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ABSTRACT
The conventional approach for analyzing gene expression data in-
volves clustering algorithms. Cluster analyses provide partitioning
of the set of genes that can predict biological classification based on
its similarity in n-dimensional space. In this study, we investigate
whether network analysis will provide an advantage over the tradi-
tional approach. We identify the advantages and disadvantages of
using the value-based and the rank-based construction in creating
a graph representation of the original gene-expression data in a
time-series format. We tested four community detection algorithms,
namely, the Clauset-Newman-Moore (greedy), Louvain, Leiden, and
Girvan-Newman algorithms in predicting the 5 functional groups of
genes. We used the Adjusted Rand Index to assess the quality of the
predicted communities with respect to the biological classifications.
We showed that Girvan-Newman outperforms the 3 modularity-
based algorithms in both value-based and ranked-based constructed
graphs. Moreover, we also show that when compared to the conven-
tional clustering algorithms such as K-means, Spectral, Birch, and
Agglomerative algorithms, we obtained a higher ARI with Girvan-
Newman. This study also provides a tool for graph construction,
visualization, and community detection for further analysis of gene
expression data.
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1 INTRODUCTION
Graph analytics has brought significant advances to our under-
standing of complex systems. One interesting graph substructures
are communities or clusters which are identified as a tightly knit
set of vertices. Community detection is used in various fields in-
cluding, biological, social, technological, and information networks
[7]. In Biological networks, these communities could be a group of
genes or proteins that interact highly with each other. This study
will focus on finding communities in gene co-expression networks.
Specifically, this research will investigate how the graph will be
built from yeast gene expression data and how feasible it is to
predict 5 the functional group of genes by using a graph-based
approach instead of the conventional clustering algorithms.

We use time-series gene expression data from yeasts created
by Cho et al. [3]. This data is modified by Yeung [25] to create a
part of the benchmark dataset for validating clustering algorithms

for gene expression data. In our previous work, we used the same
data set for analyzing two visualization techniques in [5] and we
found that functional groups of genes and their relationships reflect
in the Nonmetric-multidimensional scaling (NMDS) visualization.
We would like to explore further if the functional groupings of
genes are reflected by using another powerful combinatorial model,
which is graphs.

We created several graph representations of the yeast gene ex-
pression data. We explored two graph construction algorithms,
namely the rank-based and value-based construction. Most co-
expression networks are obtained using value-based graph con-
struction [11]. To name a few, this method is used in creating a
gene co-expression network for the human genome [6, 12, 14].
Value-based construction is also used to create a gene expression
network used to compare human and chimpanzee brains [15]. It is
also used to study several genes related to chronic fatigue syndrome
(CFS) in [16], and mouse gene related to weight [9]. A study by Ruan
et al. [11] argues that the rank-based approach claims to better cap-
ture the global topology of biological systems which involved both
strongly and weakly co-expressed modules unlike the modules ob-
tained by value-based construction. A couple of gene co-expression
networks that are obtained using rank-based approaches includes
gene co-expression networks that link cardio-vascular disease and
Alzheimer’s [17]. Rank-based graph construction is also used to cre-
ate a network to analyze cellular pathways that regulate different
biological processes involved in gastric cancer. Another example
is used to analyze genes from humans, flies, worms, and yeast to
discover 163 genes that are conserved across evolution [21].

We obtained several graph representations using the value-based
and the rank-based constructions and subjected each to a couple
of community detection algorithms. Community detection is an
NP-hard problem. Moreover, complex networks naturally have a
high number of vertices, so using exact approaches for commu-
nity detection is impractical. In this study, we used four heuristic
algorithms. The greedy, Louvain, and Leiden algorithm uses modu-
larity to measure the quality of the community structure. On the
other hand, the Girvan-Newman approach uses a heuristic that
iteratively removes valuable edges to reveal the communities in the
graph. We used the biological classification of the genes to create a
baseline truth about the intended communities. We compare the
predicted communities of the algorithms using the Adjusted Rand
Index (ARI).
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2 GENE EXPRESSION DATA
Genes are segments in the DNA that code for a specific biological
function. A particular gene is expressed whenever a copy of it is
transcribed and later on translated into proteins to carry out a spe-
cific biological process. Microarray technology allows measuring
thousands of gene expression levels at once.

