Competitive Online Scheduling
with Fixed Number of Queues

Richard Bryann L. Chua
Department of Physical Sciences
and Mathematics
University of the Philippines Manila
Padre Faura St., Ermita, Manila
(632)5265858

richua @ up.edu.ph

ABSTRACT

One of the complex parts of an operating system design is
CPU scheduling, where the OS schedules a sequence of arriving
jobs to use the CPU, without knowledge of the time and number
of arriving jobs and their execution times. One of the measures
of performance of a scheduling algorithm is the average flow
time. For a long time, most major operating systems, like
Windows and UNIX used a scheduling algorithm based on the
Multilevel Feedback scheduling algorithm. In this research, we
present the Randomized Multilevel Feedback 2 (RMLEF2)
scheduling algorithm, which is a version of the RMLF algorithm
proposed by Kalyanasundaram and Pruhs, and show that it has a
competitive ratio of O(ln n) in terms of minimizing flow time

against an online adaptive adversary. Since this obtains the
Q(log n)lower bound for any randomized scheduling algorithm,

it has a tight competitive ratio of @(Inn)-

Keywords: randomized multilevel feedback, scheduling,
competitive analysis, online algorithm, randomized algorithm

1. INTRODUCTION

CPU scheduling is essential in any multiprogramming
systems. In such system, processes arrive over time and the
processor should decide which process to run, in ways that meet
system objectives, such as response time and throughput [1].

In [13], Motwani, et. al. complained that many early
researches in scheduling have been concerned with clairvoyant
scheduling, where the characteristics of a job, like its release
time and execution time, are known beforehand. Many
scheduling algorithms were created from these researches,
including the shortest remaining processing time (SRPT), which
is considered the most optimal scheduling algorithm that
minimizes the total flow time (see [5, 9]). The clairvoyant
approach is not applicable in reality because the nature of the
scheduling problems encountered is nonclairvoyant, meaning it
is impossible to have a priori knowledge of the running time of
processes and the time that they will arrive. Since the operating
systems does not know the running time of the processes, it is
not possible to obtain an optimal average flow time. Hence, in
nonclairvoyant scheduling analysis, one uses the method of
competitive analysis. In competitive analysis, the performance
of a nonclairvoyant scheduler is compared to that of an optimal

18

Jaime D.L. Caro
Department of Computer Science
University of the Philippines Diliman
Diliman, Quezon City
(632)9202080

jaime.caro @up.edu.ph

clairvoyant scheduler for each set of input processes. The
nonclairvoyant scheduler is compared to that of an optimal
clairvoyant scheduler for each set of input processes. The
nonclairvoyant algorithm is measured in terms of its competitive
ratio, ¢,, which is defined as

’ COPT (J)

where C4(J) denotes the cost of the schedule produced by the
nonclairvoyant algorithm A on input J, Cpopy(J) denotes the cost
of the optimal schedule produced by the optimal clairvoyant
algorithm OPT, and the maximum is over all inputs J with n
processes. In [8], Kalyanasundaram and Pruhs interpreted the
competitive ratio as the payoff to a game played between an
online nonclairvoyant algorithm and an all-powerful malevolent
adversary OPT that specifies the input J, and schedules J
optimally.

In [9], Kalyanasundaram and Pruhs proposed the
Randomized Multilevel Feedback (RMLF) scheduling
algorithm, which is a variant of the Multilevel Feedback (MLF)
scheduling algorithm used in Windows and UNIX, and showed
that it has a competitive ratio of O(log n log log n), where n is
the number of jobs. Their result have been obtained with an
RMLF algorithm where the highest queue is determined by the
length of the longest job. However, in most operating systems,
the number of queues is fixed. In this research, we propose a
version of RMLF, where the number of queues is fixed, and
determine its competitive ratio.

