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Abstract—Gait can be defined as how a person walks. When
the person is not able to walk properly due to different factors it
can be deduced that their gait is abnormal. The proponents want
to simplify and improve the process of detecting whether a person
has gait abnormality or not through the use of technologies. In
this study, a Kinect sensor and a smart flooring sensor were
used together to collect the data needed for the study. Overall,
the researchers had 30 samples containing 20 participants with
an additional of 10 acted data. Features such as Stride length,
Symmetry, and Cadence were collected. Then, the data were
preprocessed by using methods such as feature scaling, feature
extraction, and feature selection before being fed into K-Nearest
Neighbors (KNN) and K-means Clustering machine learning
algorithms, as well as Convolutional Neural Network (CNN) deep
learning algorithms, to create different classifiers for gait. Finally,
evaluation metrics such as accuracy, DBI, and loss were used to
select the best classifiers that would be used in the decision-level
fusion.

Index Terms—gait abnormality detection, machine learning,
decision-level fusion, multi-sensor, Kinect, FSR

I. INTRODUCTION

The ability to walk is crucial for human mobility and useful
for predicting the quality of life [1]. Every person walks
differently and the manner of how a person walks is called
gait [2].”Normal gait is both stable and flexible, allowing for
changes in speed and maneuvering in different terrains while
maintaining energetic efficiency” as defined by [3]. If the
person cannot walk properly due to illness, genetic factors,
injuries or abnormalities in the legs or feet, then the gait of
that person is considered abnormal [4]. Since walking is the
most basic mode of transportation for humans according to
[5], the inability to walk can affect the person drastically.
Moreover, if gait disorders are detected and assessed in time
for treatment, it can help prevent future complications that
can arise from the disorder as mentioned by [6]. In order to
determine the walking patterns of a person, gait analysis is
being utilized. Currently, in a clinical setting, gait analysis is
done through qualitative means such as human observations,
visual assessment, and self-reporting of patients [7]. Even
though gait abnormality can be observed, some subtle changes
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can be overlooked and is prone to human error. The main ob-
jective of this research is to apply machine learning to different
types of sensor data, obtained from a self-made low-cost smart
setup, which will be used to detect gait abnormality. Together
with the main objective, the study aims to build a low-cost
smart flooring to be able to detect pressure data, create a
program that will collect data from the smart flooring and
vision camera sensors, implement preprocessing techniques
to the data collected, and create a binary machine learning
classifier of normal and abnormal gait.

II. REVIEW OF RELATED LITERATURE

Multiple studies related to gait analysis have been conducted
over the years. Three sensors that have been repeatedly used
in those studies are (1) vision camera, (2) flooring and (3)
wearable sensors.

[8] presented a computer vision approach for gait analysis
to detect early frailty and senility syndromes with the use
of Android smartphone cameras together with OpenCV to
record and process a gait sequence in obtaining spatiotemporal
features. These features were then sent to the cloud for classifi-
cation between normal and abnormal gait. K-nearest neighbor
(KNN) algorithm with Dynamic Time Warping (DTW) was
implemented and stride and leg-angle time series were used
to classify the gait. Their results proved that sagittal view
produces more accurate results than frontal view given that
sagittal results range from 82%-93% while frontal results
range from 72%-89%. The research of [9] is another study
that utilized vision camera sensors, more specifically a Kinect
camera, to conduct gait analysis. Their objective is to execute
a geometric model-based algorithm in order to process the in-
frared and depth image sequences and skeleton joint points that
they obtained from the Kinect. Through the processed data,
movement patterns will be produced regardless of whether
the background is complex or not. When compared to the
VICON, which is a commercial product that captures motion,
the accuracy rate of this research is higher.



As for the flooring sensors, [10] used the Tekscan® Flexi-
force pressure sensors to obtain force distribution and pressure
points but it was expensive costing over 500,000 Pesos for
a setup of 512 sensors. Aside from the pressure sensors,
their setup also included a Kinect V1 which served as a
tool for cross validation and an accelerometer which collected
acceleration data. Overall, the setup is both intrusive and
expensive. The data collected is fed to a polynomial regression
model to foretell and spot abnormal behaviour. Same pressure
sensors as the previous one were also applied in the work
of [11]. However, they placed it in a smart shoe. The smart
shoe determines the type of gait a person has and sends its
diagnosis to a hand-held device via Bluetooth. The data is
processed and converted using complementary and Kalman
filtering techniques. The output from these filters were used as
a basis to detect the type of gait. The accuracy score of Kalman
filtering technique was higher than the score of complementary
filtering technique.

Another example of a wearable sensor is in the study of
[12], wherein in this case, an intrusive wearable camera is
attached on the leg of the person with the camera pointing
downward to capture the walking motion, including the po-
sition and pose of the person. Extended Kalman Filter was
used in predicting the walking state of the subject which
was categorized into 5 states such as walking slow, walking
normally, running, turning right, or running left. The results of
the study indicated a match in the initial visual classification
on the walking speed and even when the feature points were
not detected and the walking motion was different from the
stored motion, the estimation was stable.

The research of [13] made use of 1 force sensitive resistor
and 2 accelerometers. Using the said sensors, their goal was
to detect real-time gait events of slow, normal, and altered
walking. FSR algorithms (FSR Force, FSR derivative) and
accelerometer algorithms (AccA) were utilized in measuring
the accuracy of detection. The results show that the FSR sys-
tem showed significantly lower errors than the accelerometer
system, while both systems had increased accuracy compared
to previously reported real-time ambulatory systems.

