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ABSTRACT

Let L and K be languages over an alphabet X. We call K a
commutative complement of L, denoted by LY whenever,
for all u,w € K, uw,wu ¢ L. If there is no other language
H C ¥*, such that H is a commutative complement of L
that contains K, then K is called a maximal commutative

complement of L or LSS,

Not all commutative complement of a regular language is
regular. But we showed that maximal commutative com-
plement of a regular language is again a regular language.
We provide construction procedure for realizing a maximal
commutative complement of a regular language. Finally, as
a consequence of our construction, we showed that if the
minimum DFA accepting a regular language L has n states,
then the maximal commutative complement LSS, of L will
be accepted by a DFA with at most n” number of states.

1. INTRODUCTION

Descriptional complexity is the study of measures of com-
plexity of languages and operations. It is a measure of in-
formation required to describe a language. As there are
many ways of describing a language (e.g., using regular ex-
pressions, finite automata, grammars, etc), there are many
different measures of descriptional complexity.

(Deterministic) State complexity is a descriptional complex-
ity measure for regular languages based on the deterministic
finite automaton (DFA) model. It is given as the minimum
number of states in a DFA that accepts the language. Other
descriptional complexity measures for regular languages are
regular expression size (the number of alphabetic symbols in
a regular expression) and radius (the distance from the start
state to the farthest state). Though these different descrip-
tional complexities are equally significant, state complexity
remains the most popular complexity measure for regular
languages. Ellul [4] gave a survey of different descriptional
complexities.

Some operations on regular languages preserve regularity;
that is, performing such operation on regular languages re-
sults in a regular language. Operations like union and in-
tersection, for example, preserves regularity. The study of
state complexity is extended to these operations and many
results have been established in this area.

The interest in the study of state complexity is primarily
motivated by the desire to have a reliable estimate of the
amount of memory required (the space complexity) for a re-
sulting automata when regularity-preserving operations are
applied. This is particularly crucial in pattern searching for
computer virus strands and its mutants, among others.

There is a significant amount of research lately in state com-
plexity of operations on regular languages. Yu et al. [13]
systematically studied the state complexity problems of ba-
sic operations on regular languages over a general alphabet
as well as over a one-letter alphabet. Later, Yu [12] studied
the state complexity of basic operations on finite languages.
Campeanu et al. [1] obtained results for unary alphabet in
the finite case. Domaratzki [3] examined the state complex-
ity of proportional removals such as %L, while Rampersad
[9] examined L? and L*. Campeanu et al . [2] obtained a
tight bound for the state complexity of shuffle of regular
languages.

There is also an interest in the study of nondeterministic
state complexity [4], average state complexity [6], and de-
scriptional complexity for nonregular languages [10].

In this paper, we introduce a new language operation, namely,
commutative complement. For a given regular language L,
we collect all strings  and y, such that zy and yx are not
at all in L. We call this collection commutative complement
of L, and we denote by L. We provide an example illus-
trating that LY does not necessarily be regular language
for a given regular language L. However, we proved that
the maximal commutative complement of L, that is LSS, ,
for a regular language L is always regular. We use alge-
braic techniques to show that maximal commutative com-
plement preserved regularity. We illustrate the construction
of maximal commutative complement of a regular langauge
L. Finally, as a consequence of our construction, we provide
state complexity of the maximal commutative complement
of a regular language L. The state complexity of LSS, is
equal to the number of elements of the monoid ¥*/ ~p, .
This is equivalent to the number of transformatons in the



transition monoid Ts, namely |Q||Q|.

The close connection between finite automata and algebra
is very well known. Holzer and Koénig [7] and Krawetz [8],
for instance, used the algebraic structure monoid to answer
state complexity problems. We will use the same method in
this paper.

The paper is organized as follows: In Section 2, we defined
our new (regular) language operations, namely, commuta-
tive complement and maximal commutative complement of
a language. We also provided examples and give some re-
marks. Section 3 proved the regularity preservation of max-
imal commutative comlement of a regular language L. In
Section 4, we illustrate how to construct a maximal commu-
tative complement of a regular language L using the results
in Section 3. Finally, we end Section 4 by providing the
consequence of our construction scheme, namely, the state
complexity of the maximal commutative complement of a
regular language L.