2. RELATED RESULTS

In [16], Pruhs et. al. classified scheduling algorithms into
online and oftline algorithm. In an online algorithm, the
algorithm does not have access to the entire input sequence, as it
makes its decision. On the other hand, an offline algorithm has
access to the entire input sequence. Another classification used
by Pruhs et. al. in [16] is whether an algorithm is clairvoyant or
nonclairvoyant. A nonclairvoyant algorithm has no knowledge
of the characteristics of the running jobs while a clairvoyant
algorithm can gain knowledge of the characteristics of the
running job. The most widely accepted measure of the
performance of a scheduling algorithm is the flow time — the
time spent by the job in the system between its release and
completion, that is

E=C -r,

i i

where £} is the flow time of job J;, C; is the completion time, and
r; 1s its release time. Flow time is also called wait time or
latency [16].

Research on nonclairvoyant scheduling was started by
Motwani et. al. in [13]. They have obtained an (2 -2/(n +1))

competitive ratio for any static deterministic nonclairvoyant
scheduling algorithm and an Q(n” 3) competitive ratio for any

dynamic deterministic algorithm. In static scheduling, all jobs
are released at time 0, while in dynamic scheduling, jobs have
arbitrary and nonnegative release times.

Randomization can be done to a scheduling algorithm to
improve its performance. Motwani et. al. have shown in [13]
that a static randomized scheduling algorithm has a competitive
ratio of Q(z —4 /(n + 3)), which is the same as the deterministic

one, but a dynamic randomized scheduling algorithm has a
competitive ratio that improves to Q(log n)

Kalyanasundaram and Pruhs proposed the Randomized
Multilevel Feedback (RMLF) scheduling algorithm in [9].
RMLF is similar to the multilevel feedback scheduling used in
UNIX systems described by Bach in [1]. The idea behind
RMLF is to try to approximately behave like SRPT [2]. They
have showed that RMLF has a competitive ratio of
0(lognloglogn) against an adaptive adversary. In an

adaptive adversary, the adversary knows all the actions taken by
RMLF for servicing the input instance revealed to RMLF up to
time ¢, and may makes its decision based on this knowledge [4].
Becchetti and Leonardi in [2] performed a competitive analysis
against an oblivious adversary and found it to have a
competitive ratio of O(log n). In an oblivious adversary, the
input sequence is constructed in advance and the adversary pays
the optimal cost [4]. Becchetti et al. later in [3] used smoothed
competitive analysis with partial bit randomization smoothening
model to analyze the multilevel feedback scheduling algorithm
and found it to have a smoothed competitive ratio

0((2k / o-)1 + (2" / 0)22K "‘) , where 2% is the maximum
processing time, k is a constant in the smoothed processing time,
and o is the standard deviation of the distribution.

3. SCHEDULING
DEFINITION

We are given a set J of n jobs and these are to be run on a
single processor machine. Each job Jj, 1 <j <un, is characterized
by a release time #; and an execution or processing time x;, x; > 0.
We order the jobs in J by increasing release times, that is, given
two jobs J; and J,, if i <j, then r; <r;.

PROBLEM

RMLEF?2 is an online nonclairvoyant scheduling algorithm
which means it does not know the arrival time of a job until the
job is released. The RMLF2 also does not know the execution
time of a job until the completion of a job. To be more
convenient, we will assume that the length of the shortest job is
2 and this is known by the algorithm a priori.

Definition 1 Define the following quantities
1. LetJ={J,J, ..., J,} be the set of jobs.
2. Letr; be the release time of a job J;.

19

3. Letx; be the processing time of job J;.

4. Let w(t) be the amount of time that .J; has been run before
time ¢.

5. Let y(?) = x; — w(¢) be the remaining time that J; needs to
be processed at time 7.

6. Let tbe a constant and is set to 12.

7. Let B, 3 <j < n, be an exponentially distributed random
variable ~ with probability distribution function

Pr[/a’j Sx]zl—exp(—len])zl—J .

8. Let/be the index of the highest queue.

9. Foralli,0<i</andforall j, 1 <j<n, define a target
TI,J =2/ max(l,Z —ﬁl_). T;; is the maximum amount of

time job J; is run in the machine as it reaches O,
Randomization is performed on the target in order to
improve its performance.

