of an applied depolariz-
ing channel on a quantum circuit. The depolarizing channel
will only be applied to qubits during the Grover iteration step
of the circuit, as that step has exponentially more chance of
error than other steps[12]. The circuit implementation can
be seen in Figure 8.

Two types of experiments were conducted. The first has a
set number of depolarizing channels being placed in the quan-
tum algorithms. The second has a p chance of manifesting a
depolarizing channel for each possible location.

This novel method is used for its simplicity and implemen-
tation compared to other methods.

3.2 Calculating Upper Bound of Decoherence
Alpha

The decoherence model by De Jesus[8] is used due to its
simplicity.

3.2.1 Deutsch-Josza Algorithm.

Theorem 3.1. For the Deutsch-Jozsa algorithm, the al-
lowable decoherence per operation per qubit 𝛼 is bounded by

L
3L−1 .

Proof. First, we find nop(classical) . This is given in Lemmas
2.2 and 2.1.

nop(classical) = 2L−1 + 1 = O
(
2L
)

(3)

Next, we consider the quantum algorithm. The sequence of
operations is to apply a Hadamard gate to all L qubits, then
apply the oracle gate Uf (which operates on all qubits), then
finally, another Hadamard gate to all but one qubit. Thus:

nqop = L + L + (L − 1) = 3L − 1 (4)
It was stated in Lemma 2.3 that only one measurement

was necessary to get the answer with certainty. Thus:

P = 1 (5)
We then compute for ntrial as follows:

ntrial = O
(
e𝛼nqop

P

)
= O

(
e𝛼 (3L−1)

)
(6)

To get a relationship between 𝛼 and L, we compare ntrial <
nop(classical) :

e𝛼 (3L−1) < 2L < eL

𝛼 (3L − 1) < L

𝛼 <
L

3L − 1
(7)
□

3.2.2 Quantum Counting Algorithm.

Theorem 3.2. For the Quantum Counting Algorithm,
given register sizes t and n where t +n = L, the allowable deco-

herence per operation per cubit 𝛼 is bound by 𝛼 <
ln 8n2

c𝜋2
(t+n) (2t+n+(2n−1) (n+1))

Proof. De Jesus decoherence model uses L as its register
size, but the quantum counting algorithm uses two registers
of t qubits and n qubits. Thus, L = t + n.

• For nop, we have 2t + n + (2n − 1) (n + 1):
– Hadamard gates to t and n qubits ⇒ t + n
– 2n − 1 Grover iterations affecting n + 1 qubits each
⇒ (2n − 1) (n + 1)

– QFT on t qubits ⇒ t
• For P, we have 8/𝜋2[5].
• For nop(classical) , we have n2.
• Afterwards, we compute for ntrial .

ntrial = O(enop𝛼L/P)

ntrial = O(𝜋2e (t+n) (2t+n+(2
n−1) (n+1))𝛼/8) (8)

Comparing with nop(classical)

ntrial < nop(classical)

O(𝜋2e (t+n) (2t+n+(2
n−1) (n+1))𝛼/8) < n2 (9)

c𝜋2e (t+n) (2t+n+(2
n−1) (n+1))𝛼/8 < n2

𝛼 <
ln 8n2

c𝜋2

(t + n) (2t + n + (2n − 1) (n + 1)) (10)

□
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Substituting t = 4 and n = 4, and assuming c = 1:

𝛼 <
ln 128

𝜋2

696

𝛼 ≲ 0.00368 (11)

3.3 Deutsch-Josza Algorithm
This experiment creates a randomized 4 bit oracle for each
trial. Depolarizing channels are applied with probability p to
each qubit in the algorithm after their respective operations.
The value of p starts with 0 and increases by 1% every 1000
trials. This was done for both constant and balanced oracle
functions.

3.4 Quantum Counting Algorithm
3.4.1 First Experiment. The quantum counting algorithm
with register sizes t = 4 and n = 4 can only have decoher-
ence of 𝛼 ≲ 0.368%. For this implementation, 1 error is 1.33%
possible decoherence (15 possible errors in the first register,
and 60 possible errors in the second register). Since an im-
plementation of a decoherence level within the bounds of
𝛼 is not possible, the algorithm is expected to not give the
correct number of solutions, with the correct measurements
and solutions being shown in Table 1.

Four setups are as follows, which order the circuit is in,
paired with the register with placed depolarizing channels.
For brevity in later sections, the term used for the setup in
placed in (parenthesis).

(1) Ascending order, first register ’t’, (ascending first) Fig-
ures 11 and 12

(2) Descending order, first register ’t’, (descending first)
Figures 13 and 14

(3) Ascending order, second register ’n’, (ascending second)
Figures 15 and 16

(4) Descending order, second register ’n’, (descending sec-
ond) Figures 17 and 18

Each setup undergoes three tests, determining how many de-
polarizing channels are placed. Setups with the first register
undergo a test with 1, 4 (one-fourth), and 7 (half) depolar-
izing channels. Setups with the second register undergo a
test with 1, 15 (one-fourth), and 30 (half) depolarizing chan-
nels. Each test undergoes 50 trials, every trial randomizing
the location and gate of the depolarizing channels. Average
measurement probability of the test and count of estimated
number solutions of each trial are taken.