In this study, we used the gene expression data of Saccharomyces
cerevisae or commonly known as yeast from [20]. The original data
consists of 6,220 gene expression levels taken into 17-time points.
The duration of the interval covers two cell cycles of a synchronized
sample of yeasts. From the set of monitored genes, 416 of these
genes are found to exhibit cell cycle dependent periodicity [3]. The
work of Cho et al. [3] also provided a characterization of genes in
terms of their involvement in cell cycle regulation. Yeung et al. [25]
provided a subset of genes, where no two genes belong to more
than one phase. A subset of 384 genes is grouped according to the
5 phases of the cell cycle. Each group corresponds to a specific
cell cycle phase which activates in the following order: early G1
phase, late G1 phase, synthesis phase, second growth phase, and
mitosis or cell division. In this paper, we refer to the groupings as
Group 1 to 5, respectively. We will use the term functional group
to refer to the group of genes belonging to a common function.
Unless specified otherwise, the main functional grouping of genes
is based on the 5 phases of the cell cycle. A more specific grouping
was provided in the work of Cho et al. [3], where they provided
biological characterization to some of the genes belonging to a
single functional group. Examples of such characterizations are
genes involved in cell cycle regulation, directional growth, DNA
replication, mating pathway, glycolysis/respiration, biosynthesis,
and transcription factors.

We used a normalized version of the gene expression data from
[22]. The expression levels are normalized to have a mean equal to
0 and a variance equal to 1. In Figure 1, we show the expression
level of genes belonging to the five different functional groups. For
each group, we see how the expression level of genes fluctuates
through time. We refer to the total number of genes as n = 384
and the total number of time points as t = 17. The data is initially
represented as an (n × t ) matrix, where each row represents a gene
vector of size t .

In our previous study, we investigate the use of vector fusion and
non-metric multidimensional scaling (NMDS) visualization of the
384 genes [5]. We used the Euclidean distance as a metric for gene
similarity. In Figure 2, we show the NMDS visualization of the gene
expression data in a 2-dimensional view. The resulting non-metric
visualization shows visual clustering of the five classifications of
genes. Moreover, the 2D representation captures the temporal char-
acteristics of the phases of the cell cycle. In counterclockwise, we
can see the visual proximity of the groups starting from Group1
to Group 5, which activates in order according to the cell cycle
phase. Further investigation of the use of the 2D visualization in
predicting functional group of genes is studied in the works of [19]
and [18].

This work is an extension of the previous studies in representing
gene relationships and predicting functional groups of genes. We
extended the 2D visualization in [5] to graph representations to
capture additional information about the data which can be used

Figure 1: (a) Expression levels of 384 genes accross the 17
time points. The genes are classified into five groups corre-
sponding to the five phases of the cell cycle, i.e., (b) Early
G1 phase (c) Late G1 phase (d) Synthesis phase (e) Second
growth phase and (f) Mitosis.

Figure 2: Non-metric multidimensional scaling of the yeast
gene expression data in [5]. Each point in the scatterplot is
a gene and the colors represent the biological classification.
Fitted confidence ellipses are displayed to show how biolog-
ical function prediction can be made by visual closeness to
the five different groups.

in predicting the biological function of genes. In this following
section, we will describe how we model the yeast gene expression
data using a gene co-expression network.

3 GRAPH REPRESENTATION AND
VISUALIZATION

In our graph representation, each vertex is a gene and there is an
edge connecting two genes if they are co-expressed. We formalize
the concept of gene co-expression by utilizing Pearson’s correlation
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as a similarity metric. Since this metric is symmetric, the resulting
graph is an undirected graph with edge weights equal to the cor-
relation value. In this paper, we use the terms network and graph
interchangeably.

In the following subsections, we will detail the resulting graphs
obtained by varying these input parameters. We used two different
graph construction algorithms, namely, value-based and rank-based
construction. The main difference between the two algorithms is
how the edges are formed in the graph.

To visualize the resulting graph representations, we used the
Fructherman-Reingold algorithm [8]. The algorithm computes for
the positions of the nodes in 2D or 3D space by simulating a physical
system or rings and springs. Each node is represented by a ring,
while the edges represent the springs. The weights associated with
the edges represent the attractive forces between the rings. The
final position of the rings in space generally reflects the similarity
between different nodes with respect to the edge-weights.

A force-directed layout such as the Fruchterman-Reingold algo-
rithm reveals the underlying topology of a network and is said to
be suitable for highly modular networks with distinct communities
[13]. The Fruchterman-Reingold algorithm is a widely used force-
directed algorithm for several gene co-expression networks in the
literature. For instance, this algorithm is proven to be relevant in
extracting biologically significant modules of pig genes [24]. This
technique is also used to identify a subnetwork of yeast genes that
are activated in response to its adaptation to different environments
[2].