10. Foralli, 0 <i</and forallj, 1 <j<n, define the quantum
as

o - 27 max(1,2-4,) ifi>1
v max(12-8,) ifi=0
Quantum is the maximum amount of time job J; spent
running in Q;.
11. Let C; be the completion time of job J.
12. Let F; = C; - r; be the flow time of a job J,. The total flow
time of the set Jis f(J) = ZJ F;- The goal of any

scheduling algorithm is to minimize the total flow time.

We compare RMLF2 against an online adaptive adversary.
We measure the cost of RMLF2 and the adversary by the total
flow time. The adversary is charged with the optimal flow time.
We can say that any randomized algorithm 4 has a competitive
ratio of ¢ against an adaptive adversary if for any input J,
¢ = max EEA)]
7 FOPT (J)
where the expectation if taken over any possible J.

4. RANDOMIZED MULTILEVEL
FEEDBACK ALGORITHM WITH

FIXED NUMBER OF QUEUES (RMLF2)
RMLF?2 has priority queues Qy, O, ..., O, We say that O,
is lower than Q; if i <j.

Algorithm 2 At any time ¢, RMLF2 behaves as follows:

1. When a job J, is released at time 7y, it is placed on Q, and
the target T is set to max(1, 2 — ;). If; just prior to 7, Oy
was empty and J; is currently running, J; is preempted and
Jh is run.

2. Let Q. be the lowest nonempty queue. RMLF2 always
run the job at the front of O;;. Let Jj € Q,_, be the job

that is being run. If J; has been run for a time Q| I

a. Ifi—1#1
i. JobJ;is removed from Q;, and placed on Q.

ii. The target T}; is set to 27, ; = 2" max(1, 2 — f3)).

iii. The job at the front of O, is run. If O, is empty,
the job at the front of the new lowest nonempty
queue is run. If none is found, the algorithm
terminates.

b. Ifi—-1=1

i. Job J;is removed from Q; and placed on Q,.
ii. The job at the front of Q; is run. This process
continues until Q, becomes empty.

3. When a job J; that is being run is completed, it is removed
from the queue and the first job of the lowest nonempty
queue is run. If there are no more jobs, the algorithm
terminates.

5. RMLF2 ALGORITHM ANALYSIS

Definition 3 Define the following quantities

1. Let RMLF2 be the RMLF2 scheduler.

2. Let Uppyra(2) be the set of jobs that are released by time ¢,
but not completed by the RMLF2 by time 7.

3. Let ADV be the adversarial scheduler.

4. Job J; is short for O, if 2" ! <x< 27+ 272 Job J; is long
for O, if o> 2" +2°,

5. Job J;is unlucky if it is short for some Q;, and is promoted
to Q,- at some time. Mathematically, this
isil < x, < 2¢1 4 272 in terms of processing time. In

terms of quantum, this is 0 < y; <22,
6. Let BL be the set of jobs J, e U posiia @) such that J; is not

in the front of a queue at time ¢, and such that if

J, €0, (¢)then J; is long for Q.

7. A queue Q; is small at some time ¢ if there is a contiguous
subqueue C of BL N Q) with

z (t) ||’

, 3<i<n
e Tlnn

5.1 HIGH PROBABILITY ARGUMENTS

There are two events that let an adversary significantly
defeat RMLF2, namely, the presence of unlucky jobs and small
queues [9]. We prove that these two events happen with low
probability, therefore, we can ignore them in our analysis.

5.1.1 UNLUCKY JOBS
We prove in this section that the probability of the presence
of unlucky jobs even for the usual MLF algorithm is low.

Lemma 4 The probability that the number of unlucky jobs is
greater than (c+ 1) Inn/Inln nis at most 1 / n¢, ¢ > 2.

Proof. Let Jj be a job that is short for Q;. Note that
T, =2 " max(1,2- 8,)> 27 +27(1-)
The first term is the total time that job J; has been run while in

Q; by the usual MLF, and the second term 281 - By, is its
remaining processing time.

In the case that a job is moved to Q; from Q.4,
v, =2 ‘(- B,) When a job J;is removed from Q;and placed

again in Oy, y =2 1(1 B,) since x; = a2 + 2°'(1 - p).

any case, for a job to be unlucky, we must have y; < 2"
Therefore, 2°'(1 — B) < 2, which means g, > %. The
probability that a job is unlucky is

Pr[p, > 1/2]=1-Pr[g, <1/2]= j77 = j°.