Using a wearable inertial measurement unit (IMUs) to detect
gait abnormality in subjects with neurological disorders, the
study of [14] had different patient groups (control groups,
stroke patients, convalescence patients) in order to separate
those who have gait abnormalities. Gait features including
spatio-temporal parameters were selected and a continuous
assessment was done to check for any indications of improve-
ment or deterioration of the lower limb. Their research made
use of different algorithms such as ellipsoid fitting which
was used to deal with local magnetic disturbance, Hidden
Markov model (HMM) and Kalman Filter were employed to
illustrate the gait model and eliminate false gait phase partition
while Zero Velocity Updates algorithm is adopted as pseudo
observable to eliminate integral errors.

However, with all the different studies and sensors men-
tioned, most of the studies are expensive and focused mainly
on detecting gait using intrusive sensors or only vision sensors.

As observed from the different researches, it can be deduced
that there is a research opportunity on technology which
incorporates a decision-level fusion of model results using data
from different non-intrusive sensor-types while being low-cost.

III. METHODOLOGY

A. Overview
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Fig. 1. Flowchart of each Methodology Framework

The steps that were done in achieving the objectives of the
study are divided into three major phases namely (1) tool
development, (2) data collection, and (3) machine learning
and testing. The tool development comprises the creation of
the smart flooring, the Kinect setup, and the design of the
programs that were used to collect the data. The data collection
step includes the process of collecting data from the partici-
pants using the Kinect sensor and the smart flooring, cleaning,
and labeling the data. Lastly, the machine learning and testing
step explained the different preprocessing techniques applied
to the data collected before it was fed into a model, and the
performance metrics used to evaluate the model.

B. Creation of Smart Flooring

A low-cost flooring was developed by following the idea of
how pressure sensitive flooring works while using inexpensive
conductive materials. Materials such as Copper Tape, Velostat,
Tarpaulins, and wires were used in developing the smart
flooring. Raspberry Pi and microcontrollers were then used
to read the data.

The self-made smart flooring consists of 3 layers as seen
in Figure 2. At the very bottom is a 160x60cm tarpaulin with
15 vertical strips of copper tape as seen in figure 4. Next is
10 pieces of Velostat, each with a measurement of 20x20cm,
placed in a 5 by 2 tiles manner. After the Velostat, another
layer of tarpaulin is placed with 40 horizontal strips of copper
tape instead as seen in figure 3. This is to achieve the 600
sensors of the smart flooring.
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Fig. 2. Layers of the Smart Flooring

Fig. 3. Top view of First Layer of Tarpaulin with Copper Tape

Fig. 4. Top view of Second Layer of Tarpaulin with Copper Tape

C. Kinect Setup

The Kinect was placed at the side of the smart flooring
as seen in Figure 5, with 103 inches away from the smart
flooring. The Kinect version 2 has a horizontal field of view of
70 degrees and a vertical field of view of 57 degrees [15]. By
putting the Kinect in this area, important data such as angles
formed by the lower body joints, and spine movement were
captured while the subject was walking. The researchers also
tested other locations and it turns out that putting the Kinect at
the side was the best placement to gather the data the research
needs.

Smart
Flooring

Kinect

Fig. 5. Top View of the Environment Setup

IV. DATA COLLECTION
A. Procedure

The data collected were from two kinds of participants:
(1) with gait abnormality, and (2) without gait abnormality.
All participants must be adults of legal age. Before the data
collection, the participants have undergone an assessment to
check if they are in good physical condition else the collection
would be canceled or postponed to another date. They were
also asked to sign an informed consent form before proceeding
to the data collection. Upon agreeing, the participants would
then walk on the environment setup 10 times from right to
left. 10 rounds were done in order to collect the data more
precisely, as well as, to get a general average of the actual

gait of the person. The researchers made the environment setup
as natural as possible to prevent the participants from being
conscious during data collection. After gathering enough data
from different participants, a physical therapy student was
asked to diagnose and interpret the data, a video where the
participants can be seen walking in their usual way, in their
own manner to label which data would result in a normal and
abnormal gait. It resulted with 15 normal data and 5 abnormal
data. The researchers acted out an additional 10 abnormal gait
data, which were labeled as abnormal by the physical therapy
student, in order to balance the dataset having 15 normal and
15 abnormal data. In total, the researchers had 30 samples
containing 20 participants with an additional of 10 acted data.

B. Raspberry Pi Data Collection

When collecting data from the smart flooring, features such
as pressure points, position, and time were considered. The
pressure points, initially ranging from values 0 to 1023, were
first transformed to values ranging from 0 to 100 with the use
of the formula below:

initialvalue * 100/1023 (D

These values determine which areas of the smart flooring were
stepped upon by the participant and the pressure applied in
those areas. A value of 0 indicates no pressure while a value
of 100 indicates the strongest pressure. The location of each
footstep on the smart flooring was also taken into account
as it helped determine the gait of a person. The timestamp
of each step was recorded in the format of mm:ss.f to be
used to get other important features like step and swing time.
Figure 6 is a sample outline of the foot pressed on the flooring.
These data collected help describe the gait of a person. When
people walk, the pressure and location of each foot step as
well as the time it takes for them to complete a gait cycle
vary from person to person. Some walk faster than the others
which makes the time shorter, other people do not walk on
the same path consistently which fluctuates the location and,
there are also people who do not balance well when walking
which may be caused by the uneven distribution of pressure
of their footstep. These data play a huge role in gait analysis
because combining all of these features make the gait of a
person unique. It also helps determine if a person is walking
abnormally.

Fig. 6. Sample Outline of the Footsteps Pressed on the Flooring

The smart flooring was connected to an analog to digital
converter to convert the analog signals read from the sensors to
numerical values. A python program was run in the Raspberry



Pi to save the transmitted data in a CSV file while the
collection is happening. The program iterates through all
the columns and rows of the entire smart flooring, sending
electricity to the row in question, while reading the value at
the columns. It was able to save around 22 to 23 samples per
second. When saving to the csv file the 40 by 15 grid were
represented as rows 0-39 and columns 0-14 which created a
2D matrix. Each tile in the 2D matrix was then named based
on the row number and the column number, for example,
row0_columnO up to row39_column14.