We assume that the reader is familiar with the concepts in
algebra as presented in [5]. Concepts and definitions from
[11] are adopted in this paper.

2. DEFINITIONS AND EXAMPLES

DEFINITION 1. Let L and K be languages over an alpha-
bet Y. Suppose we have u,w € K, such that uvw,wu & L,
then we have K is a set of strings over ¥ such that all the
catenations of these strings are not at all in L. We will call
K the commutative complement of L, and will be de-
noted by L€ .

Let K’ C K, where K is commutative complement of L. It is
trivial to see that K’ is again a commutative complement of
L. Because any catenation of any two elements of K’ cannot
be found in L.

DEFINITION 2. If there is no other language H C X%,
such that H is a commutative complement of L that con-
tains K, then K is called a maximal commutative com-

plement of L, and will be denoted by LSS, .

EXAMPLE 1. Let L = X*. Then the only commutative
complement of this language is the trivial language, 0. If
L = 0, then its commutative complement would be all K C
¥*. X 4s the maximal commutative complement.

EXAMPLE 2. Let L be a set of words over ¥ = {a, b} that
ends in a. In particular, define L = L((a+ b)*a). If we take
the complement of L, that is L = L((a+b)*b+¢), then we
can verify that LY is a commutative complement of L. And
this commutative complement is mazximal.

ExXAMPLE 3. Let L = {a”|p > 3,p is a prime}. It is easy
to see that L is a commutative complement of itself.

The language K = {a®*"'n > 0} is also a commutative
complement. Since L C K, therefore, L is not mazimal.

The language H = {a*"|n > 0} is another commutative
complement of L. It can easily be seen that both K and H
are maximal commutative complements.

EXAMPLE 4. Let L be the regular language accepted by
the DFA
M = ({1,2,3,},{a,b},0,1,{1}) whose transition relation is
described in Figure 1 It can be shown that the language L
accepted by the automaton in Figure 1 does not have nontriv-
ial commutative complement. In particular, its commutative
complement is the 0.

&)
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Figure 1: An automaton whose commutative com-
plement is 0.

REMARK 1.

a Any language L have at least one commutative com-
plement language, that is the trivial language, 0.

b Commutative complement of a language L could be its
complement, that is L°¢ = LC or itself, L°C = L.

¢ Commutative complement of a regular language L is
not necessarily regular.

d The mazximal commutative complement of a language
L is not necessarily unique.

e The mazximal commutative complement of a language
L could be its complement, that is, LSS, = LC.

In the rest of the paper, we will only be speaking of regular
languages.

3. MAXIMAL COMMUTATIVE COMPLE-
MENTS

We will prove in this section that maximal commutative
complement is a regularity preserving operation.

Let M = (Q,%,0,q0,F) be a DFA. This DFA induces a
monoid in a natural way: for any w € X*, define a trans-
formation d,,: Q — Q by dw(q) = d(q,w), for all ¢ € Q. For



transformations ¢,, and J,, we define their composition as
follows: (6w 064)(q) = (6wdv)(q) = 0w (ds(g)). With o, as the
identity element, the set of all transformations d,, together
with the composition operator forms a monoid, called the
transition monoid of M. Let Ths denote the monoid induced
by the DFA M.

Since Q is finite, then Ty is also finite with at most |Q|!<!
number of elements. It is not hard to see that d,, = 6,04,
for all w,v € ¥*. Hence, Tu; is generated by {d, € Q% |a €

18
Let w,v € ¥*. Define the relation =~ where
W R VS Oy = Op.

Clearly, =, is an equivalence relation on X*. For w € X", we
denote the equivalence class of w by [0.,]. Note that v € [0y]
if and only if 6, = d,. The equivalence class [d¢] contains
only one element, that is the empty word e.

It is not hard to see that (¥*/ ~,, ) , where for every [0.], [0,] €

¥*/ =1, we have [0y] ® [0,] = [dvw], forms a monoid.

REMARK 2. The mapping h: (3*/ =r,e) — (Ta,0), given
by h([0w]) = 0w @s an isomorphism.