Let Vi, Vo, ..oy
. PR}
v, is unlucky is ;7.

v, be Bernoulli trials with the probability that
From [14], the expectation of v; is

20

E[v/.]= j~%. Let X be a random variable that denotes the total
number of success (unlucky jobs). The expectation of X is

E[x] == Zj:] ;¢ . The right tail bound from [6], is

PrX — > x]< (%)

To get a value of x such that (ue/x)" < 1/ n°, we have
x(lnx—ng-1)>clnn
Letx=dInn/In In n, then

dlnn In dInn —Inu—-1|2clnn
Inlnn Inlnn

dinn+ dlnn
Inlnn

If we let d = ¢ + 1, this inequality is true. m

(nd—Inlnlnn—-Ing—1)>clnn

5.1.2 SMALL QUEUES

RMLEF2 prevents the presence of small queues with high
probability. We prove in this section that the presence of small
queues happens with low probability.

Let C be a contiguous subqueue of jobs. Assume that we
have a particular subqueue C that makes Q;small. Number the
jobs in C as Jy, J, ..., J; according to increasing order of release
times. Let ¢ be a time that C makes Q; small.

We first prove that the event that Z" £, 1s too small
j=117J

happens with low probability.

Lemma 5

- k 1
Pr{ZﬁjS }s?, k>2

= 2rInn

Proof. From our definition of f, Pr[f; <x] =1—-;<1-n"
Let §; be a random variable such that Pr[f"; <x] =1 - »™. For

any x,
Prl/i’j < xJS Prlﬁ; < xJ

k k
Pr{z,ﬁj < x} < Pr{Zﬁ; < x}
J=1 J=

To prove this lemma, it suffices to show that

k
1
Pr "<x|<—
|:;ﬂj x] 2k

Let X}, X, ..., X} be independent exponential random variables
with probability distribution 1 — exp(-n/b), respectively. The
sum S = X; + X, + ... + X, has the Erlang form of the gamma
distribution [7, 10],

Prfs < x]=1— exp(b)i(x/j’;)

Jj=0

where g — Z’;lﬂ; and b=1/(z In n).

The Maclaurin series of

exp() Z (x/b)

The second factor is a geometric series and it converges if
xtlnn <1, thus, x<l/(1‘lnn).

Letx =1/ (21 In n), we have

Priﬂ'< ! < 1 (1+l+l+)
ST T 2cn T 2R 2 4T

<L

<o

We now bound the probability that a particular y(Z) is small
by the probability that a 3; is small.

-2

Lemma 6 For every Jj e (C, and for all y < 2072 i<,

Prly, () <y]< P2 g, <]

Proof. Consider a job J ;€ C. By Lemma 4, we can ignore

unlucky jobs. Assume J; is long for Q;, which means

X, 2i1 4 272 We divide our proof into three cases. Since

our variables are of common time, we will drop our reference on
t.

Case 1. 27" +272 <x, <2
The remaining processing time of J; s
v, () =x,(t)=T,, >x,-27(2- ;). Since the

job is promoted from Q; to Q,, we have

X, 2T,
2'B, 242 - X,
We have assumed that y <2/ ~2, therefore

Pr[yj(t)s;/J
<pilx,()-2"2-p)< /2B, 22 ~x)]
=P g <y 2 —x [B 22 - x]
= Pr[2i/3, = 7]

The equation above is true because an exponential
distribution is memoryless [12].