3.1 Value-based Graph Construction
We create a corresponding graph representation of the yeast gene-
expression data using value-based construction. To create a gene
co-expression network, we compute the pairwise similarity of genes
using Pearson’s correlation coefficient. An input parameter δ is
used to identify whether two genes are co-expressed.

Formally, let G = (V ,E) be the corresponding co-expression net-
work obtained from the yeast gene-expression data. The resulting
graph G is a vertex labeled graph with |V | = n = 384. In the value-
based construction, there is an edge connecting two vertices u and
v if and only if the Pearson’s correlation coefficient ρ (u,v ) ≥ δ , for
some correlation threshold δ .

We created several graph representations by varying the in-
put parameter δ . In total, we obtained 5 graph representations
of the same data set by creating a corresponding graph for δ =
{0.70, 0.75, . . . , 0.95}. We summarized the properties of the graphs
in Table 1.

δ 0.70 0.75 0.80 0.85 0.90 0.95
Edges 9748 7383 5058 2925 1177 154

Singletons 3 12 26 68 142 299
Number of CC 3 2 3 3 18 11

Largest CC 375 369 354 310 116 53
Table 1: Summary of network properties for graphs obtained
using value-based constrution

In Table 1, we can see how the total number of edges decrease as
we increase the parameter δ . In Figure 3, we show the percentage

of nodes that are part of the largest connected component and
the corresponding percentage of singletons in the resulting graph
as we increase the parameter δ . The percentage of the number of
nodes that is part of the largest connected component is inversely
proportional to the total number of singletons.

Figure 3: Percentages of nodes that are part of the largest
component inG and the percentage of nodes that are single-
tons as the threshold δ increases.

The graph obtained with δ = 0.95 have edges connecting highly
correlated yeast genes. This high threshold results in creating a
graph with the lowest edge count and the highest number of sin-
gletons. In this graph, about 78% are singletons. In the context of
community detection, we cannot get information about interesting
relationships amongst these genes. On the other hand, this graph
representation revealed 11 non-trivial connected components with
the largest connected component having 53 nodes. 9 out of 11
connected components consist of genes belonging to the same func-
tional group. One connected component consists of a transcription
factor ‘YDL197c’ in the 3rd functional group and a gene involved in
repair and recombination ‘YLR383w’ in the 2nd functional group.
The largest connected component has 49 genes belonging to the 2nd
functional group while 4 genes are involved in the 3rd functional
group.

The graph representation with δ = 0.90 consists the most num-
ber of non-trivial connected components. This is reflected in Figure
3 where we have a low percentage of nodes belonging to the largest
connected component and a low percentage of singletons. The
graph revealed that the majority of the nodes, about 63%, belong
to a non-trivial connected component. In Figure 4, we provide a
visualization of the graph where we can see a total of 18 connected
components and 142 singletons. Each gene is colored based on
the 5 functional groups. Unlike the graph with δ = 0.95, here we
have more connected components with genes belonging to multiple
functional groups. We also show a single connected component
composed mainly of genes belonging to Group 4. We highlighted
some genes with known biological characterization from [3] in
(b) of Figure 4. All genes in the single component belong to the
second growth phase (G2 phase) except for the transcription fac-
tor (‘YPL016w’) belonging to the 3rd functional group (Synthesis
phase). The synthesis phase happens before the second growth
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Figure 4: (a) Graph representation using value-based graph
construction with delta = 90. The position of the nodes are
obtained using Fruchterman-Reingold algorithm and the
color of the nodes are according to the 5 functional group-
ings of genes. (b) Sample of one connected component with
9 genes belonging to the 4th functional group and one gene
from the 3rd functional group.

phase. It is interesting however to see that genes belonging to a
single connected component belong to adjacent functional groups
in terms of the sequence of the cell cycle phases.

This observation leads us to check the graph representation
when we have the most number of edges. In this representation,
we preserve most of the relationships but are weighted according
to the correlation value. The resulting graph is shown in Figure 5.
Analogous to the result of the NMDS visualization, we observed
that there is a visual closeness of nodes belonging to a certain
functional group. Moreover, the temporal characteristic of the 5
groups is also preserved.

As a general observation, if we have a strict threshold, many
weakly co-expressed genes will be disconnected. On the other hand,
if we attempt to connect the weakly co-expressed genes into the
network, the threshold may become so low that the genes in the
strongly co-expressed network may have many links to genes be-
longing to a separate functional group. The next graph construction
algorithm addresses this concern.

