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ABSTRACT
This details the comparison between the integration precondition-
ing in [4, 8, 9] and the preconditioning enabled by pseudospectral
integration matrices (PSIMs) [10, Sec. 3]. The preceding text es-
tablished well-conditioned collocation methods for second-order
boundary value problems (BVPs), to develop PSIMs as the core of
efficient and stable well-conditioned collocation schemes: as in [1],
evaluating Birkhoff interpolation basis polynomials {𝐵𝑘 }, which
result from particular Birkhoff interpolation problems that incorpo-
rate boundary data from the differential equation, at the collocation
points gives PSIMs; when using spectral collocation points, these
values can be derived in an efficient and stable manner. PSIMs are
then used in the collocation scheme corresponding to this basis
(herein referred to as BCOL) for these differential equations.
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1 PSEUDOSPECTRAL DIFFERENTIATION
MATRIX

The pseudospectral differentiation matrix (PSDM) is an essential
building block for collocation methods. Let {𝑥 𝑗 }𝑁𝑗=0 (with 𝑥0 = −1
and 𝑥𝑁 = 1), and let {𝐿𝑗 }𝑁𝑗=0 be the Lagrange interpolation basis
polynomials such that 𝐿𝑗 ∈ P𝑁 and 𝐿𝑗 (𝑥𝑖 ) = 𝛿𝑖 𝑗 , for 0 ≤ 𝑖, 𝑗 ≤ 𝑁 ,
where 𝛿𝑖 𝑗 is 1 if 𝑖 = 𝑗 and 0 otherwise. Recall that

𝐿𝑗 (𝑥) = 𝑞(𝑥)
(𝑥 − 𝑥 𝑗 )𝑞′(𝑥 𝑗 ) , where 𝑞(𝑥) = 𝑐

𝑁∏
𝑗=0

(𝑥 − 𝑥 𝑗 ), 𝑐 ≠ 0. (1)

We have

𝑝 (𝑥) =
𝑁∑︁
𝑗=0

𝑝 (𝑥 𝑗 )𝐿𝑗 (𝑥), ∀𝑝 ∈ P𝑁 . (2)

Denoting 𝑑
(𝑘)
𝑖 𝑗 := 𝐿

(𝑘)
𝑗 (𝑥𝑖 ), we introduce the matrices

𝑫 (𝑘) = [𝑑 (𝑘)𝑖 𝑗 ]0≤𝑖, 𝑗≤𝑁 , 𝑫 (𝑘)
in = [𝑑 (𝑘)𝑖 𝑗 ]0<𝑖, 𝑗<𝑁 , 𝑘 ≥ 1.

Note that 𝑫 (𝑘)
in is obtained by deleting the last and first rows and

columns of𝑫 (𝑘) , so it is associated with interior points. In particular,
we denote 𝑫 := 𝑫 (1) , and 𝑫 in := 𝑫 (1)

in . The matrix 𝑫 (𝑘) is usually
referred to as the 𝑘th order PSDM. We highlight the following
property (see e.g., [11, Thm. 3.10]):

𝑫 (𝑘) =

𝑘 copies︷     ︸︸     ︷
𝑫𝑫 · · ·𝑫 = 𝑫𝑘 , 𝑘 ≥ 1, (3)
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so the higher-order PSDM is a product of the first-order PSDM.
Set

®𝑝 (𝑘) := (𝑝 (𝑘) (𝑥0), . . . , 𝑝 (𝑘) (𝑥𝑁 ))𝑡 , ®𝑝 := ®𝑝 (0) .
By (2) and (3), the pseudospectral differentiation process is per-
formed via

𝑫 (𝑘) ®𝑝 = 𝑫𝑘 ®𝑝 = ®𝑝 (𝑘) , 𝑘 ≥ 1. (4)

Remark 1. Differentiation via (4) suffers from significant round-off
errors for large 𝑁 , due to the involvement of ill-conditioned operations
(cf. [14]).

The matrix 𝑫 (𝑘) is singular (𝑫 (𝑘)®1𝑡 = ®0𝑡 , where ®1 = (1, 1, . . . , 1),
so the rows of 𝑫 (𝑘) are linearly dependent), while 𝑫 (𝑘)

in is nonsin-
gular. In addition, the condition numbers of 𝑫 (𝑘)

in and 𝑫 (𝑘) − 𝑰𝑁+1,
where 𝑰𝑚 is the𝑚 ×𝑚 identity matrix, behave like 𝑂 (𝑁 2𝑘 ).

2 AUGMENTED AND TRUNCATED SOLVERS
The following are numerical solvers for the Helmholtz problem

Find 𝑢 : −𝑢 ′′ + 𝑘𝑢 = 𝑓 on 𝐼 , B±𝑢 = 𝑢 (±1) = 𝑢±, (5)

using PSDM, where the data provided is ®𝑓 = (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁−1))𝑡
and 𝑢±, and the solution is ®𝑢 = (𝑢𝑁 (𝑥1), . . . , 𝑢𝑁 (𝑥𝑁−1))𝑡 .

Solver 2.1. Given 𝑢±, ®𝑓 and 𝑓 (±1), solve for ®𝑢:

(−D(2) + 𝑘I𝑁+1)

𝑢−
®𝑢
𝑢+


=


𝑓 (−1)

®𝑓
𝑓 (1)


.

Spectral solvers only asymptotically approach 𝑓 on the bound-
aries [11, Sec. 4.3], so the values 𝑓 (±1) are not required and are
usually not available; satisfactory schemes require only the bound-
ary conditions 𝑢± and ®𝑓 .

Remark 2. Solver 2.1 is not satisfactory.

Preconditioning a solver, such as Solver 2.1, is to premultiply the
system so that the leading differential operator 𝑫 (2) approximates
𝑰𝑁+1.

Solver 2.2 provides the so-called 𝜏-method for solving (5): the
first and last equations of the system in Solver 2.1, −𝑢 ′′𝑁 (±1) +
𝛾𝑢𝑁 (±1) = 𝑓 (±1), are replaced by equations for the boundary
conditions, −B±𝑢𝑁 = −𝑢𝑁 (±1) = −𝑢±.

Solver 2.2. Given 𝑢± and ®𝑓 , solve for ®𝑢:

©­­«
−𝑫 (2) + 𝑘


0 ®0 0
®0𝑡 𝑰𝑁−1 ®0𝑡
0 ®0 0


ª®®¬

𝑢−
®𝑢
𝑢+


=


−𝑢−
®𝑓

−𝑢+


,
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where 𝑫
(2)

is given by

𝑫
(2)

is 𝑫 (2) with the first row replaced by ®𝑒0 = (1, ®0)
and the last row replaced by ®𝑒𝑁 = (®0, 1).

(6)

Remark 3. Solver 2.2 is satisfactory and can be used to handle other

boundary conditions B± by modifying the first and last rows of 𝑫
(2)

(see, e.g. [11, Ch 4.3]).

Both Solver 2.1 and Solver 2.2 can be truncated to interior systems,
i.e., the first and last equations of the system are removed.

Solver 2.3. Given 𝑢± and ®𝑓 , solve for ®𝑢:

(−𝑫 (2)
in + 𝑘𝑰𝑁−1) ®𝑢 = ®𝑓 + 𝑢− ®𝑑 (2)0 + 𝑢+ ®𝑑 (2)𝑁 ,

where ®𝑑 𝑗 = (𝐿′𝑗 (𝑥1), . . . , 𝐿′𝑗 (𝑥𝑁−1))𝑡 .

Remark 4. Truncated solvers are always satisfactory.

