Algorithms Research: Finding a Problem

Eliezer A. Albacea
Institute of Computer Science
University of the Philippines Los
Bafos
College, Laguna, PHILIPPINES

eaalbacea@uplb.edu.ph

ABSTRACT

In this paper, we survey the areas in algorithms that one can start
a research on. It covers the areas on bounds on complexity like
upper and lower bounds. Then, it deals on tackling problems
involving special cases and problems on practical algorithms.

Keywords

Algorithms, bound of complexity, lower bound, upper bound,
practical algorithms.

1.INTRODUCTION

The area of algorithms is a very wide area of research. In fact,
several books have been written that covers all aspects of this
area of research in Computer Science. One particular
comprehensive book in this area is the Introduction to
Algorithms by Cormen, Leiserson and Rivest (1990). Several
journals are also dedicated to publishing exclusively for
algorithms papers. Examples of journals exclusive to algorithms
papers are Journal of Discrete Algorithms, Algoritmica, Journal
of Algorithms and many more. Also being held every year are
several conferences solely on the subject of algorithms.

In this paper, we shall identify aspects of algorithms where one
can do research. Specifically, we shall concentrate only on design
and analysis of algorithms. Of course, one can simply design and
analyze a new algorithm in some areas of algorithms like graph
algorithms, computational geometry, data structures,
optimization algorithms and many other areas, but identifying
where to start is usually a problem. Our concern in this paper is
to identify where to start looking for a problem. In particular, we
shall be looking at lower bounds, upper bounds, special cases and
practical implementations. This paper will mostly report the
author’s experience in doing algorithms research.

2.BOUNDS ON COMPLEXITY

The primary definition of complexity is running time. For a given
problem, time complexity is a function that maps problem size
into the time required to solve the problem. Typically, we are
interested in the (inherent) complexity of computing the solution
to problems in a particular class of problems.

For example, we might want to know how fast we can hope to
sort a list of n items, initially in an arbitrary order, regardless of
the algorithm we use. In this case, we seek a lower bound,

13

denoted by L(n), on sorting, which is a property of the sorting
problem and not of any particular algorithm. This lower bound
says that no algorithm can do the job in fewer than L(n) time
units for arbitrary inputs, i.e., that is every sorting algorithm must
take at least L(n) time in the worst case. Thus, the lower bound
considers all the algorithms including those undiscovered ones.

On the other hand, we might also like to know how long it would
take to sort such a list using a known sorting algorithm with a
worst-case input. Here, we are after for an upper bound, denoted
by U(n), which says that for arbitrary inputs we can always sort
in time at most U(n). That is, in our current state of knowledge,
we need not settle for an algorithm which takes more than U(n)
time, because an algorithm which operates in that many steps is
known. For this reason, algorithms are normally analyzed to
determine their worst-case behavior, in the hope of reducing U(n)
even further demonstrating that some new algorithm has worst-
case performance which is better than any previous algorithm.

One way of seeing the distinction between lower and upper
bounds is to note that both bounds are minima over the maximum
complexity of inputs of size n. However, L(n) is the minimum,
over all possible algorithms, of the maximum complexity. In
trying to prove better lower bounds, we concentrate on
techniques that will allow us to increase the precision with which
the minimum, over all possible algorithms, can be bounded.
Improving an upper bound means finding an algorithm with
better worst-case performance. This difference leads to the
differences in techniques developed in complexity analysis.

While there are apparently two complexity functions for
problems, lower and upper bounds, the ultimate goal is to make
these two goals coincide. When this is achieved, the optimal
algorithm will have been discovered and we obtain L(n) = U(n).
For some of the problems, this goal is not yet realized. Thus, the
research area is to reduce the gap between L(n) and U(n) because
normally L(n) is lower than U(n) for some problems.

2.1Lower Bounds

The more difficult of the bounds on problem complexity is the
lower bound. There is no algorithm to analyze; few general
principles to apply; proofs of result in this area often require

outright cleverness. The results must apply to any algorithm,
including undiscovered ones.

For some problems, the lower bound is trivial. Consider the
problem of finding the maximum element of an array of n keys.
Any algorithm that solves this problem will need at least n-1
comparisons. To see this, we obviously need to compare every
element with the maximum of elements previously considered.
Hence, a lower bound of Q(n).