3.2 Rank-based Graph Construction
Similar to the previous approach, rank-based construction pro-
duces a labeled undirected graph G (V ,E) with the set of vertices
representing each gene. Given an input parameter d ∈ Z+, rank-
based construction creates edges to d most similar neighbors of
each vertex u in G. The similarity metric used is also the Pear-
son’s correlation coefficient that serves as the edge weights of the
graph. We constructed a total of 10 graphs by varying the parameter
d = {1, . . . , 10}. The details of the graphs obtained are summarized
in Table 2.

Rank-based construction guarantees that each vertex is reachable
from at least d vertices in the graph. As reflected in Table 2, no
singletons were created even for the graph with the least number of
edges. With this construction, even with 621 edges, we can already
get relationships involving all genes in the data set. In contrast with
the graph obtained by value-based with δ = 0.90 with 1, 177 edges,

Figure 5: Value-based graph construction with δ = 70

d 1 2 3 4 5 6 7 8 9 10
Edges 323 621 907 1185 1464 1734 2020 2295 2580 2857

Singletons 0 0 0 0 0 0 0 0 0 0
Number of CC 60 1 1 1 1 1 1 1 1 1

Largest CC 25 384 384 384 384 384 384 384 384 384
Table 2: Summary of network properties for graphs obtained
using rank-based construction.

we can only relate about 63% of the genes in the data set. However,
this construction also allows edges with weak correlation to be part
of the network.

We show the comparison of the total number of edges between
all the graphs obtained by value-based and rank-based construction.
In Figure 6, we see that the total number of edges as we increase d is
far below the total number of edges for the value-based construction.
The highest number of edges is with parameter d = 10 which is
approximately 17% of the total number of edges of the graph with
δ = 0.70.

In Figures 7 and 8, we show the two graphs obtained by rank-
based construction with parameters d = 2 and d = 10, respectively.
We visualized both graphs using the Fruchterman-Reingold algo-
rithm to compute for the position of the nodes and used the biologi-
cal classification to color the set of nodes. With d = 2, the resulting
graph consists of all the 384 genes in the original data set. The genes
belonging to groups are not visually separated as compared to the
graph obtained by d = 10. Even though the graph uses way less
number of edges as compared to the graph obtained through value-
based with δ = 0.70. The visual closeness of the nodes belonging
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Figure 6: Comparison of the total number of edges for (a)
value-based construction and (b) rank-based construction.

to the same functional group is present. The temporal relationship
genes that are present in the original NMDS visualization are also
reflected.

Figure 7: Rank-based graph construction with d = 2. Colors
are according to the 5 functional groups.

Visually, we can see the proximity of genes belonging to the same
functional groups for both value-based and rank-based construction
with δ = 0.70 andd = 10, respectively. According to Ruan et al., [11],
the comparison of the rank-based and the value-based construction
has not been rigorously examined in the literature. In the following
section, we will test whether which of the following graphs can

Figure 8: Rank-based graph construction with d = 10. Colors
are according to the 5 functional groups.

be used to predict functional groups using community detection
algorithms.

4 COMMUNITY DETECTION
Some graph representations in the previous section already provide
an interesting group of genes belonging to an individual connected
component. It is good for identifying small modules that are present
in the graph but does not provide communities as partitions of the
set.

The standard approach for partitioning a data set is through
clustering. The works of Ruan et al. [11] have proven that for some
data sets, community detection in graphs provides more accurate
partitions. In line with this, we use 4 different community detec-
tion algorithms to predict the grouping of genes based on the 5
functional groups. The first three algorithms use the concept of
modularity while the last algorithm uses edge-betweenness. We’ll
discuss these two network metrics in the succeeding subsections.
We subjected the largest component of each graph C obtained by
using value-based and rank-based construction with varying input
parameters. Here, we will compare how the different community
detection algorithms perform in predicting the 5 functional groups.

We use the Adjusted Rand Index (ARI) to assess the performance
of a particular community detection algorithm in classifying the
set of genes according to the biological function. ARI is ‘adjusted
by chance’ version of the Rand Index (RI).

ARI = (RI − E(RI ))/(max (RI ) − E(RI )) (1)
RI is a measure of agreement between two partitioning of the

same set. It is measured by getting the percentage of ‘agreeing’
5
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pairs with respect to the total number of pairs. A pair agree if they
both belong to the same cluster or different cluster in the predicted
and true clustering.