Remark 5. Solvers 2.1–2.2 are augmented systems of Solver 2.3—that
is, they have the same solutions, even though Solvers 2.1–2.2 use more
equations.

3 PSEUDOSPECTRAL INTEGRATION MATRIX
AS PRECONDITIONER

Consider the Birkhoff interpolation problem on −1 = 𝑥0 < 𝑥1 <
· · · < 𝑥𝑁 = 1:{

Find 𝑝 ∈ P𝑁 such that for any 𝑢 ∈ 𝐶2 (𝐼 ),
𝑝 (−1) = 𝑢 (−1);𝑝 ′′(𝑥 𝑗 ) = 𝑢 ′′(𝑥 𝑗 ), 0 < 𝑗 < 𝑁 ;𝑝 (1) = 𝑢 (1).

(7)
The Birkhoff interpolation polynomial 𝑝 of 𝑢 can be uniquely de-
termined by

𝑝 (𝑥) = 𝑢 (−1)𝐵0 (𝑥) +
𝑁−1∑︁
𝑗=1

𝑢 ′′(𝑥 𝑗 )𝐵 𝑗 (𝑥) + 𝑢 (1)𝐵𝑁 (𝑥), 𝑥 ∈ 𝐼 , (8)

where 𝐼 = [−1, 1], if one can find {𝐵 𝑗 }𝑁𝑗=0 ⊆ P𝑁 , such that

𝐵0 (−1) = 1, 𝐵0 (1) = 0, 𝐵′′
0 (𝑥𝑖 ) = 0, 0 < 𝑖 < 𝑁 ;

𝐵 𝑗 (−1) = 0, 𝐵 𝑗 (1) = 0, 𝐵′′
𝑗 (𝑥𝑖 ) = 𝛿𝑖 𝑗 , 0 < 𝑖, 𝑗 < 𝑁 ; (9)

𝐵𝑁 (−1) = 0, 𝐵𝑁 (1) = 1, 𝐵′′
𝑁 (𝑥𝑖 ) = 0, 0 < 𝑖 < 𝑁 .

We call {𝐵 𝑗 }𝑁𝑗=0 the Birkhoff interpolation basis polynomials of
(7), which are the counterpart of the Lagrange basis polynomials
{𝐿𝑗 }𝑁𝑗=0 (1).

Let 𝑏 (𝑘)𝑖 𝑗 := 𝐵
(𝑘)
𝑗 (𝑥𝑖 ), and define the matrices

𝑩 (𝑘) = [𝑏 (𝑘)𝑖 𝑗 ]0≤𝑖, 𝑗≤𝑁 , 𝑩 (𝑘)
in = [𝑏 (𝑘)𝑖 𝑗 ]0<𝑖, 𝑗<𝑁 , 𝑘 ≥ 0.

In particular, denote 𝑏𝑖 𝑗 := 𝐵 𝑗 (𝑥𝑖 ), 𝑩 = 𝑩 (0) and 𝑩in = 𝑩 (0)
in .

We have the following analogue of (3), and this approach leads
to the exact inverse of second-order PSDM associated with the
interior interpolation points. The last assertion is indispensable for
optimally preconditioning the collocation systems.

Theorem 1. There hold

𝑩 (𝑘) = 𝑫 (𝑘)𝑩 = 𝑫𝑘𝑩 = 𝑫𝑩 (𝑘−1) , 𝑘 ≥ 1,

and
𝑫 (2)

in 𝑩in = 𝑰𝑁−1, 𝑫
(2)

𝑩 = 𝑰𝑁+1, (10)

where 𝑰𝑀 is an 𝑀×𝑀 identity matrix, and the matrix 𝑫
(2)

is defined
in (6).

In view of Thm. 1, we call 𝑩 and 𝑩 (1) the second-order and
first-order pseudospectral integration matrices (PSIMs), respectively.
It is useful to mention the works [5, 12] discussed the inverse
of the pseudospectral differential matrix (PSDM) from a different
perspective.

Remark 6. We note that

𝑩 =



1 ®0 0
®1𝑡 − ®𝑥𝑡

2 𝑩in
®1𝑡 + ®𝑥𝑡

2
0 ®0 1


, 𝑩 (1) =



− 1
2 𝑏

(1)
0

1
2

−
®1𝑡
2 𝑩 (1)

in
®1𝑡
2

− 1
2 𝑏

(1)
𝑁

1
2


,

where
®1 = (1, . . . , 1), ®𝑥 = (𝑥1, . . . , 𝑥𝑁−1),

𝑏
(1)
𝑘

= (𝐵′
1 (𝑥𝑘 ), . . . 𝐵′

𝑁−1 (𝑥𝑘 )), 𝑩 (1)
in = (𝑏 (1)1 , . . . , 𝑏

(1)
𝑁−1)𝑡 .

For the rest of the Solvers, we employ the use of PSIM as a
preconditioner to the previous Solvers (also, in (11), as the matrix
for the Birkhoff interpolation basis polynomials).

Remark 7. Different from [4, 8, 9], we invert the highest differentia-
tion matrix of Solver 2.2, 𝑫 (2)

in (i.e., unknowns at interior points, for

Dirichlet boundary) or 𝑫
(2)

(for all non-Neumann boundary condi-
tions), using (10), rather than 𝑫 (2) . Moreover, the boundary conditions
are imposed exactly (see [10, Sec. 3.5], Sec. 7 for general mixed bound-
ary conditions), rather than using the penalty method [9] or auxiliary
equations [4].

Consequently, our approach leads to optimal IPs (due to invert-
ibility of 𝑫 (2)

in and 𝑫
(2) ) and well-conditioned preconditioned sys-

tems (due to eigenanalysis [10, Prop. 3.5, Rem. 3.9]).
The Birkhoff interpolation matrix 𝑩 can be used as a precondi-

tioner of Solver 2.1, as in [9]:

(−𝑰𝑁+1 + 𝑘𝑩)

𝑢−
®𝑢
𝑢+


= 𝑩


𝑓 (−1)

®𝑓
𝑓 (1)


− 𝑐+𝐵®1𝑡 − 𝑐−𝐵 ®𝑥𝑡

= 𝑩


𝑓 (−1) − (𝑢− − 𝑢 ′′𝑁 (−1))

®𝑓
𝑓 (1) − (𝑢+ − 𝑢 ′′𝑁 (1))


,

where

𝑐±𝐵 =
[𝑢+ ± 𝑢−] − [𝑢 ′′𝑁 (1) ± 𝑢 ′′𝑁 (−1)]

2 ,

®𝑥 = (𝑥0 = −1, . . . , 𝑥𝑁 = 1) .
Noting that the first and the last equations are, by (5),
𝑢 ′′𝑁 (±1) = 𝑢 ′′(±1) = 𝑘𝑢±−𝑓 (±1) =⇒ (𝑘−1)𝑢± = 𝑓 (±1)−𝑢±+𝑢 ′′𝑁 (±1),
Solver 3.4. Given ®𝑓 and 𝑢±, solve for ®𝑢:

(−𝑰𝑁+1 + 𝑘𝑩)

𝑢−
®𝑢
𝑢+


= 𝑩


(𝑘 − 1)𝑢−

®𝑓
(𝑘 − 1)𝑢+


.
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Solver 3.4 can be truncated:

Solver 3.5. Given ®𝑓 and 𝑢±, solve for ®𝑢:

(−𝑰𝑁−1 + 𝑘𝑩in) ®𝑢 = 𝑩in ®𝑓 − 𝑢+®𝑏𝑁 − 𝑢−®𝑏0 .