Case 2. 2”ng§1‘1}_

The remaining processing time of J; is
yj(t) = Xj(t) _I:'—l,j
—x, -2 +2 =27 max(1,2- 8,)

21

Assume that y(f) <y + (x/(¢f) — 2'). This is equivalent to
2l B, <y Therefore,

Pr[yj(t) <y+(x,0-2")=Pe2' g, < 7]
It is trivial that
Pr[yj < 7/]3 Pr[y_/. <y+ (xj -2)]: Pr[Z’ﬂJ. <)/]

Case 3. x; > TI;
The remaining processing time J; is
y,O)=x,(0-T,,-aQ, ;2 x,-2"" +2' B, —a2" +2""ap,
. Since J; is moved from O, to Q,,
X; >T,,+aQ,;
- 1
278, > (2" -2, +a2' —xj);
This means that
Prly, (1) < 7]
< Pr[xj(t) =242 g —a2' +2ap, <4
1 _nlp
orip 22 2PN
! a
2I+l _ 21 —x.
- Pr[ZHﬂj 2 T2hY
a a
Al p
) P A Y
/ a
= Pr[zl’l B, < 1}
a
< Pr[ZHﬂj < y]
L]

k . .
We now bound the Prlz Y)< O'J by relating this to
k
Pr|z_,'=1 ﬂj s O-].

Lemma7 Let 5= ‘c 2i=2 /(27 In ,,) then

|cl/2
P{ PRRGE 01 < Pr{ D27p, < a}

JeC j=1

Proof. We can observe that forall C' < C,

Pr Zyj(t)Sa < Pr] Zyj(t)SU

JeC J;eC’

Let D be the set of jobs in C such that y,(z) <2'~% We can
see that

Pr{ Zyj < o} < Pr{ Zyj < o}

If |D] < |C)/2, then there are at least |C}/2 jobs in C with
remaining processing time that are at least 2' 2. Hence,

i-2
T (t)>\c J ™

e 22' Inn
We assume that [D| > |C|/2. By Lemma 6,

Pr{ () < " l] < Pr[z"-1 B, < ﬁ}

Since y;> 0 and 2’ '4; > 0, for every j,

P{Zy](t)<| o }<P{22“1ﬂ <|D|U}

J;eD J;eD
Prl Yy, ()<o|<Pr| D.27'B <o
J‘,-eD J,eD

cl/a
< Pr{zz"lﬁj < U}

J=1

We now conclude that the probability that RMLF2 has a
small queue is low.

Lemma 8 The probability that RMLF2 has a small queue is at
most 1 /2%, where C is a contiguous subqueue of BL N Q7).

Proof. From Lemma 7,

|c/2
Pr{Zy (t)<cr}<Pr{ 2" /3}. Sa}
J;eC
[cl/2 |C|2i—1
=Pr| 2™ S
{ Z}ﬁ, 2-2zlnn

dr2 i
'Pr{zlﬂf S2-2rlnn}

< W from Lemma 5

5.2 DETERMINISTIC ANALYSIS

The cost of a scheduling algorithm is its total flow time,
which can be obtained by counting the number of unfinished
jobs over time [2, 9, 11]. Since this is a cost minimization
problem, we can use Yao’s technique for cost minimization
problem [15]. We have already proven in lemmas 4 and 8 that
the events of having unlucky jobs and small queues happen with
low probability, therefore, we can ignore them in our analysis.
We now assume a deterministic algorithm DMLF2, which is an
RMLF2 that never encounters a small queue or more than
(¢ +1)Inn/InIn nunlucky jobs.

DMLF?2 always runs the job that is at the front of the lowest
nonempty queue. If a new job arrives, it is placed in Q,. If
DMLEF2 is currently running a job in a queue that is higher than
0y, the running job is preempted to give priority to the new job
that is at Qp. This might result to little remaining processing
time for those jobs that are at the front of the queues. But since
each queue can have at most one job at its front at any time and
there are / queues, the maximum number of jobs at the front of a

22

queue is /. Since / is comparatively smaller than n, we can
ignore the jobs that are at the front of a queue in our analysis.

5.2.1 JOB PARTITIONING

We now use the technique of Kalyanasundaram and Pruhs
in [9]. We now partition the unfinished jobs, which will serve as
the basis of what DMLF2 and the adversary will run.

Definition 9 Let ¢ be the time being considered
1. Order the jobs in BL from highest queue to lowest queue
and from the front of a queue to the back of the queue. Let

2= {P', ..., P}, where P'is a set of ﬂzgflnﬂ jobs in
BL — U’ ~ P/, The jobs in the lowest queues are not
included in a partition if they are not enough to form a
partition.

