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ABSTRACT

We shall show in this paper that every rational number has
an infinite and periodic base-k representation. We shall also
implement the representation of a rational number into a
base number using the Python programming language.

1. INTRODUCTION

Let N be a rational number. Then there exists integers s
and t # 0 such that

S
INI =<

By the Euclidean algorithm, we can find nonnegative inte-
gers a and so uniquely such that

S=at+8()

where 0 < 59 < t.

Hence, |[N| =a+ 870

1. Suppose so = 0. Then |N| = a is a nonnegative inte-
ger.

(a) If a = 0, its base-k representation is (0), where
k> 2.

(b) If 0 < a < k™ for some positive integer m, then
by the division algorithm (see for example, [3]),
a base-k representation on a is given by

a=(a1az...am)k
where
a=a1- k" P tas k" 4. ame1 - k+am (1)

and a; € {0,1,...,k—1} fori=1,2,...,m.
If a1 # 0, the effective length of the base-k repre-
sentation of a is m.
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The base-k representation of a may be extended
to m+r by adding r zeros to the left of a;. Thus,

a = [a1a2 .. .am]k =[00.. .Oalag .. .am]k

T Zeros

The following is an implementation to compute
the base-k representation of a nonnegative integer
using the Python Programming Language which
was created by Guido van Rossum.

The Base-k Representation of an Integer

Python Program 1

def WholePartOf_BaseNumber(a,k):

The representation of number a base k
nun
if a ==
baseNumber = [0]
return baseNumber
else:
baseNumber = []
q=a
while q > O:
q,coeff = divmod(q,k)
baseNumber.insert (0, coeff)
return baseNumber

. Suppose sp # 0. Then |N| consists of the whole part,
. . s
the nonnegative integer, a and the fractional part 2

8
where 0 < % < 1.

% may not be in simplest form, that is, so and t may
not be relatively prime. It will be reduced by canceling
their greatest common divisor.

The Euclidean algorithm finds the greatest common
divisor of two positive numbers. The algorithm in [2] is
used in this paper using the following Python program.



The Euclidean Algorithm

Python Program 2
def gcdOf(a,b):
nnn
The greatest common divisor of
two numbers a and b
nmnn
if b == 0:
return a
else:
return gcd0f (b,a%b)

Let § be the simplest form of S?O.

Thus, p and g are relatively prime integers and 0 <
p<gq.
If so # 0, we can write |N| as

£ 2)

IN|=a+=
q

where 0 < p < q.

Again by the division algorithm, we have nonnegative
integers by and p; such that

2_1<k_p>
g k\aq

_1 D1
=% <b1-F p >

Since 0 < b < 1, we have
q

where 0 <p; < gq.

0<? <1

q
o<k

q
0<b1+%<k

Since b1 is an integer, it follows that b; € {0,1,...,k—
1}.
By repeating the division algorithm several times, we
write b as

q

p 1 1 1 1 Pn
2t (g (g (g (e 2))))
p

:bl’k'_l+b2’k_2+-~-+bn’k_n+l(_n)
k\ ¢
(3)

where b; € {0,1,...,k—1} fori =1,2,...,n.

(a) If p, =0 and b, # 0, then the base-k representa-
tion of g is given by

B (0.b1ba . bk
q
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The expansion is finite and its effective length is
n.

Hence, the base-k representation of |N| is finite
and it is given by

|N| = [a1a2 . .am.b1bz .. .bn]k

The expansion of N may be extended by adding
0 to the right of b,, where b,, # 0, say,

N = [a1a2 e Qm.b1bo. ..bROO...O]k

Thus, the expansion may be infinite and periodic
of period 1. But, this is a trivial periodic expan-
sion.

(b)

If there does not exist a positive integer n such
that p, = 0, then the binary expansion is infinite.
If it is infinite, then it is a nontrivial periodic ex-
pansion.

Theorem 1 If the base-k representation of Ié is finite with

effective length of n, then q = k™.