Now we will prove that maximal commutative complement
of a regular language is also a regular language. First, we
prove the following preliminary results.

LEMMA 1. The equivalence classes in X%/ =1, are regular
languages.

PRrROOF. For each element [0,,] of ¥*/ =, we define a
DFA A = (Tm, 2, A, 8¢,{6w}), where A: Thy x B — Ty is
given by A(d,,a) = d.0,. To see that A accepts [d.], let z €
[0w]. Then, 6, = ... By extending A to ATy x 3 = T,
we have A(&e, 2) = 00 = 0z = dw, an accept state of A. It
is easy to see that, z ¢ [8,] iff A(6,x) # bu. O

O

LEMMA 2. Let L be accepted by the DFA M = (Q, %, 6, qo, F).

Then, w € L if and only if 6, (qo0) € F.

The quotient ¥*/ =1 separates words in X* according to
how they would be traced in a DFA. This means that words
of similar behavior are grouped into one equivalent classes.
So we ask, which elements of this quotient are commutative
complements?

THEOREM 1. Let L be a regular language accepted by a
DFA M. The equivalence class [6.] is a commutative com-
plement of L if and only if 62,(q) ¢ F.

PROOF. Let x,y € [0w]. Let [0y] is a commutative com-
plement of L. Lemma 2, zy ¢ L if and only if d.y(q0) ¢ F.

Now, z,y € [d,,] implies that we have §, = &, = d,. So that
5zy( 0) = 5y5a: q0) = 5w5w(qo) = 51211(‘]0) ¢ F.

For the converse, let x,y € [0w] C L. Since  and y are both
in [6y], we have, ; = §, = 0,. This implies that 0,9, =
dwdw = 0%. By hypothesis, 62(q0) € F, then 6.6,(q) =
0zy(qo) & F, too. By Lemma 2, zy ¢ L. That yx ¢ L
follows similarly. Therefore, [d,,] is a commutative comple-
ment. o 0O

THEOREM 2. Let L be a regular language. Let w € X*.
Then, {w} is a commutative complement of L if and only if
[0w] s a commutative complement of L.

PROOF. Let w € ¥* and L a regular language. {w} is a
commutative complement of L if and only if ww = w? ¢ L if
and only if 6,2 (qo) ¢ F if and only if 6,0, (qo) = d2(qo) ¢ F
if and only if [0,,] is a commutative complement of L. O []

THEOREM 3. Let L be accepted by a DFA M = (Q, %, 9, qo, F),

let [0w] be a commutative complement of L, and suppose the
v & [0w]. Then the following are equivalent.

a. [0w] U {v} is a commutative complement of L.
b. [0w] U [0s] s a commutative complement of L.

c. 0wdy(qo) ¢ F and 8,6w(qo) ¢ F.

Proor. We will prove the theorem in the following man-
ner: a = b=cacand b c.

(a = b): Let y € [0,]. Then 0, = d,. Since [6,] U {v} is a
commutative complement of L, we have wv ¢ L. By Lemma
2, dwv(qo) ¢ F. But duwy = 00w = 0y0w = Owy. Hence,
Owv(q0) = dwy(qo) ¢ F. Since y was taken arbitrarily, it
follows that [6,] U [d,] is a commutative complement of L.

(b= a): If [0w] U [dy] is a commutative complement of L
and, the fact that v € [§,], then the result is obvious.

(b < ¢): Without loss of generality, suppose that = € [d.]
and y € [d,]. This means that d, = &, and &, = &,. That
[0w] U [04] is a commutative complement of L means that
neither of xy nor yzx are elements of L. By Lemma 2, zy ¢ L.
and yx ¢ L if and only if 6,y,(qo) ¢ F and 8yx(q0) ¢ F. So
that 02y (q0) = 0y02(q0) = 0vdw(qo) ¢ F. Similarly, 6,2 (qo0) =
6:0,(q0) = 0.0 (q0) & F. 0O

Let us denote by @y, the class of elements of X%/ =, that are
commutative complements of L. Clearly, if [0.,] € ®;, and
[0,] ¢ @1, then [§,,]U[d,] is not a commutative complement
of L. We have the following consequence of Theorem 3.