2.1.1 Information-Theoretic Lower Bound

However, for other problems the lower bound is not trivial. There
is what we call the information-theoretic lower bound that can be
used. We illustrate this method of identifying a lower bound
using sorting, i.e., we solve the lower bound for sorting.

A sorting algorithm that sorts elements by comparing the items
until a sorted order is obtained is called a comparison-based
sorting algorithm. Comparison sorts can be viewed abstractly in
terms of decision trees. A decision tree represents the
comparisons performed by a sorting algorithm when it operates
on an input of a given size.

Example: A decision tree for sorting three elements is illustrated
in Figure 1:

Figure 1. Decision tree for sorting 3 elements.

a15a2

}/\

<ag.ap .az >

A\

<ap.a3.a] * Saz.ap.a?

<ay .8z .83

<a) .a3.4p > <az.a .apd

The length of the longest path from the root of a decision tree to
any of its leaves represents the worst-case number of
comparisons the sorting algorithm must perform. Consequently,
the worst-case number of comparisons for a comparison sort
corresponds to the height of its decision tree. A lower bound on
the heights of decision trees is therefore a lower bound on the
running time of any comparison sort algorithm.

Theorem: Any decision tree that sorts n elements has height Q(n
log n).

Proof: Consider a decision tree of height h that sorts n elements.
Since there are n! permutations of n elements, each permutation
representing a distinct sorted order, the tree must have at least n!

14

leaves. Since a binary tree of height h has no more than 2" leaves,
we have n! < 2" which by taking logarithms implies h 2 log(n!)
since the log function is monotonically increasing. From
Stirling's approximation, which is given by

= 27 (ley (1 +6(1/n)).

This implies n! > (n/e)" where e = 2.7182... is the base of the

natural logarithm. Thus,

h > log (n/e)"
h=nlogn-nloge

h=Q (nlogn).

Theorem: The lower bound for the sorting problem is Q (n log
n).

Proof: This follows from the theorem above.

2.1.2 Oracles: A Tool for Establishing Lower
Bounds

An oracle is a fiendish enemy of an algorithm which at every
opportunity tries to make the algorithm do as much work as
possible. The idea is that an algorithm tries to solve the problem
in as few time as possible while the oracle tries to foil this by
making the algorithm do as much work as possible.

Example: Finding the Minimum of a Set with n Elements

As we have mentioned earlier, an oracle attempts to make the
algorithm does as much work as possible, while the algorithm
itself attempts to do as little work as possible. In short, the lower
bound is constructed via an adversary technique, i.e., the
algorithm attempts to do as little work as possible while the
oracle spoils this by making the algorithm do as much work as
possible.

For purposes of lower bound computation, we assume without
loss of generality that the elements in the set are distinct. The
basic operation of the algorithm is a comparison operation that
compares two elements of the set at each step. When two
elements are compared, the smaller value is termed as the
"winner" while the higher value is termed as the "loser". At any
stage of the in the algorithm, we will have two types of elements:

L - elements that have lost to some other elements

W - elements that have not lost to some other elements

In the beginning we only have type W elements. The algorithm
designer has the option to compare two elements x and y where x
or y may come from L or W, i.e.,

==l N ol ol
2|l | 2|]«

The adversary strategy (or the strategy of the oracle) in order to
make the algorithm do as much work as possible is to adopt the
following answer when x and y are compared:

xl y—> 4 L
W either X<y
L x>y either

Note that the objective of the oracle is to make the size of W stay
in its present size (note that the size of W cannot increase so that
the best it can do is to make it stay in its present size every time a
comparison is made). For example, if X is from L and y is from
W, the oracle will make sure that x>y so that the size of W will
be maintained.

The objective of the algorithm, on the other hand, is to reduce the
size of W. The algorithm stops when the size of W is one. This
one element in W if, of course, the minimum element.

The algorithm will be successful in reducing the size of W if it
compares two elements from W each time. This is because if it
compares two elements from W, one of the elements will move
to L regardless of what the adversary says.

Clearly, W whose original size is n is reduced to one after n-1
comparisons of elements coming from W. Thus the lower bound
for this problem is n-1.

2.1.3 Problem Reduction

Another approach that can be used to prove the lower bound of a
problem P is to show that an algorithm for solving P, along with
a transformation on problem instances, could be used to construct
an algorithm to solve another problem Q for which a lower
bound is known. Some popular examples of this are: reduction of
context-free language recognition to matrix multiplication and

15

the mutual reductions between Boolean matrix multiplication and
transitive closure..