Remark 8. If we start with the truncated system in Birkhoff coeffi-
cients

(−𝑰𝑁−1 + 𝑘𝑩in)®𝑣 = ®𝑓 − 𝑘𝑢+®𝑏𝑁 − 𝑘𝑢−®𝑏0, (11)

such that ®𝑢 is derived from ®𝑣 , preconditioning (11) by 𝑩in results in
Solver 3.5.

Remark 9. Using 𝑩in to precondition Solver 2.3 also gives Solver 3.5,
as [10, eq. (3.25)] is preconditioned to [10, eq. (3.26)], since ®𝑏0 +
𝑩in ®𝑑 (2)0 = ®𝑏𝑁 + 𝑩in ®𝑑 (2)𝑁 = ®0𝑡 .

The system Solver 2.2 has a leading differential term 𝑫
(2) that is

nonsingular, and premultiplying Solver 2.2 by 𝑩 = (𝑫 (2) )−1 gives:

Solver 3.6. Given ®𝑓 and 𝑢±, solve for ®𝑢:

©­­«
−𝑰𝑁+1 + 𝑘


0 ®0 0
®0𝑡 𝑩in ®0′
0 ®0 0


ª®®¬

𝑢−
®𝑢
𝑢+


= 𝑩


−𝑢−
®𝑓

−𝑢+


.

Remark 10. Truncating Solver 3.6 gives Solver 3.5. Hence, Solver 3.4
and Solver 3.6 are augmentated systems of [10, eq. (3.25)].

Remark 11. Solvers 2.2 and 3.6 (thus, Solver 3.5) arise from 𝜏-method
for any non-Neumann boundary condition. Solver 2.2 cannot be
truncated for non-Dirichlet boundary conditions, as the system then
solves for 𝑢 (±1), whereas the use of PSIM allows the truncation from
Solver 3.6 to Solver 3.5 by moving boundary data to the right-hand
side, even for non-Dirichlet boundary conditions—if values for 𝑢 (±1)
are required, they can be attained by solving (11) for coefficients used
in [10, eq. (3.2)]. Note that (11) is the same linear system as that of
Solver 3.5, with different right-hand side data.

To summarize, when solving (5): using the Lagrange basis poly-
nomials, two augmented systems (Solvers 2.1–2.2) can be truncated
to the LCOL scheme Solver 2.3. By preconditioning the augmented
systems by 𝑩, two augmented systems (Solver 3.4 and Solver 3.6)
result, and can be truncated to the preconditioned LCOL scheme
Solver 3.5. Preconditiong the LCOL scheme and the BCOL scheme
(11) by 𝑩in result in the preconditioned LCOL scheme. All the
Solvers generate the same solution.

4 LEGENDRE-GAUSS-LOBATTO
COLLOCATION

To properly compare the integration preconditioners, we contextu-
alize the problem using Legendre-Gauss-Lobatto (LGL) collocation.
We collect below some properties of Legendre polynomials (see e.g.,
[6, 11, 13]) to be used throughout this text.

Let 𝑃𝑘 (𝑥) be the Legendre polynomial of degree 𝑘 . Legendre
polynomials are mutually orthogonal:∫ 1

−1
𝑃𝑘 (𝑥)𝑃 𝑗 (𝑥) d𝑥 = 𝛾𝑘𝛿𝑘 𝑗 (12)

with 𝛾𝑘 = 1/(2𝑘 + 1). There hold

𝑃𝑘 (𝑥) =
1

2𝑘 + 1 (𝑃
′
𝑘+1 (𝑥) − 𝑃 ′𝑘−1 (𝑥)), 𝑘 ≥ 1,

𝑃𝑘 (±1) = (±1)𝑘 , 𝑃 ′𝑘 (±1) = 1
2 (±1)𝑘−1𝑘 (𝑘 + 1) .

(13)

Also,

(1 − 𝑥2)𝑃 ′𝑘 (𝑥) =
𝑘 (𝑘 + 1)
2𝑘 + 1 [𝑃𝑘−1 (𝑥) − 𝑃𝑘+1 (𝑥)] .

LGL points are zeros of (1 − 𝑥2)𝑃 ′𝑁 (𝑥), and the corresponding
quadrature weights are

𝜔 𝑗 =
2

𝑁 (𝑁 + 1)
1

𝑃2
𝑁 (𝑥 𝑗 )

, 0 ≤ 𝑗 ≤ 𝑁 . (14)

Then the LGL quadrature has the exactness∫ 1

−1
𝜙 (𝑥) d𝑥 =

𝑁∑︁
𝑗=0

𝜙 (𝑥 𝑗 )𝜔 𝑗 ,∀𝜙 ∈ P2𝑁−1;
𝑁∑︁
𝑗=0

[𝑃𝑁 (𝑥 𝑗 )]2𝜔 𝑗 =
2
𝑁
.

(15)

5 PSEUDOSPECTRAL INTEGRATION MATRIX
FOR LGL

Let 𝑢 ′′(𝑥) ≡ 1 in (8): by the uniqueness of the interpolant (7)

𝐵0 (𝑥) = 1 − 𝑥

2 , 𝐵𝑁 (𝑥) = 1 + 𝑥

2 ,
𝑁−1∑︁
𝑘=1

𝐵𝑖 (𝑥) = 𝑥2 − 1
2 .

Let {𝑥 𝑗 }𝑁𝑗=0 be LGL points. For convenience, we introduce in-
tegral operators that will differ slightly from those in [10, Sec. 3],
which are based on

𝜕−1
𝑥 𝑢 (𝑥) =

∫ 𝑥

−1
𝑢 (𝑡) d𝑡 ; 𝜕−𝑚𝑥 𝑢 (𝑥) = 𝜕−1

𝑥

(
𝜕1−𝑚
𝑥 𝑢 (𝑥)

)
, 𝑚 ≥ 2.

By (13),

𝜕−1
𝑥 𝑃𝑘 (𝑥) =

1
2𝑘 + 1 [𝑃𝑘+1 (𝑥) − 𝑃𝑘−1 (𝑥)], 𝑘 > 0; (16)

𝜕−2
𝑥 𝑃𝑘 (𝑥) =

1
(2𝑘 + 1) (2𝑘 + 3) [𝑃𝑘+2 (𝑥) − 𝑃𝑘 (𝑥)], 𝑘 = 0, 1.

𝜕−2
𝑥 𝑃𝑘 (𝑥) =

𝑃𝑘+2 (𝑥)
(2𝑘 + 1) (2𝑘 + 3) −

2𝑃𝑘 (𝑥)
(2𝑘 − 1) (2𝑘 + 3) +

𝑃𝑘−2 (𝑥)
(2𝑘 − 1) (2𝑘 + 1) ,

(17)

for𝑘 > 1. Note that, for each defined integral operator, 𝜕−𝑚𝑥 𝑃𝑘 (±1) =
0 while retaining 𝜕𝑚𝑥 [𝜕−𝑚𝑥 𝑃𝑘 ] = 𝑃𝑘 .

