Bipartite Drawing with Minimum Edge Crossings
of Binary Trees and 3-Cayley Trees

Eliezer A. Albacea
Institute of Computer Science
University of the Philippines Los Bafios
College, Laguna

eaalbacea@uplb._edu.ph

ABSTRACT

In this paper, we present a simple algorithm for bipartite drawing
with minimum edge crossings of binary trees that has a running
time of O(). Together with the drawing, the algorithm also
computes the bipartite crossing numbers of binary trees using the
same amount of time. The algorithm for binary trees were used to
produce a bipartite drawing and used to compute the bipartite
crossing numbers of 3-Cayley trees. The algorithm produced also
runs in O(n). For the case of trees, the computation of bipartite
crossing numbers has been shown by Shahrokhi, et.al. [9] to be
computable in O(n’%) time. Hence, our result improves that of
Shahrokhi et al. [9] for the case of binary trees.

Keywords
Bipartite drawing, bipartite crossing number, graph drawing,
binary tree, 3-Cayley tree.

1. INTRODUCTION

Let G = (¥, V), E) be a connected bipartite graph, where V), V), is
the bipartition of vertices into two independent sets. A bipartite
drawing of G consists of placing the vertices ¥, and V, into
distinct points on two parallel lines x and y, respectively, and then
drawing each edge with one straight line segment which connects
the points of x and y where the endvertices of the edge where
placed. It is unavoidable in some cases that these edges cross. One
of the aesthetic criteria for graph drawing is one with minimum
edge crossings.

The bipartite crossing number of G, bcr(G), is the minimum
number of crossings of edges over all bipartite drawing of G. The
problem of bipartite drawing with minimum edge crossing is
related to the problem of computing the bipartite crossing number.
The problem of finding the bipartite crossing number was first
studied by Harary [5] and Harary and Schwenk [6] and
independently proposed by Watkins [12] as cited in Shahrokhi,
et.al. [8]. The bipartite crossing number problem was shown to be
NP-complete by Garey and Johnson [4]. However, it was shown
to be solvable in polynomial time for bipartite permutation graphs
by Spinrad, et. al. [10] and for trees by Shahrokhi, et. al. [9].

Most efforts in bipartite drawing has been on minimizing the edge
crossings. First, there is the problem of one-sided crossing
minimization where one side is fixed and then the other side is
permuted so as to minimize the number of edge crossings. The
most popular heuristics for this problem is the barycenter heuristic
of Sugiyama, et.al. [11], the median heuristic of Eades and
Wormald [3], the split heuristic of Eades and Kelly [2], the sifting
heuristic of Matuszewki, et.al. [7] and many other heuristics.

Although these heuristics attempt to minimize the number of edge
crossings, all these methods, however, will not guarantee the
production of the optimum solution or drawing exhibiting the
bipartite crossing number.

Our objective in this paper is to produce a drawing with minimum
edge crossings. Albacea and Tabadda [1] have shown a bipartite
drawing with minimum edge crossings of complete binary trees.
In this paper, we show an algorithm that produces a drawing with
minimum edge crossings for binary trees and 3-Cayley trees. The
algorithms for binary trees and 3-Cayley trees run in O(n). As a
consequence of the drawing algorithm, we also obtain an
algorithm for computing the bipartite crossing numbers of binary
trees and 3-Cayley trees.

2. NOTATIONS AND DEFINITIONS

A binary tree T = (V,E) is a tree in which each node has at most 2
children. It is usually rooted, we assume that the root is vertex r.
Assume that the root has level equal to 0 and that the binary tree
has height (maximum level) 4. Each node v in the binary tree is
assigned a weight, weight(v), equal to the number of edges in the
subtree rooted at v. If a vertex has two children, then one of them
is called the right child and the other is called the left child.

A tree in which each non-leaf node has a constant number of
branches # is called an n-Cayley tree. Hence, a 3-Cayley tree has
three branches in each of its internal nodes and has one branch
each in its leaf nodes.