C. Kinect Data Collection

In order to capture the data coming from the Kinect
sensor, the researchers created a program using the Python
programming language and libraries. Three kinds of data were
collected: (1) coordinates of each joint, (2) the length between
these joints, and (3) the angles that these joints form. When a
person walks, each of his body joints move continuously. Then
the joints next to each other form an angle and as the joints
move, these angles consequently change as well. For example,
the arms of a person sway as he walks, which makes the
wrist, elbow, and shoulder joints form angles that constantly
change from 90 degrees (an L shape) to 180 degrees (a straight
line). The only consistent feature is the length between each
joint and these lengths impact the walk of a person too.
For instance, a person with relatively shorter legs takes more
steps than a person with longer legs when walking the same
distance [16]. Similar to features collected by Raspberry Pi,
these features are important in the process of gait analysis
because it differentiates a person from the others and it helps
detect gait abnormality.

In obtaining these data, the PyKinect library was used. This
library provides a straightforward way to get the coordinates
of the joints since it automatically stores the data in an array
called jointPoints. As for the length between the joints, it
was computed using the distance formula as seen in Figure
7. Lastly, the code in Figure 8 shows how the angles were
calculated by using functions math.atan2 and math.degrees
where the first line will obtain the numeric value between
negative pi and pi that represents the angle of a point and
positive x-axis. The second line, on the other hand, converts
the angles in radians to degrees. When the angle is negative,
360 was added to the angle to keep the results between 0 and
360 degrees only.

def compute length (self, =1, yl, =2, y2):
return math.sgrt((zl - =x2)**2 + (yl - y2)**2)

Fig. 7. Sample Code of Getting Length between the Joints

def getAngle(self, x1, yl, x2, y2, x3, y3):
ang = math.degrees (math.atan2 (y3-y2, x3-x2) - math.atan2 (yl-y2, xl-x2))
return ang + 360 if ang < 0 else ang

Fig. 8. Sample Code of Getting Angles formed by Joints

When saving to the csv file, for the x and y coordinates, it
is simply named as the body part then x or y, for example,

“head_x". As for the length, it is named using the parts of
the body part as points of the line segment for instance,
“len_spineshoulder_spinemid” would indicate the length from
the point in the spine shoulder until the middle of the spine.
As for the angles, it is named according to the points of an
angle for example “ang_shoulderright_elbowright_wristright”,
refers to the points of the angle with elbowright as its vertex.

D. Cleaning of Data

For the smart flooring data collection, the data tiles within
the duration of one walking process were then combined
together in one row in such a way that one data entry would
consist of all the points from its initial contact until they
complete the whole walk. Since each participant’s walking
time varies, in order to normalize the data collected from each
person, each sample was split into 10% intervals, to obtain a
total of 10 intervals representing one sample by getting the
min, max, and ave from each interval. Aside from the force
in each row and column coordinate, the following were also
extracted from the raw data: (1) center of force, (2) step time,
(3) swing time, (4) stride length, (5) weight distribution, (6)
gait symmetry, and (7) cadence. The sample screenshot of
this csv file is seen in Figure 9. The proponents also created
another version of the dataset by removing data that contains 0
stride length or negative values for gait symmetry and cadence
since it does not make sense for a person to have 0 or negative
values in those features.

Label ID timestamp StrideLength StepTime SwingTime Symmetry Cadence Right CoF row Right CoF col ... 10_Rowd9 Columnii_ave

1 31 38 07 08 12.048193 74 1 1
35 40 07 10 2400639 60

2
3 36 38 01 1.0 10000000 84
4 33 32 06 07

5

© o o o o

1 1
2 5
9.756098 84 0 1.
38 36 06 1.0 19753086 84 0 0
266 30 0 1.0 -1.0 -1.000000 -1

267 43 a2 10 11 8187135 66

269 32 40 09 12 3636364 74

© oo o o

0 1 1
0 0 4

267 0 268 34 a2 09 11 17.283951 48 0 4 ..
0 1 0
0 0 5

270 33 a2 05 09 3550296 50

Fig. 9. Screenshot of the Smart Flooring Data CSV File

As for the Kinect data collection, the data collected is 15
frames per second thus there are many instances per ID as
well. The process of combining applied to the Kinect data is
also the same as the smart flooring data as multiple instances
of the same ID were appended to produce a single entry per
walk. A sample database of the merged data with respect to
its time interval is shown in Figure 10.

Label ID time stamp head x min head x max head x ave head y min head y max head y ave neck x_min

o 1 1 3.9 651 690 670.000000 263 270 266.200000 625
1 1 2 39 636 707 667.600000 261 279  266.600000 630
2 1 3 35 674 761  712.200000 268 287 275.600000 661
3 1 4 3.8 649 715  681.400000 265 273  269.400000 640
4 1 5 4.1 594 640  615.500000 256 258 256.833333 597
265 0 266 42 702 716  707.166667 430 432 431.500000 676
266 0 267 42 671 694 680.333333 432 435 433.166667 646
267 0 268 41 660 700 678.000000 423 427 425.166667 636
268 0 269 38 650 703  674.200000 439 444 442.400000 685
269 0 270 4.0 703 773 736.333333 428 434 432.000000 674

Fig. 10. Screenshot of the Kinect Data CSV File



V. MACHINE LEARNING AND TESTING

Once the data was collected and labeled accordingly by the
physical therapy student, machine learning was implemented
to help determine if the person has a gait abnormality or
not. The training set was fed into numerous machine learn-
ing algorithms for various possible models. For supervised
algorithms, the correct labels were included in the training
set, while for the unsupervised, the labels were not given.
The algorithms that performed the best among all the others
based on evaluation metrics such as accuracy would be used
for decision level fusion

