Permutation Routing and Gossiping on the Graph G(n,k) of
the Johnson Scheme

Jaime Caro and Hans Riyono Ho
Department of Computer Science
University of the Philippines
Diliman, Quezon City, Philippines
jaime.caro@up.edu.ph

ABSTRACT
The graph G(n,k) of the Johnson Scheme which is also
known as the ”Slice of the Cube” is the undirected graph
where the vertices are all the k-subsets of the fixed n-set and
such that two vertices A and B are adjacent if and only if
| ANB|=k—1.

In this paper, we shall provide algorithms for one-to-one
permutation routing, gossiping, and sorting on G(n, k) that
runs in O(nk?), O(min(k,n — k)) and O(N), respectively,
where N is the number of vertices.

1. INTRODUCTION

In multicomputer interconnection, static networks are used
frequently because they have an important advantage: the
degree of a node either remains fixed regardless of the size
of the network or grows very slowly with network size. This
allows very large networks to be constructed.

This gives us the motivation to study the graph G(n,k)
of the Johnson Scheme as a static interconnection network
topology. By studying this graph, we hope to contribute
some information regarding the efficiency and effectiveness
of this graph as an interconnection network.

Some properties of the graph G(n, k) of the Johnson Scheme
have been studied such as the hamiltonicity, the diameter,
connectivity and wide-diameter of the graph. There are
some other properties related to the graph G(n,k) of the
Johnson Scheme that are of interest in interconnection net-
work design theory. In particular, the algorithms for permu-
tation routing, gossiping and sorting on the graph G(n, k)
of the Johnson Scheme are not yet studied.

Packet routing is the problem of sending a packet from a
vertex to another vertex of a graph with the only restriction
that at most one packet can traverse an edge at a time.

The basic permutation routing problem is defined on a graph
as follows: for all 7, vertex v; wants to send a packet to vertex
d(v;), where d is a permutation of the vertices of the graph.

One-to-one permutation routing of a graph is defined as fol-
lows: every vertex initially sends at most one packet and is
the final destination of at most one packet.

In a graph, if a vertex has more than one packet which will
go out using the same edge, then the packets can be stored

26

at a vertex until they can use the edge.

In a graph, if a vertex v; wants to send a packet p; to a
vertex d(v;), given that the vertex v;’s and vertex d(v;)’s
addresses are a set of numbers in ascending order, then scan
the numbers of d(v;) from left to right, and compare them
with the address of the current location of p;. Send p; out
of the current vertex along the edge corresponding to the
left-most numbers in which the current position and d(v;)
differ.

One-to-all broadcasting is an operation where a vertex (source)
must send a packet to all other vertices of the graph.

All-to-all broadcasting, also known as gossiping or total ex-
change, is a generalization of one-to-all broadcasting in which
all vertices simultaneously initiate a broadcast. In other
words, gossiping is the process whereby each vertex sends a
packet to all the others.

Gossiping is done as follows: Let G = (V, E) be a graph.
With each vertex v, associate an initial packet. Each vertex
can send its packet to a neighbor or neighbors and /or receive
a packet from a neighbor or neighbors depending on the
model of communication used. After receiving any packets,
vertices take the union of all packets received at that step,
thus forming new packets for the next step. At the other
steps, when we take the union of all packets, we disregard
multiplicities of packets.

Full-duplex communication model means that a vertex can
simultaneously send and receive on all its edges at the same
time. Half-duplex communication model means that a ver-
tex can either send or receive on all its edges at a time.

2. THE GRAPH (v, k) OF THE JOHNSON

SCHEME

The graph G(n, k) of the Johnson Scheme is the undirected
graph where the vertices are all the k-subsets of a fixed n-set.
Two vertices A and B are adjacent if and only if | AN B |=
k — 1. We shall assume that if {a1,a2,as,...,an} denotes
the elements of a vertex, then a; < a2 < az < --- < an. We
know that the total number of vertices is (2) Each vertex
will have nk — k? edges incident to it, or in other words, the
graph is nk — k? regular.