3. THE ALGORITHM
3.1 Description

Let a subtree be rooted at vertex v and denoted T,. The vertex v
has vl and vr as left and right children, respectively. Let vl and
vir be the left child and right child of vl, respectively, and let vrl
and vrr be the left child and right child of vr, respectively. Let
crossnumber(v) be the minimum number of crossings of edges in
T, plus the edge connecting v and its parent. Hence, we assume
that v is not the root node. Let us consider a certain configuration
of T, as given in Figure 1.

e
v

a C

vl 2t

? | vrl vIr

Figure 1. A subtree rooted at v

Suppose v is a left child. Suppos¢ a bipartite drawing has already
been drawn for Ty, T,y and T,,. Adding v and vr to the bipartite
drawing will produce an additional crossings which is minimal if
we draw edge (vr, vrl) and the edges in T, crossing the edge a in
Figure 1 and the edge (vr, vir) and the edges in T,,, crossing the
edge b in Figure 1. All other drawings will produce more edge
crossings. Hence, the crossing number in T, has minimal
additional number of crossing and this number of crossing is
given by the formula:

crossnumber(v) = crossnumber(vl) + weight(vr)

+ crossnumber(vrl) + crossnumber (vrr).
Similarly, if v is a right child the corresponding formula is:
crossnumber(v) = crossnumber(vr) + weight(vl)

+ crossnumber(vll) + crossnumber (vir).

An example is shown in Figure 2 illustrating the computation of
crossing number using the formula above.

0 Qe 0
Figure 2. Illustration of crossing number computation.
The algorithm that we will present will be using a twisting

procedure that simply produces the mirror image of a subtree. For
illustration of the twisting procedure see Figure 3.

% 1

before twist(v) after twrist(v)

Figure 3. Before and after twisting.

It is obvious that twisting a subtree does not affect the crossing
numbers of the subtrees rooted at the left and right children of the
root of the subtree. For example, consider Figure 1. Twisting at
vertex v will not change the number of edge crossings in the
subtrees T, and T,,. However, it may change the number of edge
crossings in T,.

Now, we can outline the algorithm as follows:

Algorithm: BinaryTreetoBipartite

[. Compute the weight(v) for eachv € V.
2. . Foreach vertex v at level h to level 1 do
case weight(v)
0: crossnumber(v) =0
1: crossnumber(v) =0
if v is a right child then make the single child of
v a right child
if v is a left child then make the single child of
v a left child
-~ 2: crossnumber(v) =0
>2: if v is a left child
u = crossnumber(vl) + weight(vr)
+ crossnumber(vrl) + crossnumber(vir)
t = crossnumber(vr) + weight(vl)
+ crossnumber(vll) + crossnumber(vir)
if u > t then crossnumber(v) =t
twist(v)
if u <t then crossnumber(v) = u
if u=t then
if weight(vr) > weight(vl) then twist(v)
if v is a right child
u =crossnumber(vr) + weight(vl)
+ crossnumber(vll) + crossnumber(vlr)

t = crossnumber(vl) + weight(vr)

+ crossnumber(vrl) + crossnumber(vrr)
if u > t then crossnumber(v) =t
twist(v)
if u <t then crossnumber(v) = u
ifu=tthen
if weight(vl) > weight(vr) then twist(v)

3. crossumber(r) = crossnumber(rl) + crossnumber(rr), where r
is the root of the tree.

4. Call the drawing algorithm DrawBipartite.

Lemma 1. The algorithm computes the minimum number of edge
crossings.

Proof: The inductive method can be used to prove the lemma.
Note that for subtrees of heights 1, the algorithm produces
minimum edge crossings.

Next, consider a subtree as illustrated in Figure 1. Assuming that
the subtrees T, T,, Ty and T,; have minimum edge crossings, the
algorithm computes the minimum edge crossing at T, considering
the original subtree and its mirror image by twisting. Hence, the
algorithm assures that it has minimal edge crossings at T, after
Step (2). By induction, therefore, the minimum number of edge
crossings is computed all the way to the root.

v vl
vl v
left foot

A

right foot

v vl v vr
vl v wr v
central foot

Figure 4. Three types of feet.