ARI has a maximum value of 1 which means that there is a
perfect agreement between the predicted and the true clustering
The expected value of the ARI in the case of random clusters is 0. A
negative value of ARI suggests cluster to cluster agreement below
expectation. ARI also allows comparison between two unequal
numbers of partitions.

We summarized the assessment of the predicted communities
with respect to the 5 functional groupings. We displayed the ARI
as well as the optimal number of clusters obtained by the greedy,
Louvain, Leiden, and Girvan-Newman algorithms in Table 3. We
also display some important graph properties, such as the number of
nodes in the largest component |C |, graph density, and the number
of edges |E | for a quick reference as we compare the results.

4.1 Greedy Algorithm
Modularity is a network metric that measures the strength of the
division of a network into modules or communities. It is computed
by getting the number of edges within a community subtracted
by the expected number of edges if the edges are placed between
nodes in random order. We can compute the modularity of a given
k-partition using

Q =
k∑

c=1


Lc
|E | − γ

(
dc

2|E |
)2 , (2)

where Lc and is the number of intra-community links in the
community c , dc is the sum of degrees of a node in the community
c , and γ is the resolution parameter.

The greedy algorithm is an iterative procedure that starts by
treating each vertex as a separate community. In each iteration, the
algorithm joins a pair of communities with the most increase in
modularity until no such pair exists. The algorithm produces the
best number of partitions that will maximize the modularity.

We summarize the result of predicting the communities using
the greedy algorithm in Table 3. For each created graph, we show
the resulting ARI and the corresponding number of partitions ob-
tained by the algorithm. The obtained the highest ARI for the graph
representation was constructed using the rank-based approach
with d = 5, which is also the total number of functional groups
in the data. On the other hand, we get a lower than expectation
ARI with value-based and ranked-based with δ = 0.95 and d = 1,
respectively.

This algorithm is also called the Clauset-Newman-Moore greedy
modularity maximization with a running time of O ( |E | · h · logn),
where h is the height of the dendrogram describing the community
structure. Most biological networks are sparse. As shown in Table 3,
we validate this claim by computing the density score of each graph
created. Due to the sparsity of the graph, the parameter h in the
running time is bounded above by logn. Thus, the greedy algorithm
runs in O ( |E | · log2 n) [4]. Since the total number of vertices is
constant for all graphs, the running time of the algorithm for each
graph is highly dependent on the total number of edges.

4.2 Louvain Algorithm
Louvain community detection uses a heuristic method based on
modularity optimization [1]. The algorithm has two stages. The
first stage is involved in creating the initial set of communities
through modularity optimization. Similar to the greedy algorithm,
the first step is to assign every node to be in its community. The
second step maximizes the modularity by moving each node to
all of its neighbor communities. Specifically, for each node u ∈ V
and for each neighbor, v of node u the algorithm calculates the
maximum increase in modularity for changing community cu to the
community of neighbor cv across all neighbors v . If the modularity
increases, then the algorithm move nodeu from cu to cv . Otherwise,
if no positive gain is achieved the node remains in its original
community.

The second stage is called community aggregation. In this stage,
all nodes belonging to a single community are treated as a single
node. Weighted connections are established by computing the sum
of all the edges that traverse from one community to the other.
Self-loops are present and the corresponding weight for each is
obtained by getting the sum of all the edges that are present within
a community. This stage is done iteratively to gain the hierarchical
structure of the communities.

Louvain algorithm also provides the optimal number of partitions
based on maximum modularity. In Table 3, we summarize the result
of predicting the 5 functional groups using the Louvain algorithm.
Likewise, we highlighted the maximum ARI for value-based and
for rank-based constructed graphs.

Louvain and the greedy algorithm produce 5 partitions for the
value-based constructed graph with δ = 0.75. In this graph, the
Louvain algorithm produces a relatively higher ARI compared to
the predicted communities of the greedy algorithm. Moreover, the
best ARI for the value-based exceeds any ARI from the rank-based
constructed graphs.

On the other hand, predicted communities for rank-based con-
structed graphs obtained a relatively lower ARI compared to the
communities obtained by the greedy algorithm.

The community aggregation step of the Louvain algorithm uti-
lizes the additional edges present in value-based construction unlike
those in the rank-based constructed graphs with relatively uniform
degree distribution. The natural topology of the value-based con-
structed graphs is revealed by the iterative step of the community
aggregation stage of the Louvain algorithm, which is not present
in the rank-based constructed graphs.