Consider the order of the elements in a vertex, we make a

consensus that the order of the elements in a vertex is in non-
decreasing order. By this consensus, we divide the graph
G(n, k) of the Johnson Scheme into subgraphs S; such that
each subgraph S; has vertices with a common first element,
a1. In general, the graph G(n,k) of the Johnson Scheme
will have n — k + 1 such subgraphs, since the first element
in the last subgraph is (n — k) + 1.

Some properties, such as the diameter, connectivity and
wide-diameter, of graph G(n, k) of the Johnson Scheme were
proven by Muga II, Caro, Adorna, and Baes in [4]. The di-
ameter of G(n, k) was shown to be min(k,n—k). It was also
shown that the connectivity of graph G(n,k) of the John-
son Scheme is nk — k2. Finally, the wide-diameter, de(G),
of G(n, k) was shown to be k + 1.

In [2], it has been proven that the graph G(n,k) is Hamil-
tonian. We shall give another proof of this. After that, we
shall state algorithms for one-to-one permutation routing,
gossiping and sorting on the graph G(n, k) of the Johnson
Scheme.

3. HAMILTONICITY OF THE GRAPH G(N, K)

OF THE JOHNSON SCHEME
We shall determine whether the graph G(n, k) of the John-
son Scheme is hamiltonian.

LEMMA 1. Fach subgraph S; of the graph G(n,k) of the
Johnson Scheme has a hamiltonian path.

Proof.

Consider subraph S; of G(n, k). For any A € V where V is
the vertex set of G(n, k), assume that A = {a1, a2,as,...,ax},
where a; is ith element in S;, for i = 1,2,3,...,n. We also
assume without loss of generality that a1 < a2 < az < -+ <
Q-

Thus, each subgraph S; has a general form as follows:

S; = {{Cbi, A(541) A(i42) s+« + s A(k—1), ak:},

{ai, a@+1), Qgit2ys - Qk—1)> A(k+1) }»
MR]

y A(k—1), a'n}a

y A(k—2), Ak, an})

{(li, A(i41)y A(542) 5+ -+
{aq-,, A1)y A(342) 5+ -+
{@i,agit1), Qai12), - - Ak—2), Ok, A(n—1) }»
-
{ai, 311y, Qgit2)s - - - Qr—2)s Qks Ar11))
{as, Q(i4+1) AG+2) 5 -+ + 5 A(k—2) 5 A(k+1)> a(k:+2)}7
{a:, 0341)s Qgit2)s - -+ Q(k—2)5 Q(kt1)s C(k+3) }»
{@i, agi+1), A@12), - - A—2), A(kt1), On },
{ai, Gei41)s Qlit2)s - - Q(k—3)> A(k+1)> C(k+2) }»

.oy

27

{a:, a342), Q(it3)s - 5 Ok, A(at1) }s

{@s,agi42), Q@i13), - - Qs Qerr2) }s
{ai; A(34-2)y Q(543) 5+ -+ Ak, an},
{aia A(n—k+2)) A(n—k+3)s A(n—k+4)r -+ an}}

fori=1,2,....,.n—k+1.

We can examine the form and claim that two consecutive
vertices are adjacent. Because the intersection of both is
k — 1. Thus, there is hamiltonian path in every subgraph of
the graph G(n, k) of the Johnson Scheme.

LEMMA 2. The first vertex of subgraph S; is adjacent to
the first vertex of subgraph S 1.

Proof.

Let A; be the first vertex of subgraph S; and Bj is the first
vertex of subgraph Sa. It follows that

A ={1,2,3,...,k},

By ={2,3,4,..., k+1},

So, the intersection between A; and B is {2,3,4,...,k}
which has cardinality k — 1. Thus, they differ in only one
element. For A, it differs one element Thus, A; is adjacent
to Bi. Let Cp be the first vertex of subgraph Ss, that is
Cy = {3,4,5,...,k 4+ 2}. The intersection between B; and
Cy is {3,4,5, ...,k + 1} which has cardinality £ — 1. So, By
is adjacent to C;. This adjacency also occurs between C;
and D1, D1 and E1, and so on, for D; is the first vertex of
subgraph Si, and E; is the first vertex of subgraph Ss. In
fact, the first vertex of subgraph S; is always adjacent to the
first vertex of subgraph S(;;1) of the graph G(n,k) of the
Johnson Scheme.