Next, we outline the drawing algorithm. Given a node v and its
two possible children vl and vr. The child vl may be drawn at the
left of v in which case we call vertex vl as a left foot taking a left
position and the edge (v, vl) as a left leg. Similarly, the child vr
may be drawn at the right of v in which case we call vertex vras a
right foot taking a right position and the edge (v, vr) as a right leg.
Finally, vl and vr may be drawn in the same vertical line with v in
which case vl or vr is a central foot taking a central position. and
the edge (v, vl) or edge (v, vr) is a central leg. See Figure 4 to -
illustrate the different configuration of the edges in the bipartite
drawing.

Now,. we outline the rules for drawing the legs. This is cbvious
from algorithm DrawLegs.

Algorithm: DrawLegs(v)

1. switch(position of v)

left:
if vr exists then make vr a central foot
if vl exists then make vl a left foot
central:
! if vr exists then make vr a right foot
if vl exists then make vl a left foot
right:

if vr exists then make vr a right foot

if vl exists then make vl a central foot

All the legs can be drawn as follows:
Algorithm: DrawBipartite

1. Make the left child of the root a left foot and the right child a
right foot.

2. Foreach vertex v in level 1 to level h-1
DrawLegs(v)

It should be noted that algorithm DrawBipartite draws the edges
following the rules we adopted in our computation of the number
of edge crossings. Take Figure 1 for example. Assuming v is a left
foot, using DrawLegs vl will also be a left foot and vr is a central
foot. Drawing further vrl will be a left foot, thus edge (v, vrl) will
cross edge a in Figure 1 and the rest of the edges in T,; will also
cross edge ¢ in Figure 1. On the other hand, vr will be a right foot
and edge (v, vr) will cross edge b in Figure 1 and so are the edges
in Ty,

3.2 Analysis of the Algorithm

Assuming a binary tree with n vertices. In algorithm
BinarytoBipartite, Step (1) can be done in O(n). Step (2) involves
the procedure twist(v) which has a cost of O(weight(v)). Hence,
the total cost is

0| > weight(v)

veV-{r}

Itis v e V -{r} because Step (2) excludes the root r of the tree.
The best case will be obtained when the binary tree is a complete
binary tree, where

o{ o weight(v)) = _hzl(z*"‘“-nzi = (2" ht2-3(2")

veV-{r}

In a complete binary tree, &1 = log n. Hence, a total cost for a
complete binary tree of O(n log n) time. The worst case, however,
occurs when the tree is a unary tree where

0| > weight(v) | = O(@’)

veV-{r}

Hence, the running time of Step (2) will range from O log 1) to
O(n). Step (3) is O(1) while Step (4) is O(n) time. Hence, we
have a total running time that ranges from O(n log n)) to O(#’).

3.3 Improving the Running Time

One would notice that the running time of the algorithm is
dominated by the twist operation. We outline an improvement
where we do not do the twist immediately but rather we postpone
the twisting until after the bipartite crossing number has been
computed. This algorithm is given below.

Algorithm: ImprovedBinaryTreetoBipartite
1. Compute the weight(v) for each v € V and mark each v e V
¢ as untwisted.
2. For each vertex v at level h to level 1 do
case weight(v)
0: crossnumber(v) =0
1: crossnumber(v) =0
if v is a right child then make the single child
of v a right child
ifvisa 1eﬁ cHild then make the single child
) of v adeft child
2: crossnumber(v) =0
>2: if v is a left child
u = crossnumber(vl) + weight(vr)
+ crossnumber(vrl) + crossnember(vrr)
t = crossnumber(vr) + weight(vl)
+ crossnumber(vll) + crossnumber(vlr)
if u> t then crossnumber(v) =t -
mark v as twisted
if u <t then crossnumber(v) =u
if u=tthen
if weight(vr) > weight(vl) then mark v as twisted
if v is a right child

u =crossnumber(vr) + weight(vl)

+ crossnumber(vll) + crossnumber(vlr)
t = crossnumber(vl) + weight(vr)

+ crossnumber(vrl) + crossnumber(vrr)
if u >t then crossnumber(v) =t

mark v as twisted
if u <t then crossnumber(v) =u
ifu=tthen
if weight(vl) > weight(vr) then mark v as twisted

3. crossumber(r) = crossnumber(rl) + crossnumber(rr), where r
1s the root of the tree.