Proposition 1 (Birkhoff interpolation at LGL points). Let {𝑥 𝑗 , 𝜔 𝑗 }𝑁𝑗=0
be the LGL points and weights given in (14). Then the Birkhoff inter-
polation basis polynomials (9) can be computed by

𝐵 𝑗 (𝑥) =
𝑁−2∑︁
𝑘=0

𝜔 𝑗

𝛾𝑘
[𝑃𝑘 (𝑥 𝑗 ) − 𝑃𝑁−(𝑁+𝑘) mod 2 (𝑥 𝑗 )]𝜕−2

𝑥 𝑃𝑘 (𝑥)

= (𝛽1𝑗 − 𝛽0𝑗 ) 1 + 𝑥

2 +
𝑁−2∑︁
𝑘=0

𝛽𝑘 𝑗
𝜕−2
𝑥 𝑃𝑘 (𝑥)
𝛾𝑘

, (18)

where 𝛾𝑘 = 2/(2𝑘 + 1), 𝜕−2
𝑥 𝑃𝑘 (𝑥) is given in (17), and

𝛽𝑘 𝑗 =

(
𝑃𝑘 (𝑥 𝑗 ) −

1 − (−1)𝑁+𝑘

2 𝑃𝑁−1 (𝑥 𝑗 ) −
1 + (−1)𝑁+𝑘

2 𝑃𝑁 (𝑥 𝑗 )
)
𝜔 𝑗 .

32



From (16)–(17),

𝜕−2
𝑥 𝑃𝑘 (𝑥) =




1
(2𝑘 + 1) [𝜕

−1
𝑥 𝑃𝑘+1 (𝑥) − 𝜕−1

𝑥 𝑃𝑘−1 (𝑥)], 𝑘 > 1;
1

(2𝑘 + 1) 𝜕
−1
𝑥 𝑃𝑘+1 (𝑥), 𝑘 = 0, 1.

Thus,

𝐵 𝑗 (𝑥) = −(1 − 𝑥2) (1 − 𝑥2
𝑗 )𝜔 𝑗

𝑁−1∑︁
𝑘=1

𝑃 ′
𝑘
(𝑥 𝑗 )𝑃 ′𝑘 (𝑥)

𝛾𝑘𝑘2 (𝑘 + 1)2 ,

which implies 𝐵 𝑗 (𝑥𝑖 )𝜔𝑖 = 𝐵𝑖 (𝑥 𝑗 )𝜔 𝑗 , 0 < 𝑖, 𝑗 < 𝑁 .

Remark 12. Considering that {𝑥 𝑗 }𝑁−1
𝑗=1 are roots of 𝑃1,1

𝑁−1 (𝑥), the
Jacobi (Gegenbauer) polynomial (see, e.g. [11, Ch. 3]) associated with
the weight 𝜔1,1 = (1 − 𝑥2) and Jacobi-Gauss quadrature weights
{𝜔1,1

𝑗 }𝑁−1
𝑗=1 , we have

𝐵′′
𝑗 (𝑥) =

𝑁−2∑︁
𝑘=0

𝜔1,1
𝑗

𝛾1,1
𝑘

𝑃1,1
𝑘

(𝑥 𝑗 )𝑃1,1
𝑘

(𝑥),

𝐵 𝑗 (𝑥) = (𝑥2 − 1)
𝑁−2∑︁
𝑘=0

𝜔1,1
𝑗

𝛾1,1
𝑘

𝑃1,1
𝑘

(𝑥 𝑗 )𝑃1,1
𝑘

(𝑥)
(𝑘 + 1) (𝑘 + 2) ,

where 𝛾1,1
𝑘

= 8(𝑘 + 1)/(2𝑘 + 3) (𝑘 + 2).
We briefly examine the essential idea of constructing integration

preconditioners in [4, 9] (inspired by [2, 3]) for the Legendre case.
By (12) and (15),

𝐿𝑗 (𝑥) =
𝑁∑︁
𝑘=0

𝜔 𝑗

𝛾𝑘
𝑃𝑘 (𝑥 𝑗 )𝑃𝑘 (𝑥), 0 ≤ 𝑗 ≤ 𝑁, (19)

where 𝛾𝑘 = 2/(2𝑘 + 1) for 0 ≤ 𝑘 < 𝑁 , and 𝛾𝑁 = 2/𝑁 . This follows
from letting

𝐿𝑗 (𝑥) =
𝑁∑︁
𝑘=0

𝛼 𝑗𝑘𝑃𝑘 (𝑥), where 𝛼 𝑗𝑘 =
1
𝛾𝑘

∫ 1

−1
𝐿𝑗 (𝑥)𝑃𝑘 (𝑥) d𝑥 .

Then

𝐿′′𝑗 (𝑥) =
𝑁∑︁
𝑘=2

𝜔 𝑗

𝛾𝑘
𝑃𝑘 (𝑥 𝑗 )𝑃 ′′𝑘 (𝑥) . (20)

The key observation in [4, 9] (also see [2, 3]) is that the pseudo-
spectral differentiation process actually involves the ill-conditioned
transform:

span{𝑃 ′′𝑘 : 2 ≤ 𝑘 ≤ 𝑁 } := 𝑄𝑁
2 ↦−→ 𝑄𝑁−2

0 := span{𝑃𝑘 : 0 ≤ 𝑘 ≤ 𝑁−2}.
(21)

Indeed, we have (see [11, (3.176c)]):

𝑃 ′′𝑘 (𝑥) =
0≤𝑙≤𝑘−2∑︁
𝑘+𝑙 even

(𝑙 + 1/2) (𝑘 (𝑘 + 1) − 𝑙 (𝑙 + 1))𝑃𝑙 (𝑥),

so the transform matrix is dense and the coefficients grow like 𝑘2.
However, the inverse transform 𝑄𝑁−2

0 ↦→ 𝑄𝑁
2 is sparse and stable,

thanks to the “compact” formula, derived from (13):
𝑃𝑘 (𝑥) = 𝛼𝑘𝑃

′′
𝑘−2 (𝑥) + 𝛽𝑘𝑃

′′
𝑘 (𝑥) + 𝛼𝑘+1𝑃

′′
𝑘+2 (𝑥), 𝑘 ≥ 2, (22)

where the coefficients are

𝛼𝑘 =
1

(2𝑘 − 1) (2𝑘 + 1) , 𝛽𝑘 = − 2
(2𝑘 − 1) (2𝑘 + 3) ,

which decay like 𝑘−2.

6 DECOMPOSITION OF PRECONDITIONERS
We introduce the following matrices, as in [4]:

𝑻 = [𝑡𝑘 𝑗 := 𝜔 𝑗𝑃𝑘 (𝑥 𝑗 )/𝛾𝑘 ]0≤𝑘,𝑗≤𝑁 , 𝑷 = [𝑝𝑖𝑘 := 𝑃𝑘 (𝑥𝑖 )]0≤𝑖,𝑘≤𝑁 ,

�̂� = [𝑡𝑘𝑖 ]0≤𝑘≤𝑁−2
0≤𝑖≤𝑁 , �̂� = [𝑝𝑖𝑘 ]0≤𝑖≤𝑁

0≤𝑘≤𝑁−2,

�̃� = [𝑡𝑘+2,𝑖 ]0≤𝑘≤𝑁−2
0≤𝑖≤𝑁 , �̃� = [𝑝𝑖,𝑘+2]0≤𝑖≤𝑁

0≤𝑘≤𝑁−2 .

Then there holds

𝑻𝑷 = 𝑰𝑁+1, �̂� �̂� = 𝑰𝑁−1 = �̃� �̃� but �̂� �̂� ≠ 𝑰𝑁+1 ≠ �̃� �̃� ,

which follows from (15) and (19). We remark that, with a re-normalization
of {𝑃𝑘 }, we have 𝑷 = 𝑻 𝑡 . By (20), we obtain

𝑫 (2) = �̃�
(2)

�̃� where �̃�
(2)

= [𝑝 (2)
𝑖𝑘

= 𝑃 ′′𝑘+2 (𝑥𝑖 )]0≤𝑖≤𝑁
0≤𝑘≤𝑁−2 .