LEMMA 3. The last vertex of subgraph S; is adjacent to
the last vertex of subgraph S;, wherei,7 <n —k+ 1.

Proof.

We also use induction to prove this lemma. Let A, be the
last vertex of subgraph S, By be the last vertex of subgraph
So and Cy be the last vertex of subgraph Sz such that

Ay ={a1, 0(n—k+2)s A(n—k+3)> O(n—kt4)s - - - An },
By = {a2, 0(n—k+2) A(n—k+3)s G(n—k+4), - - - » Qn }, and
Cy = {as, A(n—k+2)s G(n—k+3)s A(n—k44)) - - - ,Gn}-

We shall get that the intersection between A, and By is
{a(n—k+2), G(n—k+3)s A(n—k+4),- - -, On}, the intersection be-
tween Ay and Cy, is also {a(—k+2) A(n—k+3)s Cln—kt4)- - An },

and the intersection between B, and Cj is also

{a(n—k+2), A(n—k+3), G(n—k+4), - - - , G } Which has cardinality
k — 1. We can also say that among A,, By, and Cy, they
differ in only one element. For A,, it differs one element
from B, because it does not have element a2, and it differs
one element from C} because it does not have element as.
For By, it differs one element from A, because it does not
have element a1, and it differs one element from C, because
it does not have element as. Thus, A, is adjacent to By
and Cy. This adjacency also occurs between B, and Cy, By
and D,, C, and Dy, and so on, for D, is the last vertex
of subgraph S;. Thus, the last vertex of subgraph S; is al-
ways adjacent to the last vertex of subgraph S; of the graph
G(n, k) of the Johnson Scheme, where ¢,7 <n —k+ 1.

LEMMA 4. The first vertex of subgraph S(,_y) s adjacent
to the vertex of subgraph S(,—ki1)-

Proof.

Recall that in the last subgraph, S(,_x4+1), has only one
vertex. This vertex is the first vertex and also the last vertex
of subgraph S(,_r+1). So, this lemma is already proven in
Lemma 3.2.

THEOREM 1. The graph G(n,k) of the Johnson Scheme
is hamiltonian.

Proof.

We shall use the above lemmas to prove this theorem. Let
S; is the ith subgraph, for i = 1,2,...,n—k+ 1. If i is odd,
we make an edge between the first vertex of subgraph S;
and the first vertex of subgraph S(; 1) (Lemma 3.2), If is
even, we make an edge between the last vertex of subgraph
S; and the last vertex of subgraph S(;;1) (Lemma 3.3). If 4
is equal to n—k+1, we make an edge between the last vertex
of subgraph S;1 and the vertex of subgraph S¢,_jy1). Now,
every subgraph has been connected. At last, Lemma 3.1
has proven that there is hamiltonian path in every subgraph.
Thus, there is hamiltonian cycle in the graph G(n, k) of the
Johnson Scheme.

4. ONE-TO-ONEPERMUTATION ROUTING

ON THE GRAPH ¢(v, k) OF THE JOHN-
SON SCHEME

Recall these definitions:

The basic permutation routing problem is defined on a graph
G as follows: for all 4, vertex v; wants to send a packet to
vertex d(v;), where d is a permutation of the vertices of
graph G.

One-to-one permutation routing of a graph G is defined as
follows: every vertex initially sends at most one packet and

is the final destination of at most one packet.

In our algorithm, we shall use the following;:

28

e Store-and-forward routing model: In a graph, if a ver-
tex has more than one packet which will go out using
the same edge, then the packets can be stored at a
vertex until they can use the edge.

e Bit-fixing routing strategy: In a graph, if a vertex v;
wants to send a packet p; to a vertex d(v;), given that
the vertex v;’s and vertex d(v;)’s addresses are a set
of numbers in ascending order, then scan the numbers
of d(v;) from left to right, and compare them with the
address of the current location of p;. Send p; out of
the current vertex along the edge corresponding to the
left-most numbers in which the current position and
d(v;) differ.