4. Call CarryOutTwisting

Call the drawing algorithm DrawBipartite.
The idea of the algorithm CarryOutTwisting is that twisting is
done only on the children of a node. The rest of the subtree is
twisted depending on whether they need to be twisted on not. The

first step of the algorithm is to count the number of times the
subtree rooted at vertex needs to be twisted.

Algorithm: CarryOutTwisting

1. Mark the root as untwisted and set number of twist of the
root to 0.

2. Foreach vertex v at level 1 to level h
if vertex v is marked twisted
set number of twist to 1 plus the number of twist of
its parent
else
set number of twist equal to the number of twist of
its parent.
3. For each vertex v at level | to level h
if number of twist at v is even or 0
retain the left child as left child and the right child
as right child
else
reverse the left child and right child of v

With this improvement, clearly Steps (1), (2), (4) and (5) of
ImprovedBinaryTreetoBipartite can be done in O(n) time, Step
(3) can be done in O(1) time. Hence, the running of the improved
algorithm is O(n).

4. BIPARTITE DRAWING OF 3-CAYLEY
TREES

The algorithm for bipartile drawing of binary trees can be used to
produce a bipartite drawing for 3-Cayley trees. The outline of the
algorithm for bipartite drawing of 3-Cayley trees is given in the
next subsection..

4.1 The Algorithm

The outline of the algorithm is as follows:

Algorithm: 3-CayleyTree_to_Bipartite

1. Root the 3-Cayley tree at its center ». This will produce a tree
with configuration shown in Figure 5,

N

Figure 5. A 3-Cayley rooted at its center.

'T'1 T,

where T, T, and T; are binary trees.

2. Disregarding T,, compute the bipartite crossing number of
the binary tree formed from r, T, and T;. Compute the
bipartite crossing number of T;. Then, position T, in between
T, and T;. When T, is positioned in between T, and Tj, this
will have a crossing number equal to the crossing number of
T, plus the number of edges in T, since the edges in T, will
cross either edge b or edge ¢ in Figure 5. Compute the total
number of edge crossings.

Repeat Step (2), this time disregarding T,.
4. Repeat Step (2), this time disregarding Ts.

Find the configuration from among the three possible
configurations with the minimum crossing number. The
configuration with the minimum edge crossing will be
retained as the bipartite drawing of the 3-Cayley tree.

4.2 The Edge Crossings is Minimum
Lemma 2. The bipartite drawing produced by the algorithm
3-CayleyTree to Bipartite has minimum edge crossings.

Proof: Clearly, the configuration produced has the minimum edge
crossings from among the three possible configurations
considered by the algorithm. Next, we show that it stays minimum
even if we re-root the tree in nodes other than the center. We
consider two cases.

Consider the 3-Cayley tree in Figure 6 where the figure is the
minimum configuration.

i
T 0
=
a L §
d @
it
2

T

Figure 6. A 3-Cayley tree rooted at the center r.

Case 1: Re-root the tree at a node in the leftmost or rightmost
subtrees, i.e., at a node in T, or node in the subtree formed by s,
T; and T,

We consider the case where it is re-rooted at the rightmost binary
tree. If the tree in Figure 6. is re-rooted at a node found in the
rightmost binary tree, i.e. re-rooted at node s, we obtain the tree in
Figure 7.

e

Figure 7. A 3-Cayley tree re-rooted at node s.

When the tree is re-rooted, we note that the number of edge
crossings in T, and T, will not change. Next, let us consider the
number of crossings in T,. In Figure 6, the edges in T, will cross
either edge @ or edge c. Note that when the tree is re-rooted, the
edges in T, will either cross edge for edge 4. Hence, its number of
crossings will not be affected when the tree is re-rooted to s. It is
similar with T, where originally it will cross either edge ¢ or edge
e and in the re-rooted tree it will cross either edge /& or edge j.
Hence, it too will not change its number of crossings. The same
argument will apply if it is re-rooted again in another node found
in T4.