A. Preprocessing of Data

Before feeding the data to the machine learning algorithm,
the proponents applied various machine learning techniques to
better improve the data. First, feature scaling was performed
to normalize the data in a particular range, so that features
with higher values will not be assumed to have superiority
over other features. This matters especially when dealing with
classifiers that compute distance. In this research, three scaling
methods were used, namely Standard Scaler, MinMax Scaler,
and Normalization from the sklearn library, to test out which
produces the best results. After scaling was done to the data,
feature extraction was applied to it. Feature extraction reduces
the dimension of the features to a more manageable number
of features for processing by creating new data, selected
and/or combined from the raw data, while still representing
the original data accurately. This is helpful when dealing with
a dataset that has redundant data. The following are the feature
extraction techniques used: Principal Components Analysis,
Independent Component Analysis, and Locally Linear Em-
bedding from sklearn. The proponents have also considered
using feature selection methods such as Feature Importance.
Feature importance calculates the importance of a feature and
gives out scores. This is used by the researchers to select the
best top n features that would give the best result. The range
of n varies depending on the number of the features.

Different kinds of dataset were fed into the models for
testing:

o The original dataset without applying scaling, feature

extraction, and feature selection.

o The different datasets produced after applying different

combinations of feature selection and feature extraction
methods to each scaling method discussed.

For smart flooring data, additional datasets which include
only the gait features extracted from the raw data was created.
This is done to both of the datasets, all and cleaned versions.
The preprocessing methods discussed were also applied to
them.

The datasets mentioned were fed to K-Nearest Neighbors,
K-means Clustering, and Convolutional Neural Network algo-
rithms.

B. K-Nearest Neighbors

K-Nearest Neighbors is a kind of supervised machine learn-
ing algorithm, meaning labels are given to the model. This

algorithm considers k numbers of neighbors or data points
closest to the data to predict its class; the majority class wins.
In this research, the dataset was split into training (80%) and
testing (20%) sets. The random_state was set to 42 to ensure
that the same data will be used again for testing purposes. In
choosing the optimal number of k, values from 1 to 10 were
considered. The number that yields the best accuracy will be
the final k to be used in the model. K-fold validation was
also implemented to cross validate the results of the machine
learning model in order to achieve an unbiased model. The
range of the 2 to 10 was used in choosing the best number of
folds for K-fold. The results of the algorithm were measured
through their accuracy values wherein the higher the value,
the better.

C. K-means Clustering

K-means Clustering is an unsupervised machine learning
algorithm in which it groups the given data into clusters that
have the same characteristics. These data are grouped together
in clusters because of certain similarities with its features.
For K-means clustering, the components parameter for all
of the feature extraction methods were set to k = 2. Then,
the proponents made use of the Elbow Method to determine
the ideal number of clusters to be formed from the data.
In evaluating the performance of the algorithm in terms of
clustering, Davies Bouldin Index was performed. This would
determine how well the clustering has been done. The lower
the value of Davies Bouldin Index, the better the result is.

D. Convolutional Neural Networks

CNN is a type of deep learning that commonly deals with
problems that involve visual representation inputs. In this
study, it was implemented using a transfer learning technique
where a pre-trained model, Inception v3 from Tensorflow,
was used in training the new dataset. This is to reduce the
time of training since the pre-trained model was already
trained with large datasets using high power GPUs. Since
this approach requires data in image form, the dataset was
composed of images generated from the preprocessed datasets,
both Kinect and smart flooring. They were then split into
a train set (80%) for training the model, a validation set
(10%) for tuning, and a test set (10%) for evaluating the
model. The proponents had freezed all the layers except the
last five similar to what other sources have done in order
to allow modifications. The image was preprocessed using
ImageDataGenerator from Keras. ReLu and sigmoid were
used for the activation functions, then Binary Cross Entropy
for the loss metric since this study is dealing with binary
classification problem. Additionally, a dropout rate of 0.2 was
used to minimize overfitting, and a callback function was
created to stop the training once the model has reached 99.9%
of accuracy. For the optimizer, RMSprop with a learning rate
of 0.0001 was considered. After creating the model, it was
trained, validated, and tested. The training set has two types
as well, one with data augmentation and the other without.
The number of epochs is set to 50 considering the amount



of training time it takes. The proponents also tried another
approach where not all the layers from the pre-trained model
were used and the rest is just similar to the first approach with
all the layers. The model is then evaluated using accuracy and
loss.

VI. DECISION-LEVEL FUSION

Once the results of the machine learning algorithms were
available, the highest accuracy of each algorithm was com-
pared. The researchers got the highest accuracy produced
from both the Kinect and the smart flooring machine learning
results, then the model that produced the highest accuracy
will be selected for the output and weights utilized in the
decision-level fusion. The highest accuracy would serve as
the weight multiplier for the decision level fusion using the
formulas below.

KinectAccuracy
KinectWeight = 2
mectiv ey KinectAccuracy + MatAccuracy @
MatA
MatWeight = atsceuracy 3)

KinectAccuracy + MatAccuracy

With the use of the weights and the kinect and smart flooring
results obtained from the chosen models, the decision-level
fusion was implemented using the formula below:

Result = (KinectWeight x KR)+
(SmartFlooringWeight x SR) (4)

Wherein the value of Kinect Result (KR) and Smart Floor-
ing Result (SR) corresponds to a prediction of 1 or 0. The
resulting value would correspond to the confidence of the
predictions for both Kinect and smart flooring. A threshold
value of 50% would be used wherein a value greater than 50
corresponds to an abnormal gait while a value less than 50
corresponds to a normal gait.

