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ABSTRACT

One-dimensional and two-dimensional cellular automata-
based models are used to generate computer simulations
of cancer growth dynamics. Results of computer
simulations using Java show close agreement with the
Gompertz's model of tumor growth and the CA model of in
vitro carcinogenesis developed by Serra and Villani [4].
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1. INTRODUCTION

A dreaded disease, cancer is the second most common
cause of death after cardiovascular disease. It affects
humans of all ages and inflicts a wide variety of organs.
Apart from individual suffering, the economic burden to
society isimmense.

Cancers ae characterized by the presence of tumors.
Tumors are identified based on their tissue of origin:, e.g.,
sarcoma is derived from muscle tissue, glioma from brain
tissue [1].

Previous cellular automata-based modeling studies of
cancer growth dynamics are considered in [1] [2] [3] [4]
and [5].

In the present study, we used one-dimensional and two-
dimensional cellular automata-based models to generate
computer simulations of cancer growth dynamics. The
study is divided into two parts. :

Part Il deals with he simulation of tumor growth and
comparing the results with the Gompertz model. Part |l
presents a modification of the study of Serra and Villani [4]

2. GOMPERTZ EQUATION AND TUMOR GROWTH

The Gompertz equation has been shown to provide a
good fit for the growth data of numerous tumors [6] .
Kaplan and '

Glass [6] summarizes the Gompertz growth function as
follows: The growth rate is proportional to the current
value, but the proportionality factor decreases
exponentially in time so that
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where k and o are positive constants. The Gompertz
equation can be solved [4] to vield
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For Gompertz growth, x apprcaches x(0)e* as

t — infinity. Thus, the asymptotic value depends on, and
is always greater than, the initial value [6].

3. COMPUTER SIMULATIONS

In this section we present the method used in simulating
tumor growth using one-dimensional and two-
dimensional cellular automata.

3.1.0NE — DIMENSIONAL CA

Using a one — dimensional array, we counted the affected
or cancerous cells using rule 30 on cellular automata (CA)
[6]. We obtained the subsequent states of the cells by
analyzing their neighbors simultaneously.



To do this, we must first declare a one- dimensional (1D)
array of cells with their initial states. The values in this
array constitute either 1 or 0, which we correspond to
cancerous and non-cancerous cells, respectively.

Here, we used closed boundary condition for the cellular
automata lattice. Below is the algorithm used for the 1D
CA model:

For every generation
{
if the observed cell is the front (first) cell
left neighbor is the rear (last) cell
right neighbor is the cell next to its position
else if the observed cell is the rear (last) cell

left neighbor is the cell previous to its
position

right neighbor is the front (first) cell
else if the observed cell is in the “middle”

left neighbor is the cell previous to its
position
right neighbor is the cell next to its position

We now construct the method implementing our rule that
describes the new state of the cell given its neighbors.
The method returns the new state of each cell in this rule,
which is rule 30: (111)=>0, (110)>0, (101)>0, (100)->1,
{011)>1, (010)>1, (001)=>1, (000)>0. The middle cell in
every triple changes in state in 2°=8 possible
arrangements.

The algorithm for this procedure is as follows:
For an observed cell
{
If observed cell is 1
If left neighbor is 1
If right neighbor is 1
State of Observed Cell is 0
Else if right neighbor is 0
State of Observed Cellis 0
Else if left neighboris 0
If right neighbor is 1
State of Observed Cellis 0
Else if right neighbor is 0
State of Observed Cell is 1

Else if observed cell is 0
if left neighbor is 1
If right neighbor is 1
State of Observed Cell is 1
Else if right neighbor is 0
State of Observed Cell is 1
Else if left neighboris 0
If right neighbor is 1
State of Observed Cell is 1
Else if right neighbor is 0
State of Observed Cell is 0
Return new state of observed cell

}

We now deal with the simulation of the growth of
cancerous cells using a graph since we have the states of
the cells in a given time frame (or number of generations).
We obtained the graph by plotting the percentages versus
the generation of cancerous cells.

The graph that we obtained using the CA model is in close
agreement with the Gompertz model.

To further illustrate the one-dimensional approach,
considered 50 cells initially arranged accordingly:
1000101010 0000110001 0000000010 0010100010
1100000010. Using rule 30, we obtain the following data
in Table 3.1 after 60 generations.