Case 2: Re-root the tree at the middle subtree. When the tree is
re-rooted at the middle subtrec we obtain one possible
configuration given in Figure 8.

Figure 8. A 3-Cayley tree re-rooted at the middle binary tree.

Using the arguments in Case 1, the configuration in Figure 8 will
have the same number of edge crossing as in the tree given in
Figure 9.

’1"2 Z__J

Ty

A

Figure 9.

However, this configuration has been shown to have a crossing
number greater than the minimum configuration in Figure 6 by
virtue of the fact that that the configuration in Figure 6 has the
minimum number of edge crossings. Hence, the number of edge
crossings in a tree in Figure 8 has greater number of edge
crossings than the tree in Figure 6.

The same argument applies to the other possible configuration,
i.e. configuration given in Figure 10.

-—1?“
3

o
Figure 10. A 3-Cayley tree re-rooted at the middle binary tree.

4.3 The Running Time

The size of the middle binary tree may range from 1 to about /3.
In which case the total size of the remaining two binary trees will
range from about 2n/3 to n-1. Hence, the algorithm will run in
O(n).

5. CONCLUSIONS

We have presented a simple algorithm for bipartite drawing of a
binary -tree. The algorithm also produced a drawing with
minimum edge crossings and it computes this minimum number °
of edge crossings. The algorithm has a running time of O(n). This
improves the O(n’*) time algorithm of Shahrokhi, et.al. [9] for the

_ computation of bipartite crossing numbers when the tree is a

binary tree. Also presented is an algorithm for bipartite drawing
and computation of bipartite crossing numbers of 3-Cayley trees.

6. REFERENCES

[1] Albacea, E.A. and Tabbada, X.A.Q. A linear algorithm
for bipartite drawing of complete binary trees. 3"
Philippine Computing Science Congress, Philippine
Science High School, February 8-9, 2003.

[2] Eades, P. and Kelly, D. Heuristics for drawing 2-
layered networks, Ars Combinatorica 21-A, 1986, 89-
98.

[3] Eades, P. and Wormald, N. Edge crossings in drawings
of bipartite graphs, Algorithmica 11, 1994, 379-403.

[4] Garey, M.R. and Johnson, D.S. Crossing number is
NP-complete, SIAM J. Algebraic and Discrete
Methods 4, 1983, 312-316.

[5] Harary, F. Determinants, permanents and bipartite
graphs, Mathematical Magazine 42, 1969, 146-148.

[6] Harary, F. and Schwenk, A. A new crossing number for
bipartite graphs, Utilitas Mathematica 1, 1972, 203-
209.

[7] Matuszewki, C., Shonfeld, R., and Molitor, P. Using
sifting for k-layer straightline crossing minimization,
Proceedings Graph Drawing 1999 (GD '99), 1999,
217-224.

[8] Shahrokhi, F., Szekely, L.A. and Vrto, I. Bipartite
crossing numbers of meshes and hypercubes,
Proceedings Graph Drawing 1997 (GD '97), 1997,
Rome, Italy, in Lecture Notes in Computer Science
1353, Springer-Verlag, Berlin, 37-46.

[9] Shahrokhi, F., Sykora, O., Szekely, L.A. and Vrto, I.
On bipartite drawings and the linear arrangement

problem, SIAM J. Computing 30, No. 6, 2001, 1773-
1789.

[10]Spinrad, J., Brandstadt, A. and Stewart, L. Bipartite
permutation graphs, Discrete Applied Mathematics 19,
1987, 279-292.

[11]Sugiyama, K.; Tagawa, S. and Toda, M. Methods for
visual understanding of hierarchical system structures,
IEEE Trans. Syst. Man, Cybern., SMC-11, 1981, 109-
25

[12] Watkins, M.E. A special crossing number for bipartite
graphs: a research problem, Annals of New York
Academy of Sciences 175, 1970, 405-410.