The general idea of one-to-one permutation routing algo-
rithm are:

1. We divide the graph G(n, k) into subgraphs [18].

2. We route the packets within subgraphs simultaneously

before sending to the destination vertex [8].

Thus, the one-to-one permutation routing algorithm for graph
G(n, k) of the Johnson Scheme is as follows:

Let source vertex be denoted by v; = {ai1,a2,...,ax} and
destination vertex be denoted by d(v;) = {b1,ba,...,bx}.

1 Begin

2 If a1 < by then

3 Traverse from v; to w; = {a1,ba,..., bk}

along subgraph S,, using bit-fixing strategy;
4 If a1 # b1 then
5 Traverse from w; to d(v;) in one step;
6 Else
7 Traverse from v; to y; = {b1,as2,...,a,} in one

step;

8 Traverse from y; to d(v;) along subgraph Sy,
using

bit-fixing strategy;
9 End.

In this algorithm, we shall focus on step 3. In this step, we
only focus on subgraph Si, since in this subgraph we have
the largest vertices, thus, will have the largest packets queue
in a vertex. Step 8 will be handled similarly.

We shall determine the complexity of the routing scheme by
getting the maximum number of packets accumulating and
queuing at a vertex [8].

We shall consider this example with the big enough of n to
show the number of packets queuing in a vertex.

LeEMMA 5. At most (nk —k?)(k —3) packets will queue in
a vertez.

Proof.

The packets which queue in a vertex x either will be sent
to w; or to other vertices through w;. If they are sent to
wi, then they will be at most (nk — k?) packets, because
there are (n — k) of d(v;) which are adjacent to w; in other
subgraph and (nk —k?) — (n— k) which are adjacent to w; in
S;. Otherwise, if they are sent to other vertices through w;,
then they will be at most (nk — k?) x (k — 4), because there
are (k — 4) vertices will through the same edge of vertex
w; to receive packets and each of them will have (nk — k?)
packets.

There are (k — 4) vertices will through the same edge of
vertex w; to receive packets because there are (k—3) vertices
v; that send packets to vertex x at a time and queue.

There are (k — 3) vertices v; that send packets to vertex x at
the same time and queue, because for v; to send packets to
vertex x at the same time and queue, then a1 and ay in v;
and z should be the same element. And as in v; should also
the same element as b2 of x. And a2 can be any numbers.
At last, elements a4 to a(x—1) in v; are a combination of
bs to b(x—1) of x. Assume without loss the generality that
a1 < a2 <az <---<apand by <by <bs <+ < by.

Thus, there are (nk — k?) x (k — 3) packets queueing in 2.
This condition only occurs once, because there is no packet
that will be sent to d(v;) (queue in vertex x) which will go

through the same edge of vertex w;.

Hence, we have this theorem.

THEOREM 2. The one-to-one permutation routing on graph

G(n, k) of the Johnson Scheme can be done in O(nk?) time.

Proof.

Lemma 3.5 clearly shows that at most (nk — k?)(k — 3)
packets queue in a vertex (this occurs on steps 3 and 8 of
the algorithm). Since this worst case occurs once, thus, we
need at most (nk—k?)(k—3) = O(nk?) time to finish the one-
to-one permutation routing on graph G(n, k) of the Johnson
Scheme.

5. GOSSIPING ON THE GRAPH G(N, k) OF
THE JOHNSON SCHEME

One-to-all broadcasting is an operation where a vertex (source)

must send a packet to all other vertices of the graph. All-to-
all broadcasting, also known as gossiping or total exchange,
is a generalization of one-to-all broadcasting in which all
vertices simultaneously initiate a broadcast. In other words,
gossiping is the process whereby each vertex sends a packet
to all the others.