COROLLARY 1. Let [0y],[04],[02] € @1, and suppose that
the union [6w] U [0s] is a commutative complement of L.
Then, [6,] U [6,] U [8:] is a commutative complement of L if
and only if both [6,] U [d:] and [6+] U [6.] are commutative
complements of L.



It is imperative that we can form larger commutative com-
plements by taking unions of elements of ®,;. Starting with
a commutative complement equivalence class, we add (by
taking unions) another equivalence class from ®; and use
Corollary 1 to check wether the union is a commutative com-
plement. If yes, we have a larger commutative complement
class. Otherwise, we discard this union and proceed to eval-
uate the remaining equivalence classes in ®1,. Now, we can
say that [®r| < |2*/ =1 | <| Tw| = |Q|'?!. Hence, we will
eventually exhaust all elements of ®7. We claim that the
resulting union is a maximal commutative complement of
L.

THEOREM 4. Let L be a regular language. Suppose that
[0w]U[0s] s a commutative complement of L. If for all other
eqivalence classes [0;] € @y, the union [0,] U [6,] U [0.] is
not a commutative complement of L, then [0w] U [0y] is the
mazximal commutative complement of L.

PROOF. Suppose we assume the opposite, that is [0.,] U
[0,] is not maximal. Then there must exist a larger com-
mutative complement H that properly contains [0.,] U [d,];
that is H D [6,] U [0y]. Let € H and = ¢ [6.,] U [6,]. Since
{z} C H, then {z} must be a commutative complement
of L. And by Theorem 2, [§,] must also be a commutative
complement of L. Clearly, [6,]U [0,]U{z} is a commutative
complement of L. By Theorem 3, [0.,] U [0,] U [02] must also
be a commutative complement of L. Then by contrapositive,
the result follows. o O

We will now show that all maximal commutative comple-
ments of L are union of some equivalence classes in ®y,.

THEOREM 5. Let L be the language accepted by a DFA
M = (Q,%,0,q0, F) and let K be a mazimal commutative
complement of L. Then

K= J [bu)

aéw E'@L

ProOF. Let v € K. Since K is a commutative comple-
ment of L, then so are {v} and [4,]. Hence, to show that
K = Uz, ca, [0w], it suffices to show that [6,] C K, for all
v e K.

Suppose there is an element z in [§,] not found in K. Since
x € [d,], we have §, = §,. For all v,w € K, we know
that wv,vw ¢ L. Now, wv,vw € L = dwv(qo), dvw(qo) &
F = 6,0w(q0), 0wdu(qo) & F = 6wz, 0:0w(qo) ¢ F. Hence,
K U{z} is a commutative complement much larger than K,
which is absurd, since K is a maximal commutative comple-
ment. o O

Finally, we give our main result, that follows from Lemma
1, Theorem 5 and the closure property of regular languages
under the operation union.

THEOREM 6. Mazimal commutative complement of a reg-
ular language is regqular.

4. CONSTRUCTION OF MAXIMAL COM-
MUTATIVE COMPLEMENT

We will illustrate our result in Section 3 by constructing a
maximal commutative complement of a given regular lan-
guage.

Let L be the regular language accepted by the DFA M =

({1,2,3,4},{a,b},9,1,{3,4}) whose transition relation is given

by the table below and whose state diagram is shown in Fig-
ure 2:

Figure 2: DFA that accepts the regular language L.

This transition function induces a transition monoid T

that is generated by the set {d,, 0 }, where 8, = ( 1 § i’ g
d oy = 1234 Th h the followi
andd, = , 4 o , |- Then wecan have the following

Tr = {0c,0a,0b,00a, Obb, dab, Opa } Whose multiplication table
is shown below:

o e 5a 6b 6@0, 6ab 5ba 6bb
55 66 5a 5b 6aa 5ab 5ba 5bb
6(1 611 5041 5ba 5aa 5ba 5aa 5ba

