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ABSTRACT

Automata Theory is one of the oldest and well studied areas
in theoretical computer science. Almost all not very hard
problems, yet of main interest have been solved. The excit-
ing developments in theoretical computer science for more
than two decades ago produced very specialized computer
scientists with few knowledge about other areas and much
less about the context of fundamental theory.

In this paper, we discuss three problems pertaining to de-
scriptional complexity of finite automata. The long standing
problem of estimating the size of the minimal nondetermin-
istic finite automaton ns(L) for a regular language L is con-
sidered. We present the best so far lower bound for ns(L) for
some regular languages L. Some issues related to ambigu-
ity on nondeterministic finite automaton are also discussed.
Finally, we discussed the fundamental problem since 1978
about the relationship between 2-way deterministic finite
automaton and 2-way nondeterministic finite automaton.

We argue that automata theory has enough basic questions
to be resolved. If one wants to put automata theory in the
place where it was once in computer science research, one
must not only look at applications of the theory but consider
also solving problems of great impact.
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1. INTRODUCTION

Finite automaton is one of the oldest and well studied com-
putation models in theoretical computer science. The basic
model called the deterministic finite automaton (dfa) was
introduced independently in [22, 24, 30] while the so-called
nondeterministic finite automaton (nfa) was defined in [26]
during the 50’s. This models have been the basis of studies
concerning the fundamental questions on computation and
complexity.

For the past 20 years the interest of the computing com-
munity become less and less in theory in particular, in au-
tomata theory. Although important conferences in theory,
like STACS, ICALP, STOC and FOCS are still publishing
new results in theoretical computer science relatively few
papers deals with automata theory. Some colleagues be-
lieved that the renaissance of automata theory is possible
by looking at its applications [33].

In particular, Sheng Yu [33] mentioned that aside from the
fact that many funding agencies are becoming reluctant in
supporting research projects in automata theory, the subject
area is not anymore considered to be in the main-stream and
is regarded as out of fashion and even of no use.

While looking for applications of automata theory is quite
nice and probably interesting, we share the belief that ap-
plications although important is not enough for automata
theory to regain its lost position in computer science [10].
Realized that because of the exciting theoretical develop-
ments for more than two decades ago in the subject, todays
computer scientists are so specialized. These people know
very little about other areas and even less about the whole
context of fundamental theory.

Moreover, researchers tend to solve problems in areas where
there are enough interesting not too hard problems because
they are required to publish. Some write the 10th edition
of the 201st variation of a problem as it was described by
Hromkovi¢ in [10]. This is to say that almost all not too
hard problems of main interest are solved in the theory of
automata and we are left with really very hard ones.

It is clear that we can only hope to be in the 10-20 main
stream research in computer science. However, realized that



specialized conferences and workshops e.g. DLT and DCA-
GRS have been established in support of revitalizing interest
in researches in theoretical computer science, in particular
automata and formal language theory.

The main goal of this paper is to present some interesting
problems which are fundamental to the theory of compu-
tations. This is to say that we have enough basic research
problem of above mentioned importance. We mentioned
only here some problems, in particular those that concerns
descriptional complexity of finite automata.

The paper is organized as follows; Section 2 provides a dis-
cussion on results in finding minimal nondeterministic finite
automaton. Section 3 considers ambiguity of nondeterminis-
tic finite automaton. Section 4 discusses fundamental prob-
lem concerning determinism and nondeterminism.

2. MINIMAL NFA FOR A REGULAR L

We are all aware that finite state automaton was introduced
independently by various individuals as early as the 50’s
[22, 24, 30]. Nondeterminism on this model was introduced
in [26]. However, it was subsequently shown in [26] that
the computational power of the basic model and the nonde-
terministic one are equivalent through subset construction
technique.

This resulted to answering question regarding the relative
power of nondeterminism versus determinism to the level of
descriptional complexity. That is, we compare the cardinal-
ity of the finite set of states of these two machines. Also
minimizing the number of required finite set of states of an
automaton accepting set of strings is still an issue to be
resolved, especially for nfa’s.

One of the principal open problems in automata theory is:

Problem 1: Estimate the size of the minimal nondetermin-
istic finite automaton for a regular language L.

At the moment we are not aware of a method that would at
least assure an approximation of this value. This is contrary
to the known result in the deterministic case. The minimum
dfa for a regular language L can be obtained efficiently in
O(nlogn), where n is the number of states of the dfa [8].