The running time of this algorithm isO (n logn). which is slightly
faster compared to the running time of the greedy algorithm.

4.3 Leiden Algorithm
Leiden algorithm is introduced in [23] to improve the predicted
communities of the Louvain algorithm. In the Louvain algorithm,
it is possible to get communities consisting of several disconnected
communities. Experimental analysis from Traag et al. [23], saw
that up to 25% of communities are ‘badly’ connected and identified
up to 16% are disconnected. To address this concern, the Leiden
algorithm guarantees connectivity in the predicted communities.

The Leiden algorithm is a three-stage process that involves local
moving of nodes, an additional stage for refinement, and community
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Greedy Louvain Leiden Girvan-Newman
Construction Parameter |C| Density |E| k ARI k ARI k ARI k ARI

Value-Based

0.70 375 0.139 9748 5 0.232 4 0.475 4 0.475 10 0.500
0.75 369 0.109 7383 5 0.378 4 0.505 4 0.482 10 0.505
0.80 354 0.081 5058 6 0.400 5 0.382 5 0.378 4 0.518
0.85 310 0.061 2925 6 0.322 6 0.415 5 0.401 5 0.557
0.90 116 0.142 1177 6 0.011 4 0.000 4 0.007 10 0.272
0.95 53 0.091 154 6 -0.025 7 -0.022 6 -0.023 4 0.063

Rank-Based

1 25 0.004 323 6 -0.011 5 0.000 6 -0.011 10 0.031
2 384 0.008 621 10 0.270 13 0.237 12 0.258 5 0.499
3 384 0.012 907 8 0.329 10 0.244 10 0.278 4 0.499
4 384 0.016 1185 5 0.356 8 0.354 10 0.290 5 0.478
5 384 0.020 1464 5 0.447 8 0.302 8 0.354 4 0.493
6 384 0.024 1734 5 0.479 7 0.332 8 0.337 4 0.493
7 384 0.027 2020 5 0.464 7 0.326 7 0.342 4 0.499
8 384 0.031 2295 5 0.402 7 0.357 6 0.347 4 0.485
9 384 0.035 2580 5 0.359 5 0.360 5 0.359 4 0.492

10 384 0.039 2857 5 0.372 5 0.366 5 0.362 4 0.489
Table 3: ARI of the predicted communities using different community detection algorithms for all constructed graphs.

aggregation. The first and the third stages are synonymous with
the modularity optimization and community aggregation of the
Louvain algorithm. A minor difference for the first stage, instead of
checking all nodes for membership, the Leiden algorithm only visits
nodes whose neighborhood changed. An additional stage is done
after the local moving of nodes. This stage is called the refinement
stage where the algorithm can further partition the communities
obtained in the first stage. The manner of splitting the communi-
ties is not done greedily but instead employs randomization. The
community aggregation step is similar to that of the Louvain algo-
rithm. Instead of using the initial partition of the nodes, the Leiden
algorithm uses the refined partition from the second stage.

The Leiden algorithm guarantees that each predicted commu-
nity is connected and is locally optimally assigned. Experimental
analyses showed that Leiden outperforms the Louvain algorithm
both in terms of speed and quality of the result using a subset of
real-world large networks.

We also used the Leiden algorithm to predict the 5 functional
groups. We listed down the optimal number of clusters as well as
the corresponding ARI in Table 3. We highlighted which parameter
obtained the highest ARI for both value-based and rank-based
constructions.

Since the Leiden algorithm is almost similar to the Louvain al-
gorithm with small improvements in running-time and partition
refinements, the comparison of the result of the community predic-
tion is not surprising. We saw a striking similarity in the partition
obtained by the Leiden and the Louvain algorithm for all value-
based and rank-based graph representations. Surprisingly, even
if the Leiden algorithm is faster than the Louvain algorithm, the
ARI for both value-based and rank-based graphs is less in Leiden
compared to that of Louvain.

4.4 Girvan-Newman Algorithm
The Girvan-Newman algorithm uses another network property
called betweenness centrality in predicting communities in a graph,
unlike the first three methods that use modularity maximization.
The Girvan-Newman algorithm starts from the original graph and
iteratively removes edges of the graph until the final graph rep-
resentation is composed of several connected components. Each
connected component is a predicted community of the algorithm.