Op | O | Oab | Ovb | ab | v | Oab | Onp
6(14(1 (SU/U/ 6@(], 60/(1/ 6(1/(14 5(1,(1/ 60/04 5(1(1/
5ab 6ab 5ab 6ab 5ab 6ab 5ab (Sa,b
5ba 6ba 5ba 5ba 5ba 5ba 5ba 5ba
Ovb | Ovb | Obb | Oub | Obb | Obp | Owb | Onp

For each element of [6,] of ¥*/ =, we check whether or
not 62(1) ¢ {3,4} (Theorem 1). So that in this case, & =
{[56]7 [6a]» [6aa]» [5ab]}- NOW» 565w == 511;55 = 51” and 6a(1) =

)



1,040 (1) = 1,045(1) = 2, which are not accept states, imply-
ing that [6c] U [0a], [0c] U [daa], and [0c] U [dap] are also com-
mutative complement of L (Theorem 3 ). Similarly, since
8a0ab = Opa and dpa(1) = 3 € {3,4}, the union [0, U [0qs] is
not a commutative complement. So that only [0c]U[da]U[daq]
and [0c] U [0aa] U [0as] are the larger commutative comple-
ments (Corollary 1 ). Having exhausted all the elements of
®r, we say that these two are maximal commutative com-
plements of L (Theorem 4), and these are the only maximal
commutative complements of L (Theorem 5). Furthermore,
these two maximal commutative complements are regular
(Theorem 6).

We will construct the DFA for the commutative complement
K = [0e] U [0a] U [0aa]. (The construction for the DFA ac-
cepting [d¢] U [0aa] U [0as] is done similarly.) By Lemma 1,
the DFA M = (T, X, A, 6c, {0c, 0a,0aa}) accepts K where
A(0w,a) = da0w, for all a € X. We provide below the table
for A, that is the transition function table.

A a b

Se da o
(Sa 5aa 6ab
0 | Oba Ovb
6(1@ 5(1/1 6ab

Oab | Oba Opb
51)@ 5aa 5ab
Ovb | Oba Obb

Using algorithms that converts DFA to a regular expression,
we see that K = L(e + a + (a + b)*aa), while L = L((a +
b)*b(a+b)). Indeed, is a commutative complement of L, the
language of words whose second to the last letter is b. (The
other maximal commutative complement of L is [6¢]U[daq]U
[0ab] = L(e + (a+b)*aa + (a + b)*)ab)).

We note that the DFA produced here, as shown in Figure
3, is not with minimal number of states. For all w € X%, it
is easy to see that A(&,,w) € F' if and only if A(dp,w) € F
if and only if A(dgp,w) € F, so that the given DFA can still
be reduced to 5-state DFA.

We end this section by the following result on the upper
bound of the state complexity LSS, .

THEOREM 7. If the minimun DFA accepting a regular lan-
guage L has n states, then the mazximal commutative com-
plement K of L will be accepted by a DFA with at most n™
number of states.

This result which follows from series of results in Section
3, provides the above naive upper bound. Note that this
upper bound is the cardinality of the monoid ¥*/ =, or
equivalently, this is the number of transformations in the
transition monoid Tar, which is |Q|!!.

5. CONCLUSION

We have defined and introduced a new language operation
which we called commutative complement LEC of a language

b

\ 4

a
\ a
)

Figure 3: DFA for the commutative complement
K =[] U [ba] U [daa].

L. Although, we have examples showing that not for all lan-
guage L, that LY will be regular, its mazimal commutative

complement that is LSS, will always be regular.

Theorem 7, which directly follows from the construction
method we proposed provided us some upper bound the
state complexity of the DFA for LSS, , for a regular language
L. Although the construction characterizes some properties
of maximal commutative complements, it is however inade-
quate in estimating the state complexity of a commutative
complement. It is just too large an estimate. Note that in
Section 4, our DFA for L has 4 states, while our resulting
DFA for LSS, will finally have a minimum of 5 states.

Hence we ask, is there a much tighter bound than n™ for
the state complexity of maximal commutative complements?
Or is n™ the best possible? If yes, is there a language L
whose maximal commutative complement requires at least
n" states?

In this paper, we considered only regular languages. Also, it
would perhaps be interesting to see L of some non-regular
L.
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