On the other hand, (22) leads to �̂� = �̃�
(2)

𝑨, where 𝑨 is a sparse
matrix formed by the coefficients {𝛼𝑘 , 𝛽𝑘 }.

Similar to the notion in (21), the ill-conditioned differentiation
process is actually observed from the identity 𝑫

(2)
𝑷 = �̄� (2) (to be

defined shortly). Indeed, we obtain from (7)–(8) that, for 0 ≤ 𝑖, 𝑘 ≤
𝑁 ,

𝑝𝑖𝑘 := 𝑃𝑘 (𝑥𝑖 ) = 𝑃𝑘 (𝑥0)𝐵0 (𝑥𝑖 ) +
𝑁−1∑︁
𝑗=1

𝑃 ′′𝑘 (𝑥 𝑗 )𝐵 𝑗 (𝑥𝑖 ) + 𝑃𝑘 (𝑥𝑁 )𝐵𝑁 (𝑥𝑖 )

=
𝑁∑︁
𝑗=0

𝑏
(0)
𝑖 𝑗 𝑝

(2)
𝑗𝑘

,

which implies 𝑷 = 𝑩�̄� (2) with �̄� (2) = [𝑝 (2)
𝑗𝑘

]0≤ 𝑗,𝑘≤𝑁 . As 𝑫 (2)
𝑩 =

𝑰𝑁+1 (cf. Thm. 1), we have 𝑫
(2)

𝑷 = �̄� (2) (which performs second-
order differentiation at the interior points, but preserves the function
values at the endpoints).

Remark 13. Another way of looking at �̄� (2) = 𝑫
(2)

𝑷 : let {𝜙𝑖 (𝑥)}𝑁𝑖=0 ⊂
P𝑁 be defined as

𝜙0 (𝑥) = 𝐿𝑁 (𝑥) + 𝐿0 (𝑥); 𝜙1 (𝑥) = 𝐿𝑁 (𝑥) − 𝐿0 (𝑥);
for 0 < 𝑗 ≤ 𝑁 /2, 𝜙2𝑗+𝑐 (𝑥) = 𝑃 ′′2𝑗+𝑐 (𝑥) + [1 − 𝑃 ′′2𝑗+𝑐 (1)]𝜙𝑐 (𝑥),

where 𝑐 = 0, 1. Then �̄� (2) = [𝜙 𝑗 (𝑥𝑖 )]0≤𝑖, 𝑗≤𝑁 .

On the other hand, we infer from (18) and the three-term recur-
rence formula of Legendre polynomials (see e.g., [13]) that we can
formulate the computation of 𝑩 as the transform 𝑩 = 𝑷𝑴 , where
the linear transform matrix 𝑴 is formed by linear combinations of
{𝛽𝑘 𝑗 , 𝛽𝑘 𝑗 } in Thm. 1. It follows from 𝑷 = 𝑩�̄� (2) and 𝑩 = 𝑷𝑴 that
𝑴 = (�̄� (2) )−1. Its implication is twofold: (i) the computation of 𝑩
is a stable and well-conditioned integration process; and (ii) 𝑷𝑴 is
an optimal integration preconditioner for second-order equations
with Dirichlet boundary conditions (e.g., Solver 2.2).

Let ®𝑥 = (𝑥1, . . . , 𝑥𝑁−1). The literature provides three distinct
techniques used to solve (5):

• Greengard [8] makes use of an intermediate function 𝜎 (𝑥) =
𝑢 ′′(𝑥), such that ®𝑢 = 𝑷�̂�®𝜎 + 𝑐1

G ®𝑥𝑡 + 𝑐0
G
®1𝑡 , where �̂� is an

(𝑁 + 1) × (𝑁 + 1) matrix with 𝑨 in its lower-left, and zeros
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elsewhere, and 𝜎 can be interpolated (®𝜎) to an 𝑁 th-degree
polynomial, i.e. 𝜎 is not the second derivative of I𝑁 𝑢.

• Hesthaven [9] preconditions Solver 2.1 by premultiplying
by 𝑷�̃�𝑻 , where �̃� differs from �̂� only in that the first two
rows are zero except for the last two columns, such that �̃�,
and thus 𝑷�̃�𝑻 , are nonsingular.

• Elbarbary [4] preconditions Solver 2.1 by premultiplying by
𝑨�̂� . The final system is then made square by adding equa-
tions that correspond to the boundary conditions, so that the
left-hand side matrix is 𝑻 . The approach to the Helmholtz
problem is detailed in [4, pp. 1196–7].

Remark 14. Each of the methods outlined also have a corresponding
approach to solving the first-order ordinary differential equation

𝑢 ′ + 𝛾𝑢 = 𝑓 on 𝐼 , 𝑢 (−1) = 𝑢−,

although both Hesthaven’s and Elbarbary’s approaches, as given,
prefer the right boundary condition 𝑢 (1) = 𝑢+.

The application of these three techniques can be cast in precon-
ditioner form:

(−𝑰𝑁+1 + 𝑘𝑩★)

𝑢−
®𝑢
𝑢+


= 𝑩★


𝑓 (−1)

®𝑓
𝑓 (1)


− 𝑐0

★
®1𝑡 − 𝑐1

★®𝑥𝑡 , (23)

where
𝑩★ = 𝑷𝑨★𝑻

is what will be referred to as the preconditioner of the scheme
(in the effect of preconditioning Solver 2.1 by 𝑩★—not consistent
with some of the documented preconditioners, i.e., Elbarbary’s
preconditioner is 𝑨�̂� , 𝑨E𝑻 without the first two rows [4]), where
the 𝑨★ (the corresponding spectral integration preconditioners, in
the vein of [2, 3]) are as follows: 𝑨T is the antiderivative matrix in
spectral coefficients, thus

𝑨G =


®0 1 0

®𝑎 (2)T 0 1
𝑨 ®0𝑡 ®0𝑡


,

𝑨H =


®0 𝑎00 𝑎01
®0 𝑎10 𝑎11
𝑨 ®𝑎 (2)𝑁−1 ®𝑎 (2)𝑁


,

𝑨E =


®0 0 0
®0 0 0
𝑨 ®0𝑡 ®0𝑡


.

Remark 15. Hesthaven’s approach only differs from Elbarbary’s on
the preconditioner.

Based on (22), [4, 8, 9] attempted to precondition the collocation
system by the “inverse” of 𝑫 (2) . However, since 𝑫 (2) is singular,
there exist multiple ways to manipulate the involved singular matri-
ces. The boundary conditions were imposed by the penalty method
(cf. [7]) in [9], and using auxiliary equations in [4].

Remark 16. Note that the condition number of the preconditioned

system for e.g., the operator
d2

d𝑥2 − 𝑘 with Dirichlet boundary condi-

tions, behaves like 𝑂 (√𝑁 ).

Rearranging the columns of (23) can construct a solvable system
[4].

Solver 6.7. Given ®𝑓 and 𝑓 (±1), solve for ®𝑢, 𝑐0
★ and 𝑐1

★:

[®1𝑡 ®𝑚1 · · · ®𝑚𝑁−1 ®𝑥𝑡 ]

𝑐0
★
®𝑢
𝑐1
★


= 𝑩★


𝑓 (−1)

®𝑓
𝑓 (1)


−𝑢− ®𝑚0 −𝑢+ ®𝑚𝑁 ,

where −𝑰𝑁+1 + 𝑘𝑩★ = ( ®𝑚0, . . . , ®𝑚𝑁 ).
Remark 17. The computed values of 𝑐0

★ and 𝑐1
★ in Solver 6.7 can be

discarded. Elbarbary’s approach is not satisfactory.