PROOF. Suppose that g = [b1b2 ... by]x where b, # 0 and
b; = 0 for all i > n.

Then
D= [biba. . balk
q

=bi kb kP by BT b, kT
by - k" Y4 by -k+...4+by1-k+b,

kn
_ [biba bl
kn
p_ b
q kv

where b = [biba ... bn]k.

Since 0 < b, < k — 1, the base-k representation b = by -
E"l by k4 ...+ bu_1 - k+ by, is relatively prime to k.

Hence, b and k" are relatively prime. This means that the

. b . ..
fraction T is in simplest form.

Therefore, p=> and g = k™. O

2. INFINITE BASE-x REPRESENTATION

In this section, we shall show that a rational number may be
expressed as a nonterminating (infinite) and periodic base-k
number written in the form

|N| = [alag ...Qm.C1C2 ... Cr(blbz . bn)w]k

a1az . ..am is the whole part of the base-k representation of
N and cica...cr(biba...by)%]y is its fractional part.

The subsequence cica...c, is called the preperiod and the
subsequence b1 bs ... b, is called the period of the fractional
part of the base-k representation of [N|. The length of the
preperiod is r and the length of the period is n.



The subsequence b1bs . . . b, is repeating indefinitely. Hence,
the symbol (---)“.

A periodic expansion is trivial if the bits in the periodic
subsequence are all zeros or all ones.

The number zero has a trivial nonterminating and repeating
base-k representation. It is given by

(0)2 = (0)2

Theorem 2 The base-k representation of 1 may be periodic
of length 1. It is given by

(1) = (0% — 1)

PRrROOF. Let = (0.k — 1). Then kz = (k — L.k — 1).

Hence, kx —x = (k—1.k — 1), —(0.k — 1), = (k—1)%. Thus,
(k—1)x = (k — 1)k. Therefore, z = (1) = (k — 1). O

Theorem 3 The following infinite and periodic base-k rep-
resentations are trivial.

-_n __ T
1. k™™ =(0.00...0T)

n zeros

2. (anan,1 .. .a1a0)k = (bnbnfl .. .blbo.k — l)k
where (bpbr—1...b1b0)2 = (anan-1...a1a0)k — (1)k.

3. (0.b1by ... bp_1bp)k = (0.byby ... by 1(bn — 1)k — 1)

PROOF. The theorem follows immediately from the pre-
vious theorem. [

Definition 1

Let g be a positive integer and U,, be the group of all positive
integers less than ¢ that are relatively prime to ¢. If @ € Uy,
then no is the order of a under modulo ¢ (or the order of
a in Uy) if and only no is the smallest positive integer such
that a"° =1 (mod g).

The following result follows immediately from the definition.

Lemma 1 If ged(k,q) = 1, then there exists a positive in-
teger b such that

bg = k'™ — 1 (4)

where no is the order of k under modulo q and t € ZT.

Computing the order of k¥ under modulo a number that is
relatively prime k is straightforward. Below is a Python
program to compute the order of k and the value &™ such
that £ =1 (mod ¢) which we call unity.
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Order and Unity of k£ under Modulo ¢

Python Program 3
def unityAndOrder0Of (k,q):
if gcd0f(k,q) > 1:

return ’The numbers are not relatively prime!’

else:
unity, n=%k, 1
while unity%q > 1:
unity = unity*2
n = n+l
ou = [n,unity]
return ou

Prime factorization of a positive number can be implemented
using the Python program. If the prime factorization of n is

_ k1 k2 kn
n=p; Py°...Pn"

then the output of the program is given by

[[p1,k1], [p2,k2],..., [pn,kn]]

Prime Factorization of a Positive Number

Python Program 4
def primeFactorizationOf(n):

max_iter = int(n**0.5)+1
q=n
factors = {}
k=1
while k <= max_iter:
k += 1
if qkk == O:
exponent = 1
q =9q/k
while q/k == O:
exponent += 1
q = 9/k

factors[k]=exponent

if q > 1:
factors[ql=1

return factors

Theorem 4 Let £ be a rational number in the open interval

(0,1) such that p and p are relatively prime positive integers
and let k = kI kS . k™ be the prime factorization of k.