VII. RESULTS AND ANALYSIS
A. K-Nearest Neighbors

A Not Standard | MinMax N lized
couracy Preprocessed | Scaler Scaler ormafize
w/o feature extraction 92.59 90 90 89
PCA 92.59 90 90 90
ICA 81 88 90 84
LLE 80 72.96 76 80
Legend:
With Feature Importance, W/o Feature Importance, Both
Lowest Accuracy

Fig. 11. KNN Kinect Data

As shown in Figure 11, the values that are highlighted in
red means that it was run on a feature selection test where the
algorithm calculated the feature importance ratios and then
ran it based on those results. On the contrary, values that are
highlighted in green mean that they were not run on feature

importance results and lastly the values that are not highlighted
means that results for both before and after feature selection
were the same. Upon viewing figure 1, it could be assumed
running feature importance selection would not give us better
results considering that only 3 out of 16 values are better when
run through feature importance selection. On the other hand,
only 2 out of 16 results are better when run without feature
importance selection. The rest of the values which account
for 11 out of 16 of the results are both equal whether or
not feature importance selection was run. It can also be seen
that the highest results come from the original data where no
feature scaling was done in addition to no feature extraction
as well as the feature extraction of PCA both at 92.59%.
On the contrary, the lowest result came from the standard
scaler feature scaling together with the LLE feature extraction
process which resulted at 72.96%. It can be noticed that ICA
and LLE feature extraction processes produce lower results
as compared to PCA and not using any feature extraction
process possibly because PCA tries to find an orthogonal linear
transformation while ICA tries to find a linear transformation.

Accuracy Not Standard | MinMax Normalized
Preprocessed | Scaler Scaler
w/o feature extraction 84 81 87 84
PCA 86 8 87 85
ICA 85 85 84 86
LLE 80 77.09 | 87.94 85

Legend:
‘With Feature Importance, W/o Feature Importance, Both

Original, Cleaned, Same
Lowest Accuracy

Fig. 12. KNN Smart Flooring All Data

Accuracy Not Standard | MinMax Normalized
Preprocessed | Scaler Scaler
w/o feature extraction 81.02 75 76 78
PCA 78 75 76 78
ICA 76 3 74 73
LLE 2 60.69 68 n

Legend:
With Feature Importance, W/o Feature Importance, Both

Original, Cleaned, Same
Lowest Accuracy

Fig. 13. KNN Smart Flooring Gait Features Data

As seen in Figures 12 and 13, values highlighted in red
means that the best result was gathered after running feature
importance selection while the data highlighted in white meant
that running the data with or without feature importance
selection would produce the same results. On the other hand,
values highlighted in green means that it was retrieved without
feature importance selection. In addition, values on bold meant
that they were retrieved from the original data results while
the values that are italicized meant that they were retrieved
from the cleaned data results.

Figure 12 shows that feature importance selection produces
better results compared to not adding it through the process



where it gave us 6 out of 16 of the results. On the other
hand, 2 out of 16 of the results are achieved without running
feature importance selection, the rest of the data are then
achieved whether or not feature importance selection was
run which accounts for half or 8 out of 16 of the data. In
addition, Figure 12 gives us a lowest accuracy of 77.09%
when running standard scaler feature scaling while on the LLE
feature extraction on the original dataset. On the contrary,
the highest result of accuracy 87.94% was achieved on the
cleaned dataset while running on the minmax feature scaling
and the LLE feature extraction. It is also noticeable that most
of the highest accuracies came from using the clean dataset,
which means that removing outliers and values with -1 greatly
improved the algorithm to perform better. These -1 values
could be serving as noise rather than substantial data for KNN.
On a contrast to Figure 12, Figure 13 shows that feature
importance selection does not give better results where only
2 out of 16 results are better as compared to getting 5 out of
16 of the results without running feature importance selection
and the remaining 9 out of 16 of the results produced the same
accuracies. In addition to the percentages, the highest accuracy
was retrieved when running the algorithm on the cleaned
dataset while not using any feature extraction and feature
scaling which produced a result of 81.02%. On the flip side,
the lowest accuracy was retrieved when running the cleaned
dataset while running on the standard scaler feature scaling
algorithm and the LLE feature extraction process which got a
60.69% accuracy. In this aspect, using a data set of mainly gait
features, the original data before cleaning performed better.
This could be interpreted that the -1 values are an important
signifier for KNN to determine. It could be a basis to determine
the gait abnormality of a person because upon observation of
the data, most abnormal data have -1 values in its features.

B. K-Means Clustering

DBI Not preprocessed Standardized Normalized
PCA 0.8025 0.9615 0.7077
ICA 0.7598 0.8491 0.6387
LLE 0.2233 0.3699 0.6224

Legend:

Lowest DBI of each preprocessing method

Lowest DBI of each feature extraction

The best combination of feature extraction and preprocess-
ing method to apply in K-means using the Kinect data is LLE
without any preprocessing. It yielded the lowest DBI with a
value of 0.2233 as seen in Figure 14. After applying these
two methods to the Kinect data, K-Means was able to cluster
the data into 3 which was a value selected by the elbow
method. This means that it was able to identify 3 different
walking patterns amongst the 30 gait instances. The initial
goal of K-Means was to originally cluster the data into two:
normal and abnormal. However, looking at Figure 15, it is
noticeable that there are abnormal and normal points that are
overlapping which means that there may be instances where
the walking patterns of the normal and abnormal were similar
which caused them to be clustered together. Upon checking
the ID of the overlapping abnormal and normal data points, it
was discovered that these instances were taken from the same
person except that in some of the instances, the person was just
acting out a gait abnormality. Despite the overlapping points,
it can be observed in Figure 16 that the purple cluster covers
some of the abnormal instances and the red cluster covers
most of the normal instances. Also, even if the elbow method
resulted in 3, the blue cluster only consists of outliers which
are the real abnormal data according to Figure 15.