In comparison,

𝑨B = 𝑻𝑩𝑷 = 𝑻 [𝑓𝑗 (𝑥𝑖 )]0≤𝑖, 𝑗≤𝑁 ,
where, for 0 ≤ 𝑗 ≤ 𝑁 − 2, 𝜕−2

𝑥 𝑃𝑘 are as in (17) and

𝑓𝑗 (𝑥) = 𝜕−2
𝑥 𝑃 𝑗 (𝑥) + 𝑐+𝑗 + 𝑐−𝑗 𝑥 ;

𝑐±𝑗 =
1 ± (−1) 𝑗 − 𝜕−2

𝑥 𝑃 𝑗 (1) ∓ 𝜕−2
𝑥 𝑃 𝑗 (−1)

2 .

and, for 𝑗 ∈ {𝑁 − 1, 𝑁 }, 𝑓𝑗 (𝑥) =
𝑁−1∑
𝑘=1

𝑃 𝑗 (𝑥𝑘 )𝐵𝑘 (𝑥) + [(−1) 𝑗 (1−𝑥) +
1 + 𝑥]/2. Thus, if ®𝑐± = (𝑐±0 , . . . , 𝑐±𝑁−2),

𝑨B = 𝑻


𝜕−2
𝑥 𝑃0 (−1) · · · 𝜕−2

𝑥 𝑃𝑁−2 (−1) (−1)𝑁−1 (−1)𝑁
𝜕−2
𝑥 𝑃0 ( ®𝑥𝑡 ) · · · 𝜕−2

𝑥 𝑃𝑁−2 ( ®𝑥𝑡 ) 𝑓𝑁−1 ( ®𝑥𝑡 ) 𝑓𝑁 ( ®𝑥𝑡 )
𝜕−2
𝑥 𝑃0 (1) · · · 𝜕−2

𝑥 𝑃𝑁−2 (1) 1 1


+ 𝑻 [®1𝑡 ®𝑥𝑡 ]

[®𝑐+ 0 0
®𝑐− 0 0

]
=


®𝑐+ 𝑓00 𝑓01
®𝑐− 𝑓10 𝑓11
𝑨 ®𝑓0 ®𝑓1


,

where

𝑓𝑖 𝑗 =
∫ 1

−1

𝑃𝑖 (𝑥)
𝛾𝑖

(−1)𝑁−1+𝑗 (1 − 𝑥) + (1 + 𝑥)
2 𝜔 d𝑥

+
𝑁−1∑︁
𝑙=1

𝑃𝑁−1+𝑗 (𝑥𝑙 )
∫ 1

−1

𝑃𝑖 (𝑥)
𝛾𝑖

𝐵𝑙 (𝑥)𝜔 d𝑥 .

The first integral is 1 if 𝑖 = 0, 1 and 𝑁 + 𝑗 + 𝑖 is odd, and 0 otherwise.
Alternatively,

𝑴 = (�̄� (2) )−1 = 𝑨B𝑻 =𝑾𝑨(�̂� − 𝑪) + 𝑽 =𝑾𝑨𝑯𝑻 + 𝑽 ,

where 𝑽 = [𝑣𝑖 𝑗 ]0≤𝑖, 𝑗≤𝑁 , 𝑪 = [𝑐𝑖 𝑗 ]0≤𝑖≤𝑁−2
0≤ 𝑗≤𝑁 ,

𝑾 =

[
𝑹

𝑰𝑁−1

]
, 𝑹 = [𝑟𝑖 𝑗 ]0≤𝑖≤1

0≤ 𝑗≤𝑁−2, 𝑟𝑖 𝑗 = −1 + (−1)𝑖+𝑗
2 ;

𝑯 = [𝑰𝑁−1 𝑺], 𝑺 = [𝑠𝑖 𝑗 ]0≤𝑖≤𝑁−2
𝑁−1≤ 𝑗≤𝑁 , 𝑠𝑖 𝑗 = −𝛾 𝑗

𝛾𝑖

1 + (−1)𝑖+𝑗
2 ;

𝑣𝑖 𝑗 =




1
2 if (𝑖, 𝑗) ∈ {(0, 0), (0, 𝑁 ), (1, 𝑁 )},
− 1

2 if (𝑖, 𝑗) = (1, 0),
0 otherwise;

𝑐𝑖 𝑗 =
𝜔 𝑗

𝛾𝑖
𝑃𝑘 (𝑥 𝑗 ), 𝑘 =

{
𝑁 if 𝑁 + 𝑖 is even ,

𝑁 − 1 if 𝑁 + 𝑖 is odd;

hence, if 𝑷 = [®1𝑡 ®𝑥𝑡 �̃� ], then 𝑷𝑾 = [®1𝑡 ®𝑥𝑡 ]𝑹 + �̃� and

𝑩 = 𝑩E + [®1𝑡 ®𝑥𝑡 ]𝑹𝑨�̂� − 𝑷𝑾𝑨𝑪 + 𝑷𝑽 = 𝑷 (𝑾𝑨𝑯 + 𝑮)𝑻 ,
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where apparently 𝑮 = [𝑔𝑖 𝑗 ] where, for 0 ≤ 𝑖 ≤ 𝑁 , 𝑔𝑖 𝑗 = [1 +
(−1)𝑖+𝑗 ]/2 for 𝑗 = 0, 1 and 𝑔𝑖 𝑗 = 0 when 𝑗 > 1.

The upshot of this decomposition is that 𝑾𝑨𝑯 + 𝑮 represents
a spectral integration preconditioner: precisely, since all of the
spectral integration preconditioners contain 𝑨, the first two rows
of 𝑾𝑨𝑯 + 𝑮 provide the spectral-𝜏 conditions corresponding to
the PSIM.

7 PSEUDOSPECTRAL INTEGRATION MATRIX
FOR MIXED BOUNDARY CONDITIONS

Finally, we briefly outline an alternative formulation for the pseudo-
spectral integration matrices (PSIMs) on mixed boundary conditions
(cf. [10, Sec. 3.5]) based on PSIMs on Dirichlet boundary conditions
(cf. [10, Sec. 3.1], Rem. 6).

Consider the mixed boundary conditions:
B− [𝑢] := 𝑎−𝑢 (−1) + 𝑏−𝑢 ′(−1) = 𝑐−,
B+ [𝑢] := 𝑎+𝑢 (1) + 𝑏+𝑢 ′(1) = 𝑐+,

(24)

where 𝑎±, 𝑏± and 𝑢± are given constants. We first assume that

𝑑 := 2𝑎+𝑎− − 𝑎+𝑏− + 𝑎−𝑏+ ≠ 0, (25)

which excludes Neumann boundary conditions (i.e., 𝑎− = 𝑎+ = 0).
We associate (24) with the Birkhoff-type interpolation:{
Find 𝑝 ∈ P𝑁 such that
B− [𝑝] = 𝑐−, 𝑝 ′′(𝑥 𝑗 ) = 𝑐 𝑗 , 0 < 𝑗 < 𝑁, B+ [𝑝] = 𝑐+,

(26)

where {𝑐±, 𝑐 𝑗 } are given. We look for the interpolation basis poly-
nomials, denoted by {�̃� 𝑗 }𝑁𝑗=0, satisfying

B− [�̃�0] = 1, �̃�′′
0 (𝑥𝑖 ) = 0, 0 < 𝑖 < 𝑁, B+ [�̃�0] = 0;

B− [�̃� 𝑗 ] = 0, �̃�′′
𝑗 (𝑥𝑖 ) = 𝛿𝑖 𝑗 , 0 < 𝑖 < 𝑁, B+ [�̃� 𝑗 ] = 0, 0 < 𝑗 < 𝑁 ;

B− [�̃�𝑁 ] = 0, �̃�′′
𝑁 (𝑥𝑖 ) = 0, 0 < 𝑖 < 𝑁, B+ [�̃�𝑁 ] = 1.