Gossiping is done as follows:

29

1. Initialization: Let G = (V, E) be a graph. With each
vertex v, associate an initial packet.

2. Allowable steps: Each vertex can send its packet to a
neighbor or neighbors and/or receive a packet from a
neighbor or neighbors depending on the model of com-
munication used. After receiving any packets, vertices
take the union of all packets received at that step, thus
forming new packets for the next step. At the other
steps, when we take the union of all packets, we disre-
gard multiplicities of packets.

The model of communication that we consider is full-duplex
communication which means that a vertex can simultane-
ously send and receive on all its edges. In the way to deter-
mine the complexity of gossiping in a graph with this model
of communication, the graph’s diameter is the lower bound
[21].

Intuitively, we can do gossip by this greedy algorithm:

1 Forr=1toz Do

2 Every vertex gossip to all its adjacent vertices

This greedy algorithm will make the diameter of the graph
G(n, k) the tight bound, where z = kif k < | %], and z =
n—kif k> |%]. However, this algorithm is not efficient,
since at every step all vertices will broadcast in all its edges.
In terms of interconnection network, we might not be able
to do this all the time because of insufficient memory of
processors or bandwidth.

We shall determine the number of exchanges in gossiping
process to see the efficiency of an algorithm. In the greedy
algorithm, the number of exchanges is ©(n**1kd) where d =
min(k,n — k). This number of exchanges is obtained by
each of the (}) vertices sends to nk — k* vertices in d times.
Thus, the total number of messages sent is (})(nk — k*)d =
O(n*)(nk — k*)d = O(n*T'kd).

For reason of efficiency, we shall construct another algorithm
to do gossiping on the graph G(n, k).

Consider the clique on the graph G(n,k) of the Johnson
Scheme. Recall that a clique in a graph is a set of vertices
where every pair is joined by an edge. Thus, every vertex
in graph G(n, k) which differ in one element obtain a clique.
Then, vertices

L Ok—1), Ok}, {@1,82, . ., Qk—1), A(kt1) s - - s
-,a(k—l),an}

{al,U/Q,..
{G,],CLQ, M

form a clique, or vertices

{@i, Qgit1)s - - > Q=25 Qs On 5 { Gy Qeig1), - - - A(a—2), O,
=1y }s - > {0iy Q(i41)s - - -5 Q(l—2), Bk, Akt 1)

also form a clique. In general, a set of vertices that pairwise
differ in one element form a clique on the graph G(n, k).

There is a vertex in a clique that adjacent to a vertex in
other clique, however, there is also no vertex in a clique

that adjacent to any vertex in other clique. For exam-
ple, consider Figure 3.1, We can say that {{1,2,3}, {1,2,4},
{1,2,5}, {1,2,6}, {1,2,7}} is a clique, say clique ¢;. {{2,3,4},
{2,3,5}, {2,3,6}, {2,3,7}} is another clique, say clique cq,
and {{3,4,5}, {3,4,6}, {3,4,7}} is also a clique, say clique cs.
Clique c¢1 has a vertex that adjacent to a vertex in clique cz,
but no vertex in c¢; that adjacent with any vertex in clique
C3.

Again, consider Figure 3.1, we make the whole cliques in
graph G(7,3) as follows:

Clique No. | Vertices

{17273}7{17274}7{17275}7{17276}7{17277}
{17377}7{17376}7{17375}7{17374}
{1,451 {1,4,6} {1,4,7}

15,70 4156
L27374]) L27375]) L27376] 7{27377}
L27477] ’ L27476] ’ L27475]
{2,5,6}.{2,5,7}
(3,4,5},{3,4,6},{3,4,7}
(3,5,7},{3,5,6]
O {47576}7{47577}

]' {17677}7{27677}7{37677}7{47677}7{57677}

== O 00| | O O | W| N —

The last clique, clique number 11, ¢11, we construct a clique
from the last vertex of all subgraph S;, which differ in the
first element, since each of them has no partner. This will
apply for any n and k of the graph G(n, k).