The problem of finding the size of the minimal nfa for a
regular language L is known to be PSPACE-complete ex-
cept when the alphabet is a singleton set [6]. The minimal
nfa for a regular language L is not necessarily unique. The
search for the general procedure is not likely to be successful
because of its PSPACE-completeness [6, 17].

Thus the investigation points to the development of meth-
ods for proving lower bound on ns(L). In [5, 11, 12] com-
munication complexity method was introduced for providing
lower bounds on the size of minimal nondeterministic finite
automaton. A special form of communication complexity
method called fooling set method was used by Glaister and
Shallit in [7].

In [1, 2], we introduce a model of computation that captures
the uniform computation of automata. This is actually a

reasonable generalization of the 2-party model proposed in
[15].

Let L C {0,1}" be a regular language which is to be recog-
nized by k linearly connected independent computers. Every
computers C; (1 < i < k), gets part «; (0 < |ai| < |w]) of
the whole input w € ¥* s.t. w = @12 ...ak. A k-partition
of w is denoted by by a k-tuple (a1, a2, ..., ar).

A l-way uniform k-party nondeterministic protocol
over Y is a triple Py = (®, {¢;}"_), o) where

e &: 3 — 2101 g 4 function.
e ¢ ¥ x {0,1} — 2{%1}" are functions.
o p: X" x{0,1}" — {accept, reject} is a function.

Intuitively, P, computes on any w € ¥* always w.r.t. a k-
partition of w by passing messages from the left to right,
beginning from the first computer C; consecutively until
the last computer Cj. We designate the last computer Cj
to be the only one to decide on the acceptance of the input.
The message to be transmitted by every C;, 1 <i <k —1,
depends on «; and the message obtained from C;_;.

A computation C of P, on an input w € ¥* w.r.t. a k-
partition (a1, ae,...,ax) is denoted by a function

C: 2" — 201" faccept, reject} st. Vwe X*,

m1$ma$ - - - $my_1$my € C(w), where

oem; € ®(an).
oem; € ¢i(ai,mi—1),2<i<k—1
o my = (o, mr_1) € {accept, reject}.

The set of all messages that a Py uses in the computation is
given by

k—1
M(Py) = (3 U | (2" x {0,1}7) st

o |[M(Py)| < o0

° M(Pk)ﬂM(Pk) Xt =0
or all messages must be prefiz-free.

If C yields to ms = accept, then C is an accepting com-
putation for w. Otherwise, it is rejecting. A language L
is accepted by Py, i.e. L = L(Py) iff for all w € L there
is a computation of P, which yields to accept w.r.t. all k-
partitions of w and for all w & L, no accepting computation
may exists.

We define

as the l-way uniform k-party message complexity of
Py. The minimum of all these message complexities for a
fixed language is the 1-way uniform k-party nondeter-



ministic message complexity of L, i.e.

nmck(L) = min{|,M(Pk)| |L = L(Pk)}.

In [1], we showed that the k-party nondeterministic message
complexity provides a lower bound for ns(L) for any regular
language L.

The proof lies on the fact that each participating computer
simulates the action of the minimal nfa for any regular lan-
guage L. As soon as any of the participating computers re-
ceived an information about the last state visited by the
preceding computer while reading the part of the input it
has, the receiving one will start simulating the nfa with its
part of the input starting from the received state. Realized
that the number of messages that will be use is bounded
above by ns(L).

Furthermore, in [2], it was shown that for all k£ > 3, there is
a sequence of regular languages L ) such that

n5(L g ny) > 290/ ),

where
Ly ={ we{0,1}*" | Jv<w.
v=ayz € {0, 1’ A(x=yVa#£z)}

We note that this reasonable generalization of the 2-party
model in [15] improved the lower bounding capability of
communication complexity vis-a-vis the problem met in [16,
18]. Noticed that this technique may lead to an exponential
gap between ns(L) and the provided lower bound for some
languages. At the moment this lower bound techniques is
the best known so far. However, Problem 1 remains open.
Moreover, we must;

Problem 2 Find a lower bound method for ns(L) that gives
a lower bound which is polynomially related to ns(L).

3. AMBIGUITY ON NFA

Degree of ambiguity is also an intensively investigated con-
cept in automata theory. Measuring the degree of nondeter-
minism in finite automata had been considered in [16, 21,
25, 27, 32]. To understand the influence of the degree of
ambiguity on the size of nfa’s is the central question in this
sub-area.