2. Let Oy be the lowest queue that the jobs in P belong
Let Q) be the highest queue that the jobs in P' belong.

Let Yl.’h =2userng, Y, be the total

&

remammg

processing time of the jobs in P" that are in Q.
5. Letn;= |P" N Q| be the number of jobs in P" that are in Q;.

We now bound the sum of the remaining processing time of
the jobs in each P".

Lemma 10

s(h)
ZJ,eP" Y= 270

Proof. We drop our reference to 4. If any n; > 87 In n, since a
queue is never small, z y;>87In n2i~? /(22- In n) =

For large n and for every P'eP ,

;eP" MY,
Since 2’ > 2°, this proves our lemma for this case.
We will

Assume that all n; < 87 In n and z ;<2

do proof by contradiction. Since a queue is never bad,

-2
y 22
2zlnn
Consider the optimization problem:
d i-2

subject to z n,=128zInn
1=

The functions fin) = n2' =2/ (27 In n) and fi) = 2~ ? are both
increasing functions. If n; < n;,, we cannot find a solution to the
minimization problem. To see this, substitute n;’s to the
minimization problem, where n; < n;;; and consider the sum of
two consecutive terms, 7,2' "> + n;,2 L. If we increase n; by a
small value and decrease 7;,; by a small value, (n; + 0.01)2° 2 +
(n;1 — 0.01)2°" !, we get a much smaller value for the sum of the
two consecutive terms. Therefore, to have an optimal solution,
we must have n; > n; ;.

We should also have this condition in order to have an
optimal solution:
n27? <(n, +n 2" (1)
Otherwise, we could get a smaller sum by giving the value
meant for n; to n,. From inequality 1, we get

n2"7 <(n, +n)2"

<lé6rlnn-2°

64rinn-2°

n < ————
2!

d 64 1 d 2s
;ni < T Ill’lg?

0 ZS
<64rlnn)y —
23
=128z1Inn
This is a contradiction to the defined size of P", which means
that ZJ Y is not minimized with size 128z In »n, which then

proves our lemma. m
5.2.2 ADVERSARIAL BORROWING

We now describe what an adversary can to defeat RMLF2
and then prove that RMLF2 prevents such strategy of the
adversary from defeating it.

Definition 11 Let DMLF2’ be a scheduling algorithm that is
similar to DMLF2, except that the job remains in the queue even
if they are already completed. In DMLF2’, if a job J; is
completed, it is moved to the back of the next queue. If the
queue is already Oy, J; is placed at the back of Q;. If'a completed
job J; is at the front of the lowest nonempty queue, J; is moved
to the back of the next queue. If the queue is already in Oy, J; is
placed at the back of Q;.

We use DMLF2’ to define the last queue value and in
constructing the borrowing graph.

Definition 12 Let £’ be some time after . Consider DMLF2’.
If a job J ;€ Q,.(t') , define the last queue value of J; at time £

as
g, (=1
A T

Definition 13 Define a graph with these properties: For each
job, create a vertex in the graph. For every directed edge from
Jy 10 Jj, assign a nonnegative cost fj ;, such that
s for.s amount of time before time ¢

DMLEF2 was running J,,

and the adversary was running J
0 otherwise

QO""QI—I

are empty, 7, <t'
otherwise

fh,j =

We can interpret the edge with positive cost of the graph in
Definition 13, f;;, as the adversary borrowing f;, ; amount of time
from Jj, to give to J;. This means that the adversary runs J,
instead of J;, which is the one run by DMLF2, with the objective
that running J; first will result to an optimal schedule. Consider
the subgraph of this graph with all the edges having weight f; ; =
0 removed. We will refer to this subgraph as a borrow graph.
Let F;; be the sum of the weights of the directed edges along the
directed path from J; to J;.. We can interpret F;; as the amount of
time borrowed by the adversary from J; to give to J. The
sources here are the jobs in U,py and the sinks are the jobs in

23

Upmrz — Uypy- If a vertex J; is neither a source nor sink, then
the sum of the weights of the edges going to J; is the same as the
sum of the weights of the edges going out of J;.

We use this graph to prove that DMLF2 restricts the
adversary in its borrowing strategy.