Now, we construct the clique-gossiping algorithm on the
graph G(n, k).
1 For r =1 to min(k,n — k) Do
Every vertex gossips within its clique;

2
3 Every vertex gossips with vertices of other cliques;
4

Every vertex gossips within its clique;

Consider these two cases.
Case 1: Assume k < [3]

LEMMA 6. Assume k < | %], then the graph G(n,k) will
finish gossiping in 2k + 1 units time.
Proof:
To prove this lemma, we use the clique-gossiping algorithm.
In step 2, every vertex will gossip within its clique. Since
a clique is a complete graph where every vertex is an end-
vertex for others, thus, this step will complete in 1 unit
time. After this step, every vertex in a clique will know

each other’s packet.

Step 3, Every vertex gossips with vertices of other cliques.
This step will complete also in 1 unit time. After this step,

30

some vertices of a clique will know the packets of other
cliques.

For example, vertex {1,6,7} of clique ¢11 will know the pack-
ets of cliques ¢1,c2,cs3, and cy. However, it does not know
the packets of other cliques. Meanwhile, vertex {2,6,7} will
only know the packets of cliques ¢s,cs and ¢z (means that
we need to repeat step 1). Moreover, some vertices in clique
c1 will know the packet of cliques ¢1, ¢2, ¢s, ca,cs5, cs,c7 and
c11, but no vertex in ¢1 knows the packets of clique cs, cy
and cio0, since there is no vertex in c¢; that adjacent with
vertices in those clique. But clique ci1, which adjacent to
c1, knows the packets of those three clique (means that we
need to repeat step 2).

We repeat steps 2 and 3 in k times because, in fact, the
longest path for a clique to reach another clique is as many
as the different element among their vertices. Since, there
are cliques which their vertices different in k elements, thus,
it needs k steps for a clique to reach another clique.

At last, we do step 4, which is the same as the second step,
to gossip within a clique. We should do this step because
after repeat k times, the last state of every clique is that
every vertex in a clique will have different packets which it
get when do the third step at time k. Thus, to complete
the gossiping process every vertex should once again gossip
within its clique.

Since we repeat steps 2 and 3 in k times, and each of the
steps need 1 unit time, then steps 1 to 3 will take 2k units
time. Plus 1 unit time of the forth step. Thus, totally we
need 2k + 1 units time to finish gossiping.

Hence, we prove the lemma.

Case 2: Assume k > | %]

For this case, we will use the same algorithm.

But, we will repeat the process in n — k times. Because in
this case, k > | %], the longest path for a clique to reach

another clique is n — k.

So, in this case we also need 2(n — k) + 1 units time to finish
gossiping.

Hence, we have this lemma.

LEMMA 7. Assume k > | %], then the graph G(nk) will
finish gossiping in 2(n — k) + 1 units time.

We conclude Lemma 3.6 and Lemma 3.7 in this theorem.

THEOREM 3. The gossiping process on the graph G(n,k)
will finish in O(min(k,n — k)) time.

Now, consider the number of exchanges in the clique-gossiping
algorithm.

In step 2, there will be (n — k + 1)? message exchanges for
every vertex to gossip within its clique, because in a clique
there are at most (n — k + 1) vertices, and this occurs as
many as d times, where d = min(k,n — k).

In step 3, there are (n — k + 1) vertices in a clique, and each
of them are connected to at most ©(n*~?) vertices in other
cliques. So, in this step, there will be (n—k+1)-0(n*~3) =
O(n*~?) message exchanges for every vertex of a clique to
gossip with its adjacent vertices. This occurs as many as d
times.

In step 4, there will be (n — k + 1)? message exchanges for
every vertex to gossip within its clique, because in a clique
there are at most (n — k + 1) vertices, and this occurs only
once.

Thus, the total number of exchanges is: (n — k + 1)%d +
O(n*Hd+ (n — k+1)2 = ©(n*~2d + dn?). This means,
the clique-gossiping algorithm is more efficient by the factor
of n®k than the greedy algorithm in terms of the number of
exchanges.

The table below shows the result of the total number of
exchanges of the clique-gossiping algorithm.

Instructions No. of steps | No. of iterations
Every vertex gossips

within its clique (n—k+1)2 d

Every vertex gossips

with vertices of other cliques O(n*—2) d

Every vertex gossips

within its clique (n—k+1)>2 1

Total number of exchanges = ©(n*~2d + dn?).