Table 3.1 (Number of Cancerous Cells and Percentage in
60 Generations)

 CANCEROUS e
CELLS PERCENT
_ GENERATION  USINGCA USNGCA
0 1 0.033333333
1 3 0.1
E 3 0.1
3 6 0.2
4 4 0.133333333
S 0 0.3
6 5 0.166666667
7 12 0.4
8 7 0.233333333
o 12 0.4
10 11 0.366666667
" 14 0.466666667
12 12 0.4
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58 28 0.933333333
59 26 0.866666667

Note that we have a graph similar to the Gompertz graph,
where it is increasing but asymptotic to 1 The data in
Figure 3.1 were used to count the number of cancerous
cells using the Gompertz equation.

The covariance between the results using 1D CA and the '
Gompertz equation is 0.075995.

Figure 3.1 (Simulation Results using 1D CA)
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Figure 3.2 (Simulation Results using 1D CA -
Percentages)
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Figure 3.3 (Graph of Gompertz Equation using
Percentages)
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3.2. TWO - DIMENSIONAL CA

In this part of the study we made use of a two-dimensional
(2D) CA model using the Moore neighborhood and
Conway’s Gamel of Life rules [8].

The following is the algorithm used to identify a given cell’s
neighbors.

For a certain cell at position (0,0)

{
North-West cell is at position (-1,1)
North cell is at position (0,1)
North-East cell is at position (1,1)
West cell is at position (-1,0)
East cell is at position (1,0)
South-West cell is at position (-1,-1)
South cell is at position (0,-1)
South-East cell is at position (1.-1)

Using Conway’s Game of Life rules [6], we can now
update the cell’s state by counting the cells that are alive,
that is, noncancerous, from its neighbors. The transition
rule is as follows:

For the neighbors of the observed cell

{
if(alive = 2)
cell’s state stays the same
else if((alive = 3)
cells’ state will be the opposite
else
state will be dead
}

Let us now take an example to illustrate the nethod
described previously. We take 225 cells arranged in a
15x15 matrix with values as in Table 3.2, where the black
cells are the dead or cancerous cells and the gray alive or
non-cancerous cells.

1
1
A
1
1=
1
1 
.
o
]

We now analyze these cells in 20 generations following
the process we have discussed using Conway’s Game of
Life rule. The number of cancerous cells is summarized in
Table 3.2.



Table 3.2 (Number of Cancerous Cells and Percentage in
20 Generations)

,ANCEROUSCELLS PERCENT

_ GENERATON ~ USNGCA USING CA

R . -
1 154 0.7
2 160 0.8
3 191 0.955
4 172 0.86
5 176 0.88
6 158 0.79
7 173 0.865
8 160 0.8
9 178 0.89
10 152 0.76
11 171 0.855
12 177 0.885
13 172 0.86
14 157 0.785
15 170 0.85
16 170 0.85
17 178 0.89
18 168 0.84
19 173 0.865
20 178 0.89

Figure 3.4 (Simulation Results Using 2D CA)
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Figure 3.5 (Simulation Results Usmg 2D CA -
Percentages)
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Figure 3.6 (Graph of Gompertz Equation using
Percentages)
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Figs. 3.5 and 3.6 show 2D CA model as compared with is
the Gompertz model. The covariance obtained is
0.025932254.

3.3. SIMULATION OF IN V]TRO CARCINOGENESIS

Next, we used a modified version of Serra and Vlllams
study [4] of in vifro carcinogenesis.

An in vitro test uses cells which can mutate a number of
times. A normal cell B in the test may undergo a series of
mutations until it acquires a malignant phenotype. It may
mutate to an activated cell A and pass this characteristic to
its daughter cells. Such a mutation leads the A cell, in its
reproductive cycle, to a transformed state T which renders
it an immortalization or, the capability to replicate almost
endlessly. However, if a transformation does not occur, the
B cell grows to a full monolayer. T cells pile up, overgrow
and infilirate the monolayer. The B and A cells, on the
other hand, inhibit their contact. It is assumed that the
probability of spontaneous activation is negligible during
the cell growth. Nonetheless, cells become activated in the
initial phase of exposure to the carcinogen.

A cell may, as well, do nothing, duplicate, give birth to a
different cell, or die. If the cell-doubling time is one time
step, at each time step, a biological cell of type A or Bmay



either try to reproduce or be idie, depending on its
probability to replicate. If it tries to, it checks if it has some
empty neighbor cell E. In the more intricate two-
dimensional analysis and simulation of this research, the
B, A, T or E cell has eight neighbors— on its south, west,
north, east, southeast, southwest, northwest, and on its
northeast. And if it has at least one empty adjacent cell,
some state change in the neighborhood takes place. A B
cell may give birth to a similar B cell orto an A cell, and, an
A cell may give birth to a T or to another A cell. The empty
neighbor will be the spot for the new daughter cell. The
algorithm for updating state cells, thus, proceeds in two
steps: first, the CA cells occupied by B’s or A's are

considered, and each reproducing cell identifies the empty -

CA cell; then, all the empty CA’s are considered, and those
which have been selected by a neighbor for reproduction
become occupied. Shall there be more than one empty
location, the programming system chooses at random.