The manner of selecting edges to remove uses the edge property
called edge betweenness. To simplify the definition, edge between-
ness is the count of the total number of shortest paths that are
passing through an edge. The edge betweenness is used to mea-
sure the importance of a particular edge in connecting the different
nodes in a graph. Moreover, the edges that are connecting commu-
nities are expected to have a high edge betweenness. The idea is by
removing crucial edges in the graph, the algorithm can reveal the
communities present in the original network.

The algorithm is an iterative algorithm that starts by computing
the edge betweenness of each edge that is present in the graph.
The next step is to remove the edge with the highest betweenness.
Since an edge was removed, the algorithm recomputes for the edge-
betweenness of the remaining edges. The algorithm repeats this
process until there are no more edges left. The running time of the
algorithm is O ( |E |2n) [10].

At the end of the computation, we are left with singletons, where
each node is a member of its own community. The algorithm stores
the connected components per iteration in a dendrogram similar
to the output of hierarchical clustering algorithms. We can extract
k-communities depending on the level of the dendrogram.

We used the Girvan-Newman algorithm for predicting communi-
ties that are present in all our graph representations. In contrast to
our first three methods, we can specify the output to have exactly k
communities. With this parameter, we can compare the quality of
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the predicted communities as we increase the value of parameter k .
We summarize the results in Figure 9.

(a)

(b)

Figure 9: Computed ARI of the value-based and rank-based
constructed graphs as we increase the total number of com-
munities in Girvan-Newman.

We show the corresponding ARI of the predicted communities
when value-based construction was used. Each series in Figure 9
(a) is the ARI as we increase the total number of communities for
a graph created with a specific value of δ . Here, we can see that
both graphs with δ = {0.95, 0.90} consistently obtained the lowest
ARI compared to the rest of the graphs obtained using value-based
construction. Note that these two graphs have the least number of
edges but with the highest correlation values. We found an almost
similar trend for the rest of the value-based constructed graphs.
The ARI increases and achieves the maximum ARI at k = 5. The
trend decreases a little and plateaus as we increase k up to 10. The
graph with δ = 0.85 obtained the highest ARI = 0.557 for k = 5
when compared to the true classification of the genes. This graph
representation strikes a balance between having edges that connect
strongly correlated genes and some weakly correlated genes.

In the rank-based construction, only the graph constructed with
d = 1 obtained a 0 or even lower than expectation ARI compared to
the rest of the graphs constructed using the rank-based approach.
The rest of the graphs obtained an almost similar trend. However, as

we increased , the total number of edges also increases. The running
time of the Girvan-Newman algorithm is highly dependent on the
number of edges as we iteratively compute for edge betweenness.
Thus making the rank-based constructed graph with d = 2 the best
choice for predicting the 5 communities using the Girvan-Newman
algorithm. This graph representation also obtained the highest ARI
= 0.499 for k = 5, which is lower than that of the value-based
counterpart.

In Figure 10, we visualize the graph obtained by rank-based
construction and its corresponding predicted communities if we fix
k = 5 and as we increase the value of the parameter d . Even with
d = 2, we can already provide a prediction for all the 384 genes,
even with the least number of edges, we can already get a good
ARI of 0.499. The corresponding RI = 0.8174, which means 81.74%
of the predicted gene pairs agree to the 5 functional groupings of
genes.

The value-based constructed obtained a higher ARI because the
total number of genes belonging to the largest component is only
310/384 compared to the rank-based approach with the complete
set of genes. The construction removes weak correlations, thus
removing some genes before community detection. The value-based
construction served as a pre-processing step to remove genes that
are weakly correlated with the rest of the data, thus producing a
better ARI compared to the rank-based approach.

We visualize the predicted communities of Girvan-Newman with
a fix k = 5 for all the value-based constructed graphs. Unlike the
rank-based construction with a uniform degree distribution, the
degree of each node in a value-based constructed graph plays a
crucial metric in identifying the role of each gene in a coexpres-
sion network. In Figure 11, we reflected the size of each node as a
function of the degree of the node. If the number of communities is
known beforehand, we can set the parameter to k = 5 and identified
community can be used to predict the biological classification of
genes with unknown functions.

5 CONCLUSION AND OPEN PROBLEMS
We compare the different community detection algorithms and
identify which is better in predicting the 5 functional groups of
genes. We based our comparison using the computed ARI of each
prediction. We separate the comparison for the graphs obtained
using value-based construction (a) and rank-based construction (b)
in Figure 12.