Hence, we have this theorem.

THEOREM 4. There is ©(n*~2d + dn?) total number of
exchanges in the cligue-gossiping algorithm.

6. SORTING ON THE GRAPH (N, k) OF

THE JOHNSON SCHEME
Recall the definition of the sorting problem:

Input: A set of n packets, p1,p2,...,pn, with labels
li,la,...,ln, for I; > 0 and is integer. We write (p1,{1),
means packet p; with label [;.

Output: A permutation or reordering
(p1,11), (P5,15), - - -, (D, 11,) of the input sequence such that
Ih<ly<--- <1

In terms of a graph G,

Input: Every vertex, vi,vs,...,V,, will have
(p1,0), (p2,12), ..., (pn,ls), respectively.

Output: Every vertex, vi,va,...,Un, will have
(p1,11), (P2, 12), - - -, (P, 1n), Tespectively, where Ij <
e < l;l .

31

‘We shall determine the order of the vertices as follows: In
general, in every subgraph S;, if 7 is odd then the order of the
vertices is the same as the sequence of vertices in Lemma
3.1, however, if ¢ is even then the order of the vertices is in
the opposite order from the sequence of vertices in Lemma
3.1.

Our sorting algorithm is as follows:
We write (1;,v;) to denote that label {; is in vertex v;, for
any 4.
0 Initialization in every vertex: counter=0, vrecord=0,
(pmz‘t, linit)~
1 Do gossiping by sending (I;,v;) using the

clique-gossiping algorithm, during that time we do

2 If linie > 1; and v; € vrecord then
3 counter=counter+1;
4 vrecord=vrecord U v;;

{repeat steps 2 to 4 until all packets are compared};
5 Route (pinit, linit) t0 V(counter+1) Using the one-to-one
permutation routing algorithm;
6 If U(countert1) receive more than one packet, say c, then

7 Route c—1 packets to V(counter2)s - -
using

s U(counter4c—1)

the one-to-one permutation routing algorithm;

First, we initialize in every vertex, counter=0, vrecord=0,
and (pinit,linit). Variable counter is used to count labels
that less than l;,;¢, thus, it will determine total packets less
than its and also p;n:+ destination vertex. Variable vrecord is
used to store vertices number which pass a particular vertex
and the label is counted. We write (Pinit, linit) to denote an
initial packet and label in particular vertex, v;.

Steps 1 to 4 are simultaneous and parallel processes. Every
vertex gossips and compares its l;n;¢+ with I; and vrecord
with vs, if {; < linst and v; € vrecord, then we increment the
counter with 1, and store v; in vrecord.

In step 5, we route every initial packet to its proper desti-
nation, in parallel, by using one-to-one permutation routing
algorithm.

Steps 6 and 7, some vertices will route their packets, since
they received more than one packet.

Now, we shall determine the complexity of the sorting algo-
rithm by assuming the initial label is uniformly distributed.

In this assumption, the initial label is uniformly distributed
over the interval [1,m], where m = (}) and is integer. This
means each number on the interval [1,m] is equally likely to

occur. However, in fact, it is likely that a few numbers will
appear more than once and a few will not appear at all [20].

During the gossiping process, in steps 2, we do the com-
parison process. However, since the gossiping process finish
in O(min(k,n — k)) time and every vertex will have (})

packets, then we still have (}) — (2k + 1) packets to be com-
pared. Thus, we need O(NN) to determine the destination of

pi, where N = (:)

As we mention before, we use the routing algorithm in step
5. It is not exactly one-to-one permutation routing, since
there are a few packets will have the same destination (but
it is very small (constant)). So, we need O(nk?) to finish
routing.

Since it is only few packets will be received by a vertex, so,
steps 6 and 7 will finish in O(1) step.

Thus, the sorting algorithm takes O(N) 4+ O(nk?) + O(1) =
O(N) to finish sorting, where N = (}).

Hence, we have this theorem.