Let M =(Q,X%, I, A, F) be an nfa. We associate the follow-
ing ambiguity function:
ambig,,: Z*UN — N,
such that for all w € ¥,
ambig ,(w) = [{ v € Path(M) | x5 (u) = w }|
and for all n € N, where
PathiM)={z€ Q- (Z-Q)"|Fw e X" s.t. xg(x)=w}
and
Xoi Q- (BUQ)" —
s.t. for all ¢ € Q, x5 (g) = A while for all x € &, x5 (z) = =.

And we define

ambig,,(n) = max

ambi w).
weX*; Jw|<n lgM( )

It is imperative that, the above function measures the amount
of paths which can be traced successfully from an element of
I and ending with a state in F' by an automaton on a given
input of length at most n.

Ambiguity in nfa’s provides information on the number of
ways the computing model accepts an input word. If an
nfa M accepts every word in L(M) in one and only one
way or computation, then such an nfa is called unambiguous
nfa. If it accepts words in k computation for some constant
k, it is called constantly ambiguous nfa. If it accepts the
words polynomially many times, then it is a polynomially
ambiguous nfa. Bounding its asymtotic behavior provides
us the following classes of nondeterministic finite automata.
We denote by NFA the class of all nfa’s.

DFA = {MEeENFA|Yg€Q,0€%,

|({(g,0)} x Q)NA[ <1, |[I] <1}
UNFA = {M € NFA |ambig,,(n) <1, Vne N}
CAFA = {M € NFA |ambig,, € O(1)}
PAFA = {M € NFA |ambig,, € UrenO(n") }.

The following is the ambiguity hierarchy of finite automata:

DFA C UNFA C CAFA C PAFA C NFA.

In [16], the following hypothesis on the computation tree
of any unambiguous nondeterministic finite automata was
given:

Strict Tree Property

The computation tree of any minimal M € UNFA
on an input w has exactly one path P from root to
a leaf with several nondeterministic guesses and
all paths having only one vertex in common with
P do not contain any nondeterministic branch-
ing.

However, in [3] we provided a counter example by showing a
minimal unambiguous finite automaton that accepts a word
wherein the computation tree disobeys the Strict Tree Prop-
erty. In particular, the automaton M that would accept the
following language,

L(M)={0,1}1U{0,1}*10",

where

M=(Q,%,{q},A,F) € UNFA s.t.

Q: {q07q1?q2}

r= {071}

F= {q}

A= {(QO,17QO),(qO71,Q1),(QO,1,Q2),

(q0707q0)> (qlaoa q1)7 (qlaoa q2) }

Another counter example was also provided independently
by Kupke [19].



This (strict tree) property on the computation tree of nonde-
terministic finite automata is found to be satisfied by some
automata which are different from the class of determin-
istic finite automata (DFA). In [3], we introduced a class
of nfa’s between DFA and UNFA, and we call it SUFA.
SUFA contains properly DFA and is properly contained in
UNFA. Thus we have

DFA Cc SUFA c UNFA

Realized that SUFA is the class of automata that satisfy the
strict tree property and as far as its asymptotic behavior,
they belong to UNFA.

As far as the descriptional complexity results on these ambi-
guity hierarchy of finite automata, the exponential gaps be-
tween these classes seems inevitable. This can be attributed
to the subset construction used in [26].

For a given sequence of automata (M;);>0, we define |Qa1|(7)
as the number of states of M. For a function f on the set of
natural numbers with f € O(n) and two classes X; and X»
of finite automata,we will say that there is a f(n)-size gap
or f(n) separation between X; and X, denoted by

X1 <fm) Xa,

if there is a sequence of regular languages L; € (22* YN for
i >0, such that there exists a sequence (M;);>0 € X2 with
L(M;) = L; and |Qum| € O(7) and all sequences (N)i>0 €
X{¥ with L(N;) = L; satisfy |Qu| € Q(f(4)).

The following gaps between ambiguity classes have been es-
tablished:

DFA <o» UNFA <2»n CAFA
and
PAFA <on NFA.

The exponential gap between s(L) and the size of the min-
imal unambiguous finite automata for some languages L is
known since 1978 [29, 27, 32]. The exponential gap between
UNFA and CAFA had been established in [27, 32]. Le-
ung in [21] proved the exponential gap between PAFA and
NFA.

In [3], the exponential gap between DFA and SUFA is eas-
ily obtained, i.e.