Let us start with the comparison using value-based constructed
graphs. In Figure 12(a), we show the performance of each algorithm
as we increase the parameter δ . Note that δ = 0.95 consists of
edges relating the strongly correlated set of genes, while δ = 0.70
contains a mix of strongly and weakly co-expressed genes. The
Girvan-Newman algorithm consistently obtains the highest ARI
for different values of the parameter δ . This was followed by the
Louvain and the Leiden algorithm with an almost a similar trend.
Lastly, as seen in the figure, the greedy algorithm is upper bounded
by the 3 other algorithms except for the graph with δ = 0.80.

For the rank-based constructed graphs, the Girvan-Newman al-
gorithm also outperforms the three modularity-based algorithms
for d = {1, . . . , 10}. Surprisingly, the greedy algorithm outperforms
both the Leiden and the Louvain algorithm. Since the d is directly
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Figure 10: Predicted communities of Girvan-Newman algorithm with k = 5, using all rank-based constructed graphs as we
increase the parameter d .

Figure 11: Predicted communities of Girvan-Newman algorithm with k = 5, using all value-based constructed graph.

proportional to the number of edges of the graph and we have 3
different values of d getting the maximum ARI of 0.499, the graph
constructed with d = 2 is enough to use for the community predic-
tion.

We let the algorithm select the optimal number of clusters and
the best number of clusters is found at k = 5 which is the target
number of communities present in the data. Moreover, the optimal
number of partitions of the modularity-based algorithm converges
to 5.
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If we compare the maximum ARI obtained by the optimal number
of clusters to the ARIs obtained by fixing the value of parameter k ,
the ARIs of k = 5 is the closest for all values of k that we tested for
the Girvan-Newman algorithm.

(a)

(b)

Figure 12: Comparison of the ARI of each community detec-
tion algorithm for all the value-based graph constructions
(a) and rank-based constructions (b).

If we used the rank-based approach with d = 2, the total number
of genes involved in the analysis is the same for the community
prediction and the standard clustering algorithm. If we fix k = 5,
we obtained the highest ARI with 0.499 using the Girvan-Newman
algorithm, followed byK-means with an ARI of 0.496, then Spectral
Clustering with 0.480, then Birch with 0.404, and lastly Agglom-
erative clustering with the lowest ARI of 0.400. The inclusion of
the weakly correlated genes in the graph produced a closer value
but still with a slightly higher ARI compared to the result of the
K-means clustering.

We are interested to verify the claim of Ruan et al. [11] that
network-based methods can outperform conventional cluster anal-
ysis. In particular, we compare the predicted communities of the
Girvan-Newman algorithm with the result of the conventional
clustering algorithms such as K-means, Spectral, Birch, and Ag-
glomerative clustering in Figure 13. As we increase the total number
of clusters, we can see that Girvan-Newman outperforms the stan-
dard clustering algorithms in terms of the computed ARI. The main

reason for this increase is due to the filtering mechanism that is
inherent in value-based constructed graphs. Non-correlated genes
are removed in the analyses making the community prediction algo-
rithm perform better. In terms of running time, the Girvan-Newman

Figure 13: Comparing the ARI of the predicted communities
of Girvan-Newman with the predicted clusters of K-means,
Spectral, Birch, and Agglomerative Clustering.

Algorithm is the slowest among the four community detection al-
gorithms. This is followed by the Greedy algorithm, Louvain, and
Leiden arranged in slowest to fastest running time. The quality of
the algorithm is inversely proportional to the running time of the
algorithm which is expected.

Aside from community detection, graph representation and visu-
alization can be used for analyzing different gene interactions. We
created a tool that will enable users to customize the parameters for
graph creation which includes setting the graph construction algo-
rithm to use, the definition of node, and edge weights. The user can
specify the similarity metrics to use for the level of co-expression,
setting node attributes, such as labels and biological classification.
We also provide an option for interactively visualizing the graph,
either in a 2-dimensional or 3-dimensional view, and selecting dif-
ferent graph metrics or attributes for the assignment of color and
node size. This tool can be used for further studying the different
relationships of genes and investigating the smaller communities
present in the graph.

Some of our open problems include further investigation of the
smaller connected components revealed by the value-based con-
struction. The group of genes may suggest biological function based
on their relationship with other members of the component. Since
we only used the biological characterization of genes from Cho et
al.[3], an immediate step involves cross-referencing the gene’s clas-
sification using more updated information from biological databases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Another open problem of this study is to utilize the graph obtained
through rank-based construction in predicting the functional group
of genes with unknown functions. Moreover, we would like to in-
vestigate whether the result of our analyses will be consistent when
another type of real-world network is used.
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