THEOREM 5. All packets in graph G(n, k) of the Johnson
Scheme will be sorted in O(N) time, where N = ().

As we know, the best parallel time possible for sorting in
any graph with N vertices is O(log N), and the sequential
time for sorting in any graph with N vertices is O(N log N).

7. REFERENCES
[1] Moon, A., On the Uniqueness of the Graph G(n, k) of
the Johnson Scheme, J. Combinatorial Theory, Series
B, 1982.

[2] Chen, L. and Lih K.W., Hamiltonian Uniform Subset
Graph, J. Combinatorial Theory, Series B, (1987).

[3] Zhang, F., Lin, G. and Cheng, R., Some Distance
Properties of the Graph G(n,k) of Johnson Scheme,
presented in the International Congress of Algebra and
Combinatorics 1997, Hongkong, 19-25 August 1997.

[4] Muga II, F.P., Caro, J.D.L., Adorna, H.N., and Baes,
G., On the Wide-Diameter of the Graph G(n, k) of the
Johnson Scheme of the First Order, January 2000.

[5] Konig, J.C., Rao. P.S., Trystram, D., Analysis of Gos-
siping Algorithms with Restricted Buffer, Parallel Al-
gorithm and Applications, Vol. 13, pp. 117-133, 1998.

[6] Monakhova, E.A., Algorithm and Lower Bound for p-
Gossiping in Circulant Networks, SPAN 1997, pp.132-
137, 1997.

[7] Leighton, T., Theory of Parallel and VLSI Computa-
tion, Lecture Notes, MIT, Sept. 1993.

[8] Wei, D.S.L., Muga II, F.P., Naik, K., Isomorphism of
Degree Four Cayley Graph and Wrapped Butterfly and
Their Optimal Permutation Routing Algorithm, IEEE
Transactions on Parallel and Distributed Systems, Vol.
10, No. 11, pp. 1290-1298, Dec. 1999.

32

[9] Matwani, R., Raghavan, P., Randomized Algorithms,
Cambridge University Press, 1995.

[10] Varma, A., Raghavendra, C.S., Interconnection Net-
works for Multiprocessors and Multicomputers: Theory
and Practice, IEEE Computer Society Press, 1994.

Hartsfield, N., Ringel, G., Pearls in Graph Theory,
Academic Press, 1994.

Evans, J.R., Minieka, E., Optimization Algorithms for
Networks and Graphs, Marcel Dekker, Inc., 1992.

Cameron, P.J., Combinatorics: Topics, Techniques,
Algorithms, Cambridge University Press, 1994.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduc-
tion to Algorithms, The MIT Press, 1990.

Parthasarathy, K.R.., Basic Graph Theory, Tata McGraw-
Hill Publishing Company Limited, 1994.

Chartrand, G., Oellermann, O.R., Applied and Algo-
rithmic Graph Theory, McGraw-Hill, Inc., 1993.

Krumme, D.W.; Cybenko, G., Venkataraman, K.N.,
Gossiping in Minimal Time, STAM J. Comput., Vol.21,
No. 1, pp. 111-139, February 1992.

Newman, I., Schuster, A., Hot-Potato Algorithms for
Permutation Routing, IEEE Transactions on Parallel
and Distributed Systems, Vol. 6, No. 11, November
1995.

[19] Vadapalli, P., Srimani, P.K., Shortest Routing in Triva-
lent Graph Network, Information Processing Letters
57, pp. 183-188, 1996.

Sedgewick, R., Algorithms, Addison-Wesley Publish-
ing Company, Inc., Second Edition, 1988.

Bagchi, A., Schmeichel, E.F., Hakimi, S.L., Gossip-
ing with Multiple Sends and Receives, Discrete Applied
Mathematics 64, pp. 105-116, 1996.

Bollobés, B., Quo Vadis, Graph Theory?, The Fu-
ture of Graph Theory, Annals of Discrete Mathematics,
1993.

Duato, J., Yalmanchili, S.; Ni, L., Interconnection Net-
works an Engineering Approach, IEEE Computer So-
ciety Press, 1997.