DBI Not preprocessed Standardized Normalized
PCA 0.5614 0.1983 0.4195
ICA 0.6092 0.1995 0.5398
LLE 0.3199 0.1682 0.1991

Legend:

All data, All (Gait Features Only) data

Lowest DBI

Fig. 17. Summary of the Best DBI of ALL Smart Flooring Data

The All data and All (Gait Features Only) data were
summarized into one table as seen in Figure 17. This table
was obtained by comparing the DBI values output by both the
All data and the All (Gait Features Only) data then the DBI
with lower values were placed in this table. Based on this
summarized table, it can be concluded that the Gait Features
Only data returned better values than the All data. This means
that the gait features are good enough and that the coordinates
and the raw pressure points of the foot steps are not significant
features for K-Means.

Fig. 14. DBI of Kinect Data

Fig. 18. Clusters graph of All (Gait
Features Only) data using LLE with
standardization

Fig. 19. Graph of All (Gait Features
Only) data labels with clusters using
LLE with standardization

Fig. 15. Graph of Kinect Data labels
with clusters using LLE without any
preprocessing

Fig. 16. Clusters graph of Kinect
Data using LLE without any prepro-
cessing

The best combination of feature extraction and preprocess-
ing method for both All and All (Gait Features Only) data is



LLE with standardization. It yielded a value of 0.1682 which
is the lowest in Figure 17. When applied to the All (Gait
Features Only) data, K-Means was able to cluster the data
into 3 with the help of elbow method which is similar to the
Kinect data results. Setting Figures 18 and 19 side by side, it is
obvious that K-Means was not able to group the data that well
mostly because of the overlapping data once again. Although
the red and violet clusters were somehow able to differentiate
the normal and abnormal data points, the overlapping points
were still misgrouped. The overlapping points were checked
via ID and it was discovered that most of the abnormal data
points that overlapped with the normal data points were the
real ones as seen in Figure 19 which is inconsistent with the
results of Kinect data in Figure 15 because there, the abnormal
points that overlapped with the normal points were the ones
acted out.

Features Only) to create the Clean and Clean (Gait Features
only) data makes the normal and abnormal less distinguishable
from each other. The negative values probably help K-Means
to determine that an instance is abnormal.

DBI Not preprocessed Standardized Normalized
PCA 0.6045 0.5801 0.6403
ICA 0.5752 0.6696 0.6469
LLE 0.6675 0.5766 0.6367

Legend:

Clean data, Clean(Gait Features Only) data

Lowest DBI

Fig. 20. Summary of the Best DBI of CLEAN Smart Flooring Data

Fig. 21. Clusters graph of Clean data Fig. 22. Graph of Clean data label
using ICA without any preprocess- with clusters using ICA without any
ing preprocessing

Similar to the All data, both the Clean and Clean (Gait
Features Only) data were summarized into one table as seen
in Figure 20. Based on the summarized table, it can be deduced
that the Clean data has better DBI values than the Clean data.
This may mean that Clean (Gait Features Only) data may not
be enough for K-Means since it has the smallest size out of all
four smart flooring datasets. Therefore the best combination
feature extraction and preprocessing method to use for the
Clean data based on the results after removing the outliers is
ICA without any preprocessing. By applying this combination,
the elbow method was able to output a K of 4 which means
that K-Means grouped the Clean data into 4 as seen in Figure
21. In Figure 22, it can be observed that the overlapping data
points are more severe. Also, similar to the results of All data,
the overlapping abnormal points are the real ones. Almost all
of the graphs that were obtained from the Clean and Clean
(Gait Features Only) data looks like this. Therefore, it can
be inferred that the data removed from the All and All (Gait

DBI Not preprocessed Standardized Normalized
PCA 0.5614 0.1983 0.4195
ICA 0.5752 0.1995 0.5398
LLE 0.3199 0.1682 0.1991

Legend:

From Summary Best of All

From Summary Best of Clean

Fig. 23. Overall Best DBI of ALL and CLEAN Smart Flooring Data

To summarize the results of the smart flooring data using
K-Means, the best All data DBI in Figure 17 and the best
Clean data DBI in Figure 20 were compared and summarized
into one table as seen in Figure 23. It can be concluded that
All (Gait Features Only) data is the overall best data to use
as it yielded most of the lowest values. This means that the
values removed from Clean data do have impact on the results
but the raw pressure points and coordinates of each footstep
may be insignificant to K-Means. Lastly, in terms of clusters,
All (Gait Features Only) data’s elbow method results were still
better as it ranged from 3 to 5 in contrast to the elbow method
results of Clean data that ranges from 4 to 6. With the right
combination of feature extraction and preprocessing methods,
K-Means is able to group the All (Gait Features Only) data
better as well.

C. Convolutional Neural Network
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Fig. 24. Accuracy of the Model Fig. 25. Loss of the Model Trained
Trained Without Augmenting the Without Augmenting the Training
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Fig. 27. Loss of the Model Trained
With Augmented Training Set

Fig. 26. Accuracy of the Model
Trained With Augmented Training
Set



The graphs shown are the results of using the Kinect dataset
alongside with the model using all the layers in the pre-
trained model. Figures 24 and 25 are the results of the model
without applying data augmentation to the training set while
Figures 26 and 27 were trained with augmented data. As
observed in the graphs, the model without augmented training
data has achieved higher validation accuracy and continued to
improve, unlike the one with data augmentation. This could
mean that data augmentation might have created data that have
big differences to the original data, thus lower the accuracy.
The model of Figures 24 and 25 was able to achieve 96% of
validation accuracy and 76% for the model of Figures 26 and
217.
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Fig. 28. Accuracy of the Model Fig. 29. Loss of the Model Trained
Trained Without Augmenting the ~ Without Augmenting the Training
Training Set Set
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After creating the model, it was evaluated using the test set.
It can be seen that training without data augmentation indeed
had better results reaching 96.43% of accuracy than the model
trained with data augmentation which had 78.57% accuracy.
At the same time, not using all the layers in the pre-trained
model did improve the performance of the model as well,
having an accuracy of 100% without augmenting the training
data.
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Fig. 33. Accuracy of the Model
Trained Without Augmenting the
Training Set (All Version)

Fig. 34. Loss of the Model Trained
Without Augmenting the Training
Set (All Version)
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Fig. 35. Accuracy of the Model Fig. 36. Loss of the Model Trained

Fig. 30. Accuracy of the Model
Trained With Augmented Training

Fig. 31. Loss of the Model Trained
With Augmented Training Set

Trained With Augmented Training
Set (All Version)

With Augmented Training Set (All
Version)

Set

On the other hand, here are the results of not using all
the layers from the pre-trained model. It can be seen that
the performance of the model increased compared to using
all layers in the pre-trained model. This shows that not all
the layers in the pre-trained model are necessary. Similarly,
the model without data augmentation still produced higher
validation accuracy. Highest validation accuracy attained was
92% for the model without data augmentation, and 80% for
the model with augmented training set.