Lemma 14 If there is a directed path from J, to J; in the
borrow graph, then lg,(t) < lg,(?).

Proof. We now consider DMLEF2’.

Base Case: Consider a time ¢’ that DMLF2’ was running J,
and the adversary was running Jj. J; can never be in a lower
queue that Jj, since DMLF2’ always runs a job at the lowest non-
empty queue.

If J; is in a higher queue than J;, by the way DMLF2’
moves jobs along the queues, J; will always be moved to a
higher queue first than .J,, which means /g, (¢’) < lg(2").

If J, and J; are on the same queue, J, is at the front since
this is the job run by DMLF2’. Although J, is moved to a
higher queue first than .Jj, the g, will be incremented only if the
lower queue is already empty, which means J; has already been
moved to the higher queue, thus lg;(t") = lg(t’).

Inductive hypothesis: Assume that if there is directed path
from Jj, to J;_; of k — 1 number of directed edges, then Ig;(¢) <
lg (o).

Inductive step: Consider a directed path from J, to J;_| and
a directed edge from J;_; to J. By the inductive hypothesis,
lqi(t) < Ig;_\(?). By the base case, lg; _(?) < Ig{(?). Therefore,
lgn(®) < lg 7). m

We now find a lower bound for the number of uncompleted
jobs of the adversary.

Lemma 15
‘UADV (t)‘ 2 g

Proof. Allow the adversary to be the most powerful form of
adversary by letting it borrow time from job J; to complete job .Jj,
if Iq(?) < Iq(t), based on Lemma 14. Let 72 = {P"", p"® |
P“D} be a subset of 2 where all the jobs in P*? are already
completed by the adversary. Mathematically, the partitions in
7 have empty intersection with Uypp. Let us number the
partitions such that if 7 <j, then a(i) < a(j). Let us also number
the jobs in U,py in non-decreasing order of /g values. That is,
}et Uipr = o0 | 1 < p(i) < |Uspil}, if p(a) < p(b), then lg,q) <
vy

We use mathematical induction to show that for every i, 1 <
i <k, U,py contains at least i jobs, and for every 4, 1 <h <i, lq,
< s(a(h)) (i.e. the smallest /g value is not greater than the lowest
queue in P*™).

Base case: i = 1. Since DMLF2 always runs a job at any
time, Uypy is not empty at any time. If /g,y > s(a(1)), then for
every J;, 1 <j <|Upyl, Ig; > s(a(1)), since the jobs in U,py are

ordered in non-decreasing order of /g values. This means that
U, py contains no job that has last queue value that is less than or
equal to s(a(1)). Thus, the adversary cannot borrow time from
any job to finish the job in P“Y, based on Lemma 14. This is a
contradiction to our definition of P“Y, which is one of the set of
jobs completed by the adversary. Therefore, Ig,) < s(a(1)).

We now have a general i, 1 <i<k. From Lemma 10, P,
1 <h <i-1,is completed by the adversary if it borrows, at least,
2°@®) time. We can now have our inductive hypothesis that g,
< s(a(h)). We now look at P?. Note that [P“D N Oyl is at
least 1. Let that job be J.. Let § = {Jc}+Ul},_:|1 P®™ . To finish

the jobs in S, the adversary needs to borrow at least
v, + Z:l 23(() . Assume that /g, > s(o(i)) and [Ugpyf =i — 1.

We now consider all jobs J,, 1 <h <i— 1. From the
inductive hypothesis, lg,; < s(a(h)). The adversary can borrow
time only from this set of jobs. Note that if Ig,; < s(a(h)), the
highest queue where J,(;) can be located is Oymyi1, SO Wy <
2™ This means that the maximum amount of time that can

be borrowed is Z:lzsw(h» , which falls short by y,. This

contradicts our assumption that |U,py] =i — 1 because we need
to borrow time from more than i — 1 jobs, thus |Uypy| > i. And
for us to be able to borrow from J,;, Ig,; < s(a(i)), which
contradicts our assumption.