(27)
The proof of existence of these basis functions is similar to that in
[10, Thm. 3.1]. Let �̃� = [�̃� 𝑗 (𝑥𝑖 )] and �̃�

(𝑘)
= [�̃� (𝑘)

𝑗 (𝑥𝑖 )].

Remark 18. Analogous to Thm. 1, for the corresponding 𝑫
(2)

𝜏-
method matrix, i.e.

𝑫
(2)

is 𝑫 (2)

with the first row replaced by the first row of 𝑎−𝑰𝑁+1 + 𝑏−𝑫
and the last row replaced by the last row of 𝑎+𝑰𝑁+1 + 𝑏+𝑫 .

Then, �̃�𝑫
(2)

= 𝑰𝑁+1. However, the truncated analogue (cf. 𝑩in𝑫
(2)
in =

𝑰𝑁−1) only holds for Dirichlet conditions, i.e. 𝑎± = 1, 𝑏± = 0.

Using the observation in Rem. 18, we can determine the matrices

�̃� =



2𝑎++𝑏+
𝑑 𝑏0 −𝑏−

𝑑
𝑎+ (®1𝑡 − ®𝑥𝑡 ) + 𝑏+

𝑑
�̃�in

𝑎− (®1𝑡 + ®𝑥𝑡 ) − 𝑏−
𝑑

𝑏+
𝑑 𝑏𝑁

2𝑎−−𝑏−
𝑑


,

�̃�
(1)

=



−𝑎+
𝑑 𝑏

(1)
0

𝑎−
𝑑

−𝑎+
®1𝑡
𝑑

�̃�
(1)
in

𝑎−®1𝑡
𝑑

−𝑎+
𝑑 𝑏

(1)
𝑁

𝑎−
𝑑



for general boundary conditions {𝑎±, 𝑏±}, at least one 𝑎± ≠ 0, from
𝑩 and 𝑩 (1) .

It is easy to see that the first and last columns derivable from the
corresponding columns of the analogous matrices, and the rest are
derived as follows:

𝑏0 = −𝑏− (2𝑎+ + 𝑏+)
𝑑

𝑏
(1)
0 + 𝑏+𝑏−

𝑑
𝑏
(1)
𝑁 ,

𝑏
(1)
0 =

𝑎− (2𝑎+ + 𝑏+)
𝑑

𝑏
(1)
0 − 𝑏+𝑎−

𝑑
𝑏
(1)
𝑁 ,

𝑏𝑁 = −𝑏+𝑏−
𝑑

𝑏
(1)
0 − 𝑏+ (2𝑎− − 𝑏−)

𝑑
𝑏
(1)
𝑁 ,

𝑏
(1)
𝑁 =

𝑎+𝑏−
𝑑

𝑏
(1)
0 + 𝑎+ (2𝑎− − 𝑏−)

𝑑
𝑏
(1)
𝑁 ,

�̃�in = 𝑩in − 1
𝑑
[®1𝑡 ( [𝑏− (𝑎+ + 𝑏+)]𝑏 (1)0 + [𝑏+ (𝑎− − 𝑏−)]𝑏 (1)𝑁 )]

− 1
𝑑
[®𝑥𝑡 (𝑎+𝑏−𝑏 (1)0 − 𝑎−𝑏+𝑏 (1)𝑁 )],

�̃�
(1)
in = 𝑩 (1)

in + 1
𝑑
®1𝑡 (𝑎+𝑏−𝑏 (1)0 − 𝑎−𝑏+𝑏 (1)𝑁 ).

8 SOME RESULTS
As these techniques are alternative formulations, results are repli-
cated from the author’s previous publications, such as [10].

8.1 Collocation schemes
Consider the BVP

𝑢 ′′(𝑥) +𝑟 (𝑥)𝑢 ′(𝑥) +𝑠 (𝑥)𝑢 (𝑥) = 𝑓 (𝑥), 𝑥 ∈ 𝐼 ; 𝑢 (±1) = 𝑢±, (28)

where the given functions 𝑟, 𝑠, 𝑓 ∈ 𝐶 (𝐼 ). Let {𝑥 𝑗 }𝑁𝑗=0 be the set of
Gauss-Lobatto points as in (7). Then the collocation scheme for (28)
is to find 𝑢𝑁 ∈ P𝑁 such that
𝑢 ′′𝑁 (𝑥𝑖 ) + 𝑟 (𝑥𝑖 )𝑢 ′𝑁 (𝑥𝑖 ) + 𝑠 (𝑥𝑖 )𝑢𝑁 (𝑥𝑖 ) = 𝑓 (𝑥𝑖 ), 0 < 𝑖 < 𝑁 ;
𝑢𝑁 (±1) = 𝑢± .

(29)

As the Birkhoff interpolation polynomial of 𝑢𝑁 is itself, we have
from (8) that

𝑢𝑁 (𝑥) = 𝑢−𝐵0 (𝑥) + 𝑢+𝐵𝑁 (𝑥) +
𝑁−1∑︁
𝑗=1

𝑢 ′′𝑁 (𝑥 𝑗 )𝐵 𝑗 (𝑥). (30)

Then the matrix form of (29) reads(
−𝑰𝑁−1 + 𝚲𝑟𝑩

(1)
in + 𝚲𝑠𝑩in

)
®𝑣 = ®𝑓 − 𝑢−®𝑣− − 𝑢+®𝑣+, (31)

where 𝑰𝑁−1 is the (𝑁 − 1) × (𝑁 − 1) identity matrix, and

𝚲𝑟 = diag(𝑟 (𝑥1), . . . , 𝑟 (𝑥𝑁−1)), 𝚲𝑠 = diag(𝑠 (𝑥1), . . . , 𝑠 (𝑥𝑁−1)),
®𝑣 = (𝑢 ′′𝑁 (𝑥1), . . . , 𝑢 ′′𝑁 (𝑥𝑁−1))𝑡 , ®𝑓 = (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑁−1))𝑡 ,

®𝑣± =

(
±𝑟 (𝑥1)

2 + 𝑠 (𝑥1) 1 ± 𝑥1
2 , . . . ,±𝑟 (𝑥𝑁−1)

2 + 𝑠 (𝑥𝑁−1)
1 ± 𝑥𝑁−1

2

)𝑡
.

It is seen that, under the basis {𝐵 𝑗 }, the matrix of the highest
derivative is identity, and it also allows for exact imposition of
boundary conditions.

In summary, we take the following steps to solve (29):
• Pre-compute 𝑩 and 𝑩 (1) via the formulas in Rem. 6.
• Find ®𝑣 by solving the system (31).
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• Recover ®𝑢 = (𝑢𝑁 (𝑥1), . . . , 𝑢𝑁 (𝑥𝑁−1))𝑡 from (30):

®𝑢 = 𝑩in®𝑣 + 𝑢−®𝑏0 + 𝑢+®𝑏𝑁 ,
where ®𝑏 𝑗 = (𝐵 𝑗 (𝑥1), . . . , 𝐵 𝑗 (𝑥𝑁−1))𝑡 for 𝑗 = 0, 𝑁 .

Remark 19. The unknowns under the new basis in (30)–(31) are
the approximations to {𝑢 ′′(𝑥 𝑗 )}. This situation is reminiscent of the
spectral integration method [8], which is built upon the orthogonal
polynomial expansion of 𝑢 ′′(𝑥). Thus, the approach can be regarded
as the collocation counterpart of the modal approach in [8].