1. If gcd(k,q) = 1, then there exists a positive integer b
such that

b
T kn—1

=[0.(brba ... bn)“ i

ISHRS]



where n is the integral multiple of the order of k under
modulo g and b= [b1bz ...bn]k.
2. Suppose ged(k,q) > 1.

Then q¢ = k:;l k:;z kT qo where kpy ey, oo K
are prime factors of k, and ged(k,qo) = 1.

s

(a) If qo = 1 then there exists a positive integer b such
that

b w
%’ = = = [0b1b bk = [0.biba b1 0(k= 1))

_ en | [en er,
e AN

and b= [ble...bT]k.

(b) If qo > 1, then there exist positive integers b and
c such that

1 b w
Z—; = ]C_7 (C+ m) = [0.C1C2 ...CT(b1b2 .. bn) ]k

where n is an integral multiple of the order of k
under modulo qo, ¢ = [c1¢2 ... ¢r]k, b= [biba ... byl

_ €rqy €ry Ery
B GRS )

Proor. Case 1. Suppose ged(k,q) = 1.

Then by Lemma 4 there exists a positive integer b such
that

qbo = kn -1 (5)

where n is an integral multiple of the order of £ under mod-
ulo gq.

Multiplying Equation 5 by (knp+1)q’ we have g = knb_ 1
where b = pbo.
Thus,
p__b K
g kr—1 k»
_b
Ckn kn—1

P b b b
—=—+W+W+...

Therefore, if (k,q) =1,

2: 12--~nwk
o= [0t )]
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where b = bop = [b1b2 . ..bn]k, bo =

n is an integral multiple of the order of £ under modulo g.

Since 0 < b < 1, it follows that 0 < k";b—l < 1. Hence,

q
b; #0and b; #k —1foralli=1,2,...,n.

Therefore, the periodic expansion is not trivial.

Case 2. Suppose ged(k,q) > 1.

€

Then g = krit kro? ... kyTe go where kg, kry, . .
factors of k, and ged(k, qo) = 1.

., kr, are prime

Case 2.1. Let go = 1. Suppose that
er e e
= 1, | = =21, ==
e [ [ ] E])

Since k = k1 k2 .. k3 and g = kM ki ..
that ¢ is a factor k".

k7o it follows

Let k" = kog.
Then £ = /jcorp = k—bT where b = kop. Since 0 < p < ¢, it

q
follows that 0 < b < k".

Thus, b = [0.b1b2...b—1b,]i for some bi,ba,...br—1,b, €
{0,1,...,k—1}.
p_ b w
Hence, 5 == [0.b1b2 ... br—10(k — 1)“]&.
Case 2.2. Let go > 1. Suppose that ¢ = qigo where

rre

s

Also, we assume that » = max {1, [Z: —‘ , [ceif-‘ e [%—‘ }

Then k" = koq.

Erq 1 €
a1 =krtkey?

Thus, P _k:op = kop .
qg kogigo  k"qo

By the Euclidean algorithm, there exists nonnegative inte-
gers ¢ and po such that

kop = cqo + po
where 0 < po < qo.

We have
p_ 1 Po
== (c+= 6
q Kk < qo) ©
Since g is not a power of k, then py # 0. Thus, 1 < py < qo.

Then by Lemma 5, there exists positive integer by such
that

qobo = k™ — 1 (7)



where n is an integral multiple of the order of & under mod-
ulo qo.

Multiplying Equation 7 by L, we obtain
(k™ —=1) qo
po_ b
qo km —1
where b = bopo.
Thus,
Po b b 1
—_— = = — ]_
® k1 k"< +k"—1)

As in the proof of Case 1, since qo is relatively prime to k
and is greater than 1, we obtain

Po _ b _i b b
qo_k”—l_k”

where b = [b1b2 ... bn]k.

oo =1[0.(b1b2 ... b,)* ]k

Hence, Equation 6 becomes

p_1 _b o1
PR (”kn—l)‘kf

Since 0 < g < 1, we have ¢ < k".