Example: A string is a cyclic shift of another string when the
characters in the cyclic shift are in the same relative order as the
original string, but starts at a different position. For example, the
strings

ringst

ngstri
are cyclic shifts of
string.

Problem P (Cyclic Shift): Consider two strings S and C of the
same size. Determine whether C is a cyclic shift of S or not.

Problem Q (String Matching): Given a text T with n characters
and a pattern P with m characters. Check if P is a sub-string of T.

We show that P can be reduced to Q. First, we form a string SS,
then one can verify that C is a cyclic shift of S if and only if C is
a sub-string of SS. We can therefore apply the string matching
algorithm to the pattern C and text SS.

Since the lower bound of string matching is known, the lower
bound for cyclic shift is therefore also known.

2.2Upper Bounds

We mentioned that the upper bound for a problem is dictated by
the best worst-case existing algorithm, that is, we consider all the
discovered algorithms and their complexities, the upper bound is
the complexity of the best algorithm.

An upper bound is set when a new algorithm is introduced and
this new algorithm has a better complexity than any of the
existing algorithms for the problem. All that is needed is to
analyze the new algorithm and show that it is better than existing
ones.

Upper bounds, however, is sometimes differentiated as practical
upper bound and theoretical upper bound. Practical upper bounds
are produced by algorithms that can easily be implemented and
the theoretical upper bounds are produced by algorithms that
when implemented will run worse than the practical upper bound.
Normally, theoretical upper bound bounds are shown
theoretically to have a lower complexity than practical upper
bounds. One opportunity for research is to narrow the gap
between theoretical upper bound and practical upper bound.

Example: A practical upper bound for the selection problem was
shown by Blum, et. al. (1973) to require 5.4305n comparisons.
Schonhage, et.al. (1976) improved this by showing a theoretical
upper bound of 3n + o(n) comparisons. Albacea (1992) tried to
narrow this gap by producing three algorithms that runs using
5.3975n, 4.9118n and 4.8937n comparisons.

This area of research is aside, of course, from narrowing the gap
between a theoretical upper bound and lower bound for a
problem. There are two approaches of narrowing the gap between
the two bounds. One is to take the algorithm exhibiting the upper
bound and then try to reduce its complexity by improving the
said algorithm. Or alternatively, one can simply design a totally
new algorithm with a better complexity from the existing
algorithm exhibiting the upper bound.

Example: The problem of finding the closest pair in a set of n
points in a Euclidean plane was solved using a divide and
conquer method. The original solution runs in O(n’log n) time,
but the same algorithm was later improved to run in O(n log® n)
time and ultimately improved to run in O(n log n) time. This is
an example taking an algorithm that exhibit the upper bound and
then the same algorithm is improved.

The approach of totally designing a new algorithm is exhibited in
the solution to the problem of finding the convex hull of a set of
points in a plane. This was solved first in Graham (1972) using
the algorithm which was later called the Graham’s Scan
algorithm. The algorithm runs in O(n log n) time. But this was
later improved in Jarvis (1973) with the introduction of the Jarvis
March algorithm which runs in O(nh) time where h is the number
of points in the convex hull. The improvement to Graham’s Scan,
however, is achieved only when h < log n.

3.SPECIAL CASES

There are so many problems that have been solved using a
general input. Sometimes one can produce algorithms with better
complexity when the input is restricted. For example, a problem
on graphs may have been solved already or in some cases is
difficult to solve. By restricting the inputs to say trees one may
be able to produce more efficient algorithms.

Example: The bipartite drawing problem for general bipartite
graphs was shown by Garey and Johnson (1983) to be an NP-
complete problem. But this was shown to be solvable in
polynomial time for bipartite permutation graphs by Spinrad,
et.al. (1987) and for trees by Shahrokhi, et.al. (2001). Albacea
(2005) solve the problem for 2-dimensional meshes in
polynomial time also. Specifically, Shahrokhi, et.al. (2001)
presented an O(n'-®) time algorithm for trees. Paglinawan and
Albacea (2004) improved the running time for trees to O(n log
n). Albacea (2006a) solved the case of complete binary trees by

16

giving an O(n) algorithm. Later, the case for binary trees was
solved in O(n) time in Albacea (2006b).

4.IMPROVING THE BEST PRACTICAL
ALGORITHM

Given an algorithm considered to be the best practical algorithm.
One obvious research area is to find an improvement or an
alternative algorithm that runs faster when implemented.