DFA <,» SUFA.

One may regard as a central open question in the context of
automata ambiguity the following :

Problem 3 Prove or disprove the existence of an exponen-
tial gap between CAFA and PAFA.

A partial solution to this problem has been provided in [16],
where an exponential gap between the sizes of k-ambiguous
nfa’s and polynomially ambiguous nfa’s was established for
every k.

Similar question can be asked between SUFA and UNFA.

Problem 4 Prove or disprove the existence of an exponen-
tial gap between SUFA and UNFA.

4. 2DFA AND 2NFA

Classic result in [26] tells us that for any regular language L,
we can construct a (minimal) deterministic finite automaton
(dfa) M for L with at most 2/“~! number of finite states
from a given (minimal) nondeterministic finite automaton
(nfa) N with |@Qx| number of finite states recognizing L.

In particular, suppose we have a sequence of regular lan-
guages {Ly}r>1, where

Ly = {ulv|u e {0,1}",v € {0,1}* '}

for every natural number k. It is easy to realize a minimal
nfa with k£ + 1 number of states for L; and a minimal dfa
can be constructed with 2¥ number of finite states [25, 9].

For the simple generalization of finite automata, which we
will call the two-way (non)deterministic finite automata (2dfa,
2nfa), there is no result yet (similar to the basic models) that
would fixed the relationship between 2nfa’s and 2dfa’s.

It is well known that these models of computations accept
exactly regular languages [25, 9].

Sakoda and Sipser [28] proposed the following question since
1978:

Let L be any regular language. We denote by s2(L) the size
of the minimal 2dfa accepting strings in L and by ns2(L)
the size of the minimal 2nfa accepting all strings in L.

Problem 5: Does there exist a polynomial f, such that
ns2(L) < f(s2(L))

for every reqular language L.

The first attempt to answer this question was done in [28]
showing the exponential gap between 2nfa and 2dfa for spe-
cial automata which allow to read the input several times
from left to right.

In 1980, Sipser [31] consider a so-called sweeping automata
whose reading head may change direction only at the end-
markers. In [31], it was shown that for a specific sequence
of regular languages, namely {By},>1,

ns(By) = O(n) and s2(By) > 27,

for every natural number n and where ns(By) is the size of
the minimal nfa for B,.

The drawback of this result was on the size of B, which is
o, Obviously, the size of the alphabet of B, grows with
n. Leung [20] proved a maximal possible exponential gap
between nondeterminism and determinism in the sweeping
automata model for a sequence of regular languages over

{0,1}.

In [13], the idea of degree of non-obliviousness of a 2dfa M
as a function far : N — N, where faq(n) is the number of
different orders of the indexes of the tape cells appearing in



computations of M on inputs of length n was introduced. It
was proved that there is an exponential gap between 1nfa’s
and 2dfa’s with the degree of non-obliviousness bounded by
o(n).

Note that Micali [23] proved that deterministic sweeping
automata may require a number of states that is exponential
in s2(L) for some specific regular language L. This implies
that the previous results do not solve Problem 5.

Unfortunately, Problem 5 remains open until now. This
problem became one of the fundamental challenges in the
boundary between automata theory and complexity theory.
Berman [4] and Sipser [31] showed that if one proves an ex-
ponential gap between 2nfa and 2dfa such that the words
involved in the proof are polynomial length, then the de-
terministic logarithmic space (DLOG) is not equal to the
nondeterministic logarithmic space (NLOG). Thus Problem
5 is related to the famous open question, DLOG C NLOG?

Another way to solve Problem 5 is to prove an existence of a
particular regular language witnessing at least a large poly-
nomial gap between the sizes of minimal 2dfa’s and minimal
2nfa’s. The largest known gap so far is quadratic [14]

Problem 6: Is there a sequence of regular languages { Ly }n=1
such that

52(Ln) > f(ns2(Ln)),

where f is a increasing function that grows asymptotically
faster than n?.

The language presented by Sipser in [31] is a probable can-
didate for proving the gap between 2dfa’s and 2nfa’s.

5. FINAL REMARKS

We have presented some problems which are in the core of
automata theory. Certainly this is just some of the many
still hard open problems in the area that need to be solved.
Moreover, there also several open problems about proba-
bilistic and quantum finite automata or automata accepting
infinite words. Working on these problems will help au-
tomata theory increases it popularity and its acceptance to
theoretical computer science community. Progress on the
methods of solving these problems is possible.
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