3.4.2 Second Experiment. The second experiment applies
depolarizing channels with probability p to each qubit in
the Grover Iteration portion of the algorithm after their
respective gates. The value of p starts from 0 and increases
by 1% every 20 trials. The chance for incorrect readings was
measured for each run. This was done for both the ascending
and descending algorithms. This obtains the relationship
between error 𝜖 and decoherence boundary 𝛼.

Table 1: Measured values from the Quantum Counting algo-
rithm and the corresponding estimated number of solutions.
Bold is the expected result. Expected results have an asterisk*
in Figures 11 to 18

.

Measured Value Estimated M
0000 16.0
0001, 1111 15.4
0010, 1110 13.7
0011, 1101 11.1
0100, 1100 8.0
0101, 1011 4.9
0110, 1010 2.3
0111, 1001 0.6
1000 0.0

4 RESULTS
4.1 Deutsch-Josza
The most notable effect of decoherence on a quantum algo-
rithm is the decrease in probability of getting the correct
answer. For the Deutsch-Jozsa algorithm, it is the discrep-
ancy in the amplitude of | 0⊗n⟩ . We expect the amplitude
to be 1 if the function is constant, and 0 if it is balanced.
Thus, if the amplitude is anything in between 0 and 1, we
can attribute it to decoherence, and define the discrepancy
as the error of the system.

Definition 4.1. The error 𝜖 of the quantum system af-
ter running the Deutsch-Jozsa algorithm is P ( | 0⊗n⟩) if the
function is balanced, and 1 − P ( | 0⊗n⟩) if it is constant.

During actual execution, the error 𝜖 could be measured by
getting the percentage of incorrect readings of the quantum
algorithm.

To get a relationship between 𝜖 and 𝛼, the effect of deco-
herence had to be simulated. For each test run, there was
a probability p of placing a depolarizing circuit after a gate
operation (including after the oracle), with the value of p
increasing by 1% for every 1000 runs. The amount of incorrect
readings 𝜖 was measured for each run. This was done for both
constant and balanced functions, and could be seen in Figures
9 and 10.

The vertical line in Figures 9 and 10 indicate the boundary
for 𝛼 for very large registers; any value to the left of the line
yields better efficiency than its classical counterpart.

For constant functions, the amount of error 𝜖 when 𝛼 is at
its maximum is roughly 63.37%. This means that even at max
decoherence, the algorithm will only get the correct answer
less than half of the time, and yet it will still be more efficient
than its classical counterpart.

On the other hand, balanced functions show more leniency
when it comes to error. Even if the system has completely lost
decoherence, the range of error values only lie between 0−20%,
with the intersection value being approximately 12.97%. This
low error range is due to how the Deutsch-Jozsa problem is
defined; we can infer from the algorithm description that the
final reading of the quantum register would only be either
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| 0⟩ or | 1⟩, and nothing else. Hence, the deciding factor of the
algorithm is that if the final reading is | 0⟩, the given function
is "constant". This means that any other reading between
| 0⟩ and | 1⟩ would lead to "balanced", thus the solution space
for balanced functions is much larger than that of constant
functions, which leads to the lower error values.

4.2 Quantum Counting
4.2.1 First Experiment. Before trials were run, the assump-
tion was that measurements other than the correct 0101 and
1011 would appear. Trials with a single error would usually
still have the correct answer, while trials with more errors
will have a more even distribution of measurements. Another
assumption was that the computed number of solutions would
follow the proportions of the average measurement chance,
with the pairs seen in Table 1.

Across most setups, 0101 and 1011 were the most likely
measurement on average for the single error test. However,
the corresponding number of solutions 4.9 was not the con-
siderably most common occurrence for all setups except for
the ascending second with one error. Remarkably, that was
the only case where the algorithm output the correct answer
in over 50% of the trials.

A trend noticed for the setups with errors on the first
register is that the measurement chance of each measurement
is close to the mean, but with a bias towards measurements
near the two correct measurements 0101 and 1011. The bias
seems to be reduced with more errors introduced. The solu-
tions the algorithms give are usually 4.9, 8.0, and 11.1 with
similar chances while being above the mean, especially with
only one error introduced. Introducing more errors causes
other solutions to appear more often.

A trend noticed for the setups with errors on the second
register is that with more errors, measurements seem to
gather closer to the center measurement 1000 on the ascending
algorithm, while the opposite happened on the descending
algorithm. Following the measurement and solution pairings
on Table 1, the ascending algorithm had more computed
solutions on the lower range (0.0 to 8.0), while the descending
algorithm had more computed solutions on the higher range
(15.4 and 16.0).