KINECT
ALL Layers
Train Dataset Validation Test Dataset without data with data aug
Dataset aug
Original Original Original 96.43% 78.57%
NOT ALL Layers
Original Original Original 100.00% 82.14%

Next are the results of using the smart flooring dataset. For
the smart flooring, it has two datasets, the All version and the
Clean version. As seen in the graphs, the model of Figures
33 and 34 was able to obtain a validation accuracy of 88%.
Meanwhile, the model of Figures 35 and 36 had attained 80%.
Similar to the results of using the Kinect data, the model
trained without augmenting the data had better performance
based on the validation accuracies than the one trained with
data augmentation.
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Fig. 32. Accuracy of the Model Using Test Sets

Fig. 37.

Accuracy of the Model

Trained Without Augmenting the
Training Set (Clean Version)

Fig. 38. Loss of the Model Trained
Without Augmenting the Training
Set (Clean Version)
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Fig. 39. Accuracy of the Model
Trained With Augmented Training
Set (Clean Version)

Fig. 40. Loss of the Model
Trained With Augmented Training
Set (Clean Version)

As for the Clean version dataset, similarly, the model trained
without augmenting the data resulted in a higher accuracy.
Another notable observation would be the performance of the
model of Figures 39 and 40. It was inconsistent which could
mean the model might be having a hard time learning. Highest
validation accuracy achieved by the model of Figures 37 and
38 was 100% and 91.67% for the model of Figures 39 and
40.
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Fig. 41. Accuracy of the Model
Trained Without Augmenting the
Training Set (All Version)

Fig. 42. Loss of the Model Trained
Without Augmenting the Training
Set (All Version)
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Fig. 43. Accuracy of the Model
Trained With Augmented Training
Set (All Version)

Fig. 44. Loss of the Model Trained
With Augmented Training Set (All
Version)

Not including all the layers in the pre-trained model was
also implemented for the smart flooring data. Same with the
results of not using all the layers for the Kinect data, the model
had performed better when not all layers were used. Also, the
model without data augmentation achieved higher accuracy
as well. However, the loss values of the model with data
augmentation are lower. This could mean that the model of
Figures 41 and 42 was overfitted since its validation accuracy
were lower than the training accuracy as well. The model was
able to achieve 92% of validation accuracy for unaugmented
training set and 84% for the augmented one.
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Fig. 45. Accuracy of the Model
Trained Without Augmenting the
Training Set (Clean Version)

Fig. 46. Loss of the Model Trained
Without Augmenting the Training
Set (Clean Version)
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Fig. 47. Accuracy of the Model
Trained With Augmented Training
Set (Clean Version)

Fig. 48. Loss of the Model
Trained With Augmented Training
Set (Clean Version)

Same with the previous model, the clean version dataset
produced better results than all version dataset. Without using
all the layers in the pre-trained model for clean version dataset,
it had achieved similar results with the model using all layers.
The highest validation accuracies obtained are 100% for
training without augmentation and 91.67% with augmentation.
Consistently, the model without data augmentation still had
higher results.

ALL Layers
Train Dataset VSIEi:ti:;ieotn Test Dataset withc;ntgdata with data aug
ALL ALL ALL 96.43% 96.43%
CLEAN CLEAN CLEAN 92.86% 92.86%
NOT ALL Layers
ALL ALL ALL 92.86% 57.14%
CLEAN CLEAN CLEAN 92.86% 100.00%

Fig. 49. Accuracy of the Model Using Test Sets

It can be observed after testing the model with the test sets,
all dataset was able to produce a better model in most cases,
although during training time, the clean dataset had higher
validation accuracies. This could indicate that the clean dataset
had removed some important data from the training set which
was needed to be able to recognize data from the test set. The
all version dataset model had achieved 96.43% of accuracy,
and the clean version dataset reached 92.86% of accuracy
when all layers in the pre-trained model were included, for
both with or without data augmentation. As for not using all
the layers, the all dataset obtained 92.86% of accuracy when
no data augmentation was applied to the training set and 100%
for the clean dataset. In this case, the clean dataset performed



better when data augmentation was used, unlike when using
all the layers in the pre-trained model where all dataset had
higher results. This means the number of layers is a great
factor that affects the performance of the model.

D. Decision-level Fusion

The model that yielded the best accuracy result for the smart
flooring is through using CNN with an accuracy of 96.43%.
On the other hand, the highest accuracy using the Kinect
model was using KNN with 92.59% accuracy. Using the
accuracies mentioned, the weights were computed. A sample
computation of weights is seen in Figure 50. The resulting
weights produced a total of 52% for smart flooring and 48%
for Kinect. Finally, the results of the decision-level fusion
formula are compared to a threshold value of 50%. If the
value is greater than 50, then the final output is abnormal but
if the value is less than 50 then it corresponds to a normal
gait. The results of these computations are compiled in Table
L.

Kinect Weight = 92.59 / (92.59 + 96.43)
Mat Weight = 96.43 / (92.59 + 96.43).