A cell may also die at any time step. In any way, the
probability that a normal cell dies is less than that of the
active cell. In the CA, a T cell's death probability is
neglected because of its complexity.

In each of these cases, the model considers different
probability alternatives— depending on the characteristics
of the in vitro carcinogenesis sample. It also assumed that
there is no nutrient limitation during the culture period. The
growth of the population is bounded only by the crowding
of the cells.

4
The pseudo-code for the transition rules of the CA-based
carcinogesis dynamics is as follows:

For every time t

{
For every non-empty cell

{

Determine, by a probabilistic method,
whether the cells die off.

If not

{

Determine whether reproduction will be
attempted. [Let these cells be in G1]

For every cell in G1, verify whether
there is at least an empty cell in the
neighborhood. [Let these be in G2]

For every cell in G2, determine the
direction of reproduction.

If there are more available sites, choose
at random.

}

For every empty cell
{
Determine whether at least one of the
neighbors has a direction of reproduction
pointing to it. [Let these be in G1]

If all the cells in G1 have a common state,
then let the next state of the current cell be
similar. 2

Otherwise, choose at random among the
states

If the new state is A, then change itto T
according to a fixed probability
}
}

Serra and Villani [4] performed computer experiments
using a grid of 400*400=160,000 CA cells to visualize and
study the properties discussed. A(t), B(t) and T(t) are
denoted for the number of cells of A, B and T type at time t.
M(t) = A(t) + B(t) is the total Aumber of non transformed
cells. Typically, there is first a phase where each initial cell,
be it either A or E, generates a cluster of daughter T cells.
The clusters are separated in space. AType clusters,
therefore, grow undisturbed in this phase without the
competition from the B cells. Nevertheless, their growth
rate is slower than that of B-Type clusters because of their
higher death rate. At a certain point, clusters begin to
collide. Hence, A cells are contended. The whole space is
eventually filled with cells. While the B cells invade and T
cells increase, the A's eventually disappear. An AType

‘fades, however, only gradually, because its own type

replaces it if it dies in the interior of a cluster of similar
cells. A Btype cell may substitute the dead A cell only if
they are in nearby borders. In the end, due to the strength
of the carcinogens applied, a high number of
transformations makes T cells expand, asymptotically,
across the system. The quantitative aspects of the growth
of A, B and T cells are as presented.
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Figure 3.7 Celi population growth of A, B, E, T-type

In our own simulations,- we used 50*50=2500 random cell
types. We used Java Math.random(). Function. We
assigned the various probabilities for each respective cell
type:
(i} the changeable probabilities of birth and death of

ABT

double[] d = {0.001, 0.3, 0.0};

doublef] b = {0.01, 0.49, 0.50};

(ii) the probabilities of reproduction and
* transformation of A,B,E,T

doublef][j r = {{ 0.5, 0.5, 0.0},
{0.5, 0.5, 0.0},
{0.0,0.0,1.0} };

doublef]J[]t={{0.5,0.5,0.0},
{0.0,0.5,0.8},
{0.0,0.0,1.0}}

We assigned each type a color in the visualization using
applets.

Some things need to be considered prior to the
comparison with Serra and Villani's [4] simulations. First
are the parameters (or values) of the biological
probabilities, Serra and Villani's simuiations start off with
a time origin that is set at the end of the exposure period.
Hence, the probability of a Btype cell b be activated is
negligible. All the B cells remaining after the exposure
acquire a zero probability to be activated. In our simulation,
since we are not dealing with in vitro test, we are
considering the probability of an exposure to carcinogen
during cell growth. Hence, there is a probability of a B-type
turning into an Atype. This resulted to an increase of B at
the start but a decline towards the end.

Also, our simulations used a bigger probability for Atype
cells. That is, activation is more likely to transform with a
constant exposure to carcinogen during cell growth. This
will be evident in the resulting number of T cells compared
to the results of Serra’s simulations.

We followed Serra and Villani's [4] rule in which a cell dies
and is replaced eventually.
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Figure 3.8. Cell Population Growth (Our simulations)

4. CONCLUSION

In this study, we have used one-dimensional and two-
dimensional cellular automata-based models to generate
computer simulations of cancer growth dynamics. Our
Java computer simulations show close agreement with
the Gompertz’'s model of tumor growth and the CA model
of in vitro carcinogenesis developed by Serra and Villani

[4].
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