It seems that of all setups, the ascending second algorithm
is the most resistant to decoherence, at least with only 1
error introduced. It is the only setup which obtained the
correct solution with over 50% certainty. When more errors
are introduced, both ascending first and descending first
algorithms give solutions close to the correct solution.

4.2.2 Second Experiment. The vertical line in Figures 19 and
20 indicate the boundary for 𝛼 for when the registers t = 4
and n = 4. Any value to the left of the line yields better
efficiency than its classical counterpart.

It is seen for both the ascending and descending algorithms
have a sharp increase in decoherence up to around 90% when
the amount of decoherence 𝛼 increases from zero. The error
percentage when alpha is at 0.368% is around 12.6% for both
the ascending and descending quantum counting algorithms,

showing that the algorithms are very sensitive to low changes
in decoherence.

Furthermore, the error of the descending algorithm in-
creases faster than the error of the ascending algorithm. This
follows the description of Hasegawa and Yura[12].

5 FINAL REMARKS
The used method for simulating decoherence is easily im-
plementable on Qiskit, and may show more insights on the
effects of decoherence on quantum algorithms. The method
shows in the quantum counting algorithm that the superpo-
sition of measurements across all trials does not necessarily
follow the actual results of each trial. The method also shows
some trends in the algorithm when the decoherence level is
high.

This method also suggests that use of the Deutsch-Josza
algorithm is much faster than its classical counterpart for
low decoherence. It also suggests that the quantum counting
algorithm is extremely sensitive to decoherence and would
not be as reliable as the classical solution.

With respect to the study of Hasegawa and Yura[12], the
results confirm their conclusions on decoherence on the first
and second registers. Namely, when the errors are on the
first register, the ordering of the Grover iterations seem
independent from the results. When errors are on the second
register, it is shown that the ascending order algorithm is
more robust than the descending order algorithm.

Further use of this method may be used to compare to
other implementations of decoherence such as using auxiliary
qubits to simulate the depolarizing channel. Other options
are to change the oracle of the algorithm used, expand the
algorithm with bigger register sizes, or using this method on
different quantum algorithms.
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Figure 9: Error vs. Decoherence for the Deutsch Jozsa algo-
rithm (Constant).

0% 20% 40% 60% 80% 100%
Amount of Decohe ence α

0%

20%

40%

60%

80%

100%
P 

ob
ab

ilit
% 

of
 E

  o
  ε

εmax ≈12.97%

Decohe ence vs. E  o 
α bounda % (1/3)
E  o  bounda % εmax
Measu ed E  o 

Figure 10: Error vs. Decoherence for the Deutsch Jozsa algo-
rithm (Balanced).

https://doi.org/10.1126/science.270.5242.1633
https://arxiv.org/abs/http://science.sciencemag.org/content/270/5242/1633.full.pdf
http://www.jstor.org/stable/53169
http://www.jstor.org/stable/53169
https://doi.org/10.1016/j.aop.2014.11.011
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/0503202
https://arxiv.org/abs/quant-ph/0503202
https://arxiv.org/abs/quant-ph/9804038
https://arxiv.org/abs/quant-ph/0306072
https://arxiv.org/abs/quant-ph/0306072


Fortuno, et al.

00
00

00
01

00
10

00
11

01
00

01
01

*

01
10

01
11

10
00

10
01

10
10

10
11

*

11
00

11
01

11
10

11
11

Measurement

0.0%

10.0%

20.0%

25.0%

Av
er
ag

e 
M
ea

su
re
m
en

t C
ha

nc
e

Mean
Single Error
Fourth Errors
Half Errors

Figure 11: Average measurement for the ascending quantum
counting algorithm with decoherence on the first register.
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Figure 12: Counted results for the ascending quantum count-
ing algorithm with decoherence on the first register.

00
00

00
01

00
10

00
11

01
00

01
01

*

01
10

01
11

10
00

10
01

10
10

10
11

*

11
00

11
01

11
10

11
11

Measurement

0.0%

10.0%

20.0%

25.0%

Av
er
ag

e 
M
ea

su
re
m
en

t C
ha

nc
e

Mean
Single Error
Fourth Errors
Half Errors

Figure 13: Average measurement for the descending quantum
counting algorithm with decoherence on the first register.
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Figure 14: Counted results for the descending quantum count-
ing algorithm with decoherence on the first register.
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Figure 15: Average measurement for the ascending quantum
counting algorithm with decoherence on the second register.
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Figure 16: Counted results for the ascending quantum count-
ing algorithm with decoherence on the second register.
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Figure 17: Average measurement for the descending quantum
counting algorithm with decoherence on the second register.
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Figure 18: Counted results for the descending quantum count-
ing algorithm with decoherence on the second register.
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Figure 19: Error vs. Decoherence for the Ascending Quantum
Counting Algorithm.
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Figure 20: Error vs. Decoherence for the Descending Quan-
tum Counting Algorithm.