Fig. 50. Sample computation of getting the weights

48 *1+52*0=48
48 *1+52*1=100
48*0+52*1=52
48*¥0+52*0= 0

Fig. 51. Sample computation using decision-level fusion formula

Result
48 < 50 .. Normal
100 > 50 .. Abnormal

Kinect Prediction
T (Abnormal)
48 1 (Abnormal) 52

Kinect Weight Smart Flooring Prediciton
3 0 (Normal)

1 (Abnormal)

Smart Flooring Weight
52

48

0 (Normal)

1 (Abnormal)

52 > 50 .. Abnormal

48

0 (Normal)

0 <50 .. Normal

TABL

0 (Normal)
T

DECISION-LEVEL RULE TABLE

Given that CNN yielded the highest accuracy for the smart
flooring, it indicates that visualizing the smart flooring data
helps determine the difference of a normal to an abnormal gait
better. While for the Kinect, the KNN algorithm proved to give
the best result, and could be interpreted that the numerical data
points of the coordinates are important and having it visualized
makes it more difficult for the algorithm to learn from. Given
that the model of the smart flooring yielded a slightly higher
result, in the case of contradicting results between the smart
floor and the Kinect, the decision would end up adhering to the
result of the smart floor due to its higher accuracy. Although
the two sensors only had a difference of only 4% in terms of
their weight, the smart flooring having a higher weight value
shows that it proves to be a more useful tool in determining
gait.

VIII. CONCLUSION AND FUTURE WORKS

In conclusion, the gait of a person can be captured through
analyzing the Kinect data points or through the pressure points
from the smart flooring. The results indicate that KNN and
CNN have their own configurations that best fit the data.

KNN on Kinect showed that feature importance selection
had little to no impact on the result of the machine learning
algorithm due to the similarity in results while on the Smart
Flooring it would be a mix of before feature importance
selection and after feature importance selection that would
produce the best results. The highest results from KNN on
Kinect was 92.59% and it is higher than the highest result
retrieved from the Smart Flooring which was only at 8§7.94%.
This means that Kinect is able to differentiate gait abnormality
better by almost 5%. However, Smart Flooring data which
was at 87.94% came from a dataset where it was cleaned to
remove all 0 values and it was the dataset that produced the
best accuracy for the Smart Flooring.

CNN on the other hand was able to achieve 100% of
accuracy for Kinect when the model didn’t use all the layers
in the pre-trained model and no data augmentation was done
to the training set. When trained with augmented training data,
the highest accuracy obtained was 82.14% without using all
the layers in the pre-trained model. As for smart flooring data,
96.43% was reached for using all layers in the pre-trained
model and the all version dataset as the training set with
and without data augmentation, while 100% for the model
using clean augmented dataset as training model and not all
the layers in the pre-trained model. It can be deduced that
both Kinect data and smart flooring data were represented-
well visually since they have produced acceptable results.
Another notable observation would be that without applying
data augmentation to the training dataset, the models yielded
higher results in most cases. However, the purpose of applying
data augmentation is to reduce the chance of overfitting which
may mean that the model was not good enough yet to handle
cases not similar to the training set. It has to be more
generalized. Also, not using all the layers in the pre-trained
model, the model was able to have better performance. For
the smart flooring data, it has been noticed that the all dataset
had better results than the clean dataset.

Additionally K-Means proved to be useful in understanding
the data better. The K-Means model with the lowest DBI
values was able to cluster the smart flooring and Kinect data
into 3 groups which were the abnormal, normal, and outlier
data points. Therefore, this is a clear statement that it is able to
distinguish abnormal and normal data. However, throughout all
of the data, there were inaccuracies caused by overlapping data
points. The abnormal points overlapping that overlapped with
the normal points in the Kinect data were the ones acted out
but for smart flooring, it was the real ones. This can mean that
for smart flooring, the difference between the normal walk and
the acted gait abnormality was more obvious because of the
dragging of foot and smaller foot steps. It can also be deduced
that the negative values removed in the clean smart flooring



data may be playing an important role in differentiating normal
from abnormal gait since the All dataset was clustered better
than the Clean dataset.

Decision-level fusion aided in determining the gait abnor-
mality of a person even further through the producing a
confidence level. Gait abnormality can be better predicted
through a smart flooring device having a base weight value
of 52% as opposed to Kinect with only 48%. Although the
smart flooring provides a better accuracy percentage, it has its
cons and is more difficult to implement a smart flooring setup
over a Kinect.

The proponents encourage future researchers to collect more
data from people with normal and abnormal gait. Also, given
that there are a lot of abnormal gait patterns, it would be
better if the data collected would comprise various types of
gait abnormalities so that the machine learning algorithms
are given different examples of an abnormal gait and could
classify more accurately. Furthermore, other state-of-the-art
machine learning algorithms could be explored as well other
than KNN, K-Means, and CNN. In addition to that, other
fusion methods such as data level and feature level fusion
could also be taken into consideration. This way, the results
can be compared in order to discover which fusion method
works best along with the model. Through this research, the
potential of identifying the specific gait abnormalities can be
explored by other researchers.

As for the hardware and environment setup, other ways to
improve the portability of the smart setup can be explored. For
example, they could lessen the wires connected to the smart
floor so that it could easily be stored or brought. Moreover,
instead of using just 1 Kinect camera placed on the side for a
lateral view, the study could take one step ahead if 2 Kinect
cameras were utilized; 1 placed in front and 1 on the side.
This could yield more accurate coordinates of the joints as
well as the length and angles. Also, it could capture some
angles that are not fully covered when there is only 1 Kinect
on the side like the swinging of the hips. Additionally, for
an even more detailed and concise data of the footstep, it is
encouraged to make the gap between each copper tape on the
smart floor smaller. Lastly, a consultation or an interview with
an orthopedic doctor or a licensed physical therapist before and
after the data is collected might provide more insight about the
study.
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