For comparison, we look at the usual collocation scheme (29)
under the Lagrange basis. Write the solution of (29) as

𝑢𝑁 (𝑥) = 𝑢−𝐿0 (𝑥) + 𝑢+𝐿𝑁 (𝑥) +
𝑁−1∑︁
𝑗=1

𝑢𝑁 (𝑥 𝑗 )𝐿𝑗 (𝑥),

and insert it into (29), leading to the usual collocation system for
(29): (

−𝑫 (2)
in + 𝚲𝑟𝑫

(1)
in + 𝚲𝑠

)
®𝑢 = ®𝑓 + ®𝑢𝐵, (32)

where ®𝑓 and ®𝑢 are as above, and ®𝑢𝐵 is the vector {𝑢− (𝑑 (2)𝑖0 −𝑟 (𝑥𝑖 )𝑑 (1)𝑖0 )+
𝑢+ (𝑑 (2)𝑖𝑁 − 𝑟 (𝑥𝑖 )𝑑 (1)𝑖𝑁 )}𝑁−1

𝑖=1 . It is known that the condition number
of the coefficient matrix in (32) grows like 𝑂 (𝑁 4).

The matrix 𝑩in can be used to precondition the ill-conditioned
system (32), leading to(

−𝑰𝑁−1 + 𝑩in𝚲𝑟𝑫
(1)
in + 𝑩in𝚲𝑠

)
𝒖 = 𝑩in ( ®𝑓 + ®𝑢𝐵) . (33)

Remark 20. The right-hand side of (33) can be expanded:

𝑩in ( ®𝑓 + ®𝑢𝐵) = 𝑩in ®𝑓 − 𝑢− ( ®𝑏0 + 𝑩in𝚲𝑟 ®𝑑 (1)0 ) − 𝑢+ ( ®𝑏𝑁 + 𝑩in𝚲𝑟 ®𝑑 (1)𝑁 ),
where ®𝑑 (𝑘)𝑗 = (𝑑 (𝑘)1𝑗 , 𝑑

(𝑘)
2𝑗 . . . , 𝑑

(𝑘)
𝑁−1, 𝑗 )𝑡 for 𝑗 = 0, 𝑁 and 𝑘 = 1. This

improves the accuracy of the resulting computation.

To illustrate, we compare the condition numbers of the linear
systems between the Lagrange collocation (LCOL) scheme (32),
Birkhoff collocation (BCOL) scheme (31), preconditioned LCOL
(P-LCOL) scheme (33), and the preconditioned scheme from [4]
(which improved that in [9]) (PLCOL), respectively. We also look at
the number of iterations for solving the systems via BiCGSTAB in
Matlab, and compare their convergence behavior.

We first consider the example
𝑢 ′′(𝑥) − (1 + sin𝑥)𝑢 ′(𝑥) + 𝑒𝑥𝑢 (𝑥) = 𝑓 (𝑥), 𝑥 ∈ (−1, 1);
𝑢 (±1) = 𝑢±,

(34)

with the exact solution 𝑢 (𝑥) = 𝑒 (𝑥2−1)/2. Observe from Table 1 that
the condition numbers of two new approaches are independent of
𝑁 , and do not induce round-off errors. As already mentioned, the
condition number of PLCOL in [4] grows like 𝑂 (√𝑁 ), and that of
LCOL behaves like 𝑂 (𝑁 4).

In Fig. 1, we depict the distribution of the eigenvalues (in mag-
nitude) of the coefficient matrices of BCOL, PLCOL and P-LCOL
with 𝑁 = 1024. Observe that almost all of them are concentrated
around 1.

We next consider (34) with 𝑓 ∈ 𝐶1 (𝐼 ) and the exact solution
𝑢 ∈ 𝐶3 (𝐼 ), given by

𝑢 (𝑥) =
{

cosh(𝑥 + 1) − 𝑥2/2 − 𝑥, −1 ≤ 𝑥 < 0,
cosh(𝑥 + 1) − cosh(𝑥) − 𝑥 + 1, 0 ≤ 𝑥 ≤ 1.

Table 1: Comparison of condition numbers, accuracy and
iterations for (34).

𝑁
LCOL (32) PLCOL [4]

Cond.# Error iters Cond.# Error iters
64 3.97e+05 3.82e-14 286 80.1 1.44e-15 14
128 6.23e+06 4.42e-13 1251 156 2.66e-15 13
256 9.91e+07 3.95e-13 6988 308 2.33e-15 13
512 1.58e+09 1.02e-11 9457 612 3.77e-15 13

𝑁
BCOL (31) P-LCOL (33)

Cond.# Error iters Cond.# Error iters
64 6.36 5.55e-16 10 2.86 1.67e-15 8
128 6.46 1.11e-15 10 2.86 2.44e-15 8
256 6.51 1.11e-15 11 2.86 2.55e-15 8
512 6.54 1.89e-15 11 2.86 4.77e-15 8

0.7 0.8 0.9 1 1.1 1.2

BCOL

P−LCOL

PLCOL

Figure 1: Distribution of magnitude of eigenvalues for the
coefficient matrices of collocation schemes with 𝑁 = 1024.

Note that 𝑢 has Sobolev-regularity in 𝐻4−𝜀 (𝐼 ) with 𝜀 > 0. In Fig. 2,
we graph the maximum point-wise errors for BCOL, LCOL and
PLCOL, where the slope of the lines is approximately −4. We see
that the BCOL and PLCOL are free of round-off errors even for
thousands of points, though the PLCOL system (in [4]) has a mildly-
growing condition number.

As noted in the original, the condition number of 𝑨 = 𝑰𝑁−1 −
𝑘𝑩in is independent of 𝑁 .

8.2 Mixed boundary conditions
Consider the second-order BVP (28), equipped with mixed boundary
conditions (24)–(25).

We associate (24) with the Birkhoff-type interpolation (26), in-
dicating the use of interpolation basis polynomials satisfying (27).
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Figure 2: Comparison of maximum pointwise errors.

Thus, for any 𝑢 ∈ 𝐶2 (𝐼 ), its interpolation polynomial is given by

𝑝 (𝑥) = (B− [𝑢]
)
𝐵0 (𝑥)+

𝑁−1∑︁
𝑗=1

𝑢 ′′(𝑥 𝑗 )𝐵 𝑗 (𝑥)+
(B+ [𝑢]

)
𝐵𝑁 (𝑥), 𝑥 ∈ 𝐼 .

(35)
Armed with the new basis, we can impose mixed boundary

conditions exactly, and the linear system resulting from the corre-
sponding collocation scheme is well-conditioned. Here, we test the
method on the second-order equation in (28) but with the mixed
boundary conditions: 𝑢 (±1) ± 𝑢 ′(±1) = 𝑢±. In Table 2, we list the
condition numbers of the usual collocation method (LCOL, where
the boundary conditions are treated by the 𝜏-method), and the
Birkhoff collocation method (BCOL, as in (31)).

Table 2: Comparison of condition numbers.

𝑁
𝑟 ≡ 0 and 𝑠 ≡ 1 𝑟 ≡ 𝑠 ≡ −1

BCOL LCOL BCOL LCOL
32 2.45 6.66e+04 2.61 7.87e+04
64 2.45 1.41e+06 2.63 1.68e+06
128 2.45 3.09e+07 2.64 3.70e+07
256 2.45 6.88e+08 2.64 8.26e+08
512 2.44 1.54e+10 2.65 1.86e+10
1024 2.44 3.48e+11 2.65 4.19e+11
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