We have shown that |U,p;| > k. By the definition of &, f— &
partitions are not yet completed by the adversary. Each of these
partitions can have at least one job, thus |U p(7)| = f— k. This
means that f'— k =k, hence, k =f/ 2. Therefore, U pi(?)| > f/ 2.
[

We can now obtain the competitive ratio for DMLF2.

Lemma 16 For all late times ¢,

‘UDMLFZ (t)‘ < 0(111 n)
U o @)

Proof. The number of jobs in Upy;xx(f) that are not BL is I,
because these are the jobs that are at the front of a queue. Since
/ is small relative to n, we can assume that |Upy; ()| = BL = n.
By Lemma 15, |U,p| > f/ 2. Since each P’ has |—128rlnn—| jobs,

f=n/[12871Inn|. Hence,

n
V. 1> 2[12871Inn |

— " <of128¢1Inn
U 4y ()] [1

M < 0(111 ”)
|UADV (t)|

We can now get the competitive ratio of RMLF2.

Theorem 17 The competitive ratio of RMLF2 is O(In n).

24

Proof. We have already obtained in Lemma 16 an O(In »)
competitive ratio for DMLF2. We have assumed that DMLF2
does not encounter more than (¢ + 1)ln » / In In n unlucky jobs
and small queues. If ever RMLF2 encounters these two events
separately, it will have a competitive ratio n and n / (n - |CJ),
respectively, since the adversary will just complete those
unlucky jobs and jobs comprising the small queue rather than
postponing their execution to a higher queue. Therefore,

ISCSZ::lj_6>|C|>2a

Urizr2 () _ ‘UD.WLFz(t)‘

+E [unlucky jobs]+ E [small queues]

UADV (t) ‘UADV (t)‘
=0(Inn)+n Pr[unlucky jobs] + % Pr[small queues]
n—
_ L I
=O(Inn)+ n(n”j+ =[] (2\,:\/2)
=0(Inn)
[
REFERENCES

[1] Maurice Bach. The Design of the UNLX Operating Systems.
Prentice-Hall Inc., 1990.

[2] Luca Becchetti and Stefano Leonardi. Nonclairvoyant
scheduling to minimize the total flow time on single and
parallel machines. Journal of the ACM, 51:517-539, July
2004.

[3] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-
Spaccamela, Guido Schifer, and Tjark Vredeveld. Average
case and smoothed competitive analysis of the multi-level
feedback scheduling algorithm. Mathematics for
Operations Research, 31:85-108, February 2006.

[4] Allan Borodin and Ran El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

[5] Peter Brucker.
1995.

Scheduling Algorithms. Springer-Verlag,

[6] Thomas Cormen, Charles Lieserson, Ronald Rivest, and
Clifford Stein. Introduction to Algorithms Second Edition.
MIT Press, 2001.

[7] James Johnson. Probability and Statistics for Computer
Science. Wiley, 2003.

[8] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. Journal of the ACM, 47:617-643,
July 2000.

[9] Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow
time nonclairvoyantly. Journal of the ACM, 50:551-567,
2003.

[10] Averil Law and W. David Kelton. Simulation Modeling
and Analysis Third Edition. McGraw-Hill, 2000.

[11] Stefano Leonardi and Danny Raz. Approximating flow
time on parallel machines. Proceedings of the 38" Annual
ACM Symposium on Theory of Computing, pages 110-119,
1997.

[12] Michael Mitzenmacher and Eli Upfal. Probability and
Computing, Cambridge University Press, 2005.

[13] Rajeev Motwani, Steven Philips and Eric Torng. Non-
clairvoyant scheduling. Theoretical Computer Science,
130:17-47, 1994.

[14] Rajeev Motwani and Prabakar Raghavan. Randomized
Algorithms. Cambridge University Press. 1995.

[15] Kirk Pruhs. Competitive Online Scheduling for Server
Systems.

[16] Kirk Pruhs, Jifi Sgall, and Eric Torng. Online scheduling.
In Joseph Leung, editor, Handbook of Scheduling:
Algorithms, Models and Performance Analysis, chapter 15,
pages 15-1 — 15-41. CRC Press, 2004.

[17] William Stallings. Operating Systems Internals and Desing
Principles Fourth Edition. Prentice-Hall Inc., 2001.

25