Example: It is well known that Quicksort is the most practical
sorting algorithm. Hence, when one is presented with the sorting
problem one most probably will use Quicksort to solve the
problem. However, Quicksort has some weaknesses. One such
weakness is its worst case being O(n?). Although fast on the
average, with a bad input, it may take a lot of time. Worst being
recursive, the algorithm will run out of memory when executed
with a bad input. The research opportunity is this case is to
improve the worst case of Quicksort without sacrificing its
average case performance. Albacea (1995) improved the worst
case of Quicksort by introducing a Quicksort-based sorting
algorithm called Leapfrogging Sampelsort. This new algorithm
improved the worst case from O(n?) to O(nlog? n). However, this
was done at the expense of degrading a little bit the average case
running time.

S.CONCLUSIONS

In order to find a problem, one can go through the literature and
check if a problem has an established lower bound. If none, then
this certainly is an opportunity for research. Regardless of
whether the lower bound is established or not, one can check the
upper bound. One research opportunity is to reduce the upper
bound. You can, however, reduce the upper bound only when the
upper bound and the lower bound for the problem do not match.
But, if the lower bound and upper bound match, then one can
simply get the best practical algorithm and try to improve it.

A practical algorithm can be improved by refining the existing
algorithm. The refinement should either make the algorithm run
faster or produce an algorithm with a better theoretical running
time than the existing algorithm. Alternatively, one can simply
introduce a new practical algorithm that will run faster the
existing one.

On the other hand, if the input to the problem is a general input,
then one can certainly work on the special cases.

6.REFERENCES

[1] Albacea, E.A. Complexity of Serial and Parallel
Algorithms, PhD Thesis, Australian National
University, 1992.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Albacea, E. A. Leapfrogging samplesort. Lecture
Notes in Computer Science 1023, Dec 1995, 1-9.

Albacea, E.A. Design and Analysis of Algorithms: An
Introduction, JPVA Publishing House, 2003.

Albacea, E.A. Bipartite drawing of 2-dimensional
meshes, Proceedings 5" Philippine Computing Science
Congress (PCSC 2005), University of Cebu, Cebu
City, March 4-5, 2005.

Albacea, E.A. A linear algorithm for bipartite drawing
with minimum edge crossings of complete binary
trees, Philippine Computing Journal, Vol 1, Number 1,
March 2006a, 1-5.

Albacea, E.A. Bipartite drawing with minimum edge
crossings of binary trees and 3-Cayley trees, 6™
Philippine Computing Science Congress (PCSC
2006), Ateneo de Manila University, Metro Manila,
March 28-29, 2006b.

Blum, M, Floyd, R.W., Pratt, V., Rivest, R.L., and
Tarjan, R.E., Time Bounds for Selection, J. Comput.
Systems Sci., 7 (1973), 448-461.

Cormen, T.H. Leiserson, C.E. and Rivest, R.L.
Introduction to Algorithms, MIT Press, 1990.

Garey. M.R. and Johnson, D.S. Crossing number is
NP-complete, SIAM J. Algebraic and Discrete
Methods 4 (1983), 312-316.

17

[10] Graham, R.L. An efficient algorithm for determining
the convex hull of a finite planar set, Information
Processing Letters 1 (1972), 132-133.

[11]Jarvis, R.A. On the identification of the convex hull of
a finite set of points in the plane, Information
Processing Letters 2 (1973), 18-21.

[12]Paglinawan, N.M. and Albacea, E.A. Bipartite
drawing of trees with minimum edge crossings,
Proceedings 4" Philippine Computing Science
Congress (PCSC 2004), University of the Philippines
Los Bafios, February 14-15, 2004.

[13] Preparata, F.P. and Shamos M.I., Computational
Geometry: An introduction, Springer-Verlag, 1985.

[14] Shahrokhi, F., Szekely, L.A., and Vrto I. On bipartite
drawings and the linear arrangement problem, SIAM
J. Computing 30 (2001), 1773-1789.

[15] Shnonhage, A., Paterson, M., and Pippenger, N.,
Finding the median, J. Comput. Systems Sci. 13
(1976), 184-199.

[16] Spinrad, J, Brandstadt, A., and Stewart, L. Bipartite
permutation graphs, Discrete Applied Mathematics 19
(1987), 279-292.