(C + [0.(b1b2 L. bn)w]k)

Hence, ¢ = [c1c2...crx for some ¢; € {0,1,...,k — 1}, for
alli=1,2,...,r.

It follows that

1 w
g = ? [6162 .. .CT.(b1b2 .. bn) ]k

Therefore, if ¢ = k;fl ki;z
and qo > 1, we have

p_1 b w
(—]z = (C+ m) =[0.cica...cr(brbz ... bn)"],

... k72 go where ged(k,q0) = 1

where k" = ko - kry ka2 .. krl®
kop = cqo + po, 0 < po < qo,
b =bopo = [b1b2 ... bu]k,
¢ =lcice...cnlk, and
n is an integral multiple of the order of k
under modulo gq.

< 1.

Since 0 < bo < 1, it follows that 0 < b
qo km—1

Hence, b; 20 and b; #k —1foralli=1,2,...,n.

O

Therefore, the periodic expansion is not trivial.

The computation of the base-k representation of a positive
rational number less than 1 is implemented using a Python
program as shown below.
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Fractional Part of a Base Number Given a Specified Length

Python Program 5

def FractionalPart0f_BaseNumber(b,n,k):
baseNumber = WholePart0f_BaseNumber (b,k)
m = n - len(baseNumber)

for i in range(m):
baseNumber . insert (0,0)
return baseNumber

3. CONCLUSION

Any rational number with a finite base-k representation can
be expressed as a base-k number with a nonterminating and
periodic expansion with period that is equal to 1. See The-
orem 3.

In particular, an integer a with a finite expansion [a1a2 . . . am ]k
can be expressed as

a = [b1b2 .. .bm.(k — 1)w]k

where [b1b2 . bm]k = [a1a2 e am]k — [1]k

Also, in Theorem 4, we have shown that any rational num-
ber £ where 0 < p < gq, pand q are relatively prime can be

expressed as a base-k number with a nonterminating and
periodic expansion with

e period that is equal to 1 if ¢ is a product of prime
factors of k, and with

e period that is equal to n if ¢ is relatively prime to k
or g is a product of prime factors of k£ and a positive
integer greater than 1 that is relatively prime to k.
The number n is an integral multiple of the order of k
under modulo of the positive integer.

Combining these theorems, we have our final result.

Theorem 5 Ewvery rational number has an infinite and pe-
riodic base-k representation.

This gives a proof to the claim of the book in [1] that the
fractional part of every rational number can be expressed as

k" ([alaz U P [ar+1a’l”;2_"1~ a’r‘+s]k>

for some integers 7, s with » > 0 and s > 0.

The following Python program computes the infinite and
periodic base-k representation of a rational number. The

input is a rational number of the form ; and the output is
of the form

(sign) [aaaaaaa.ccccccc (bbbbbbb) w] _k



where (sign) gives ‘+’ if the given rational is positive, oth-
erwise ‘-’, aaaaaaa gives the base-k representation of the
integral part of the rational number (bbbbbb) is the pe-
riod of the fractional part of the base-k which is enclosed in
parentheses ccccccc is the preperiod of the fractional part

of the base-k number.

If ¢ = 0, the output is ‘No Expansion.!’.

Base-k Number Representation of s/t

Python Program 6
def expandBaseNumberOf (s,t,k):

zero = ’(0)’
if t ==

return ’No Expansion!’
elif s ==

return zero
elif sxt < O:

sign = (=)’

s,t =abs(s),abs(t)
else:

sign = ’(+)’

a, p0 = s/t, sit
whole_part = WholePart0f_BaseNumber(a,k)
trivial_part = WholePart0f_BaseNumber (a-1,k)
# if p/q is an integer
if pO == 0:
answer = sign+str(whole_part)+’_’+str(k)\
+’ or ’+sign+’ (’+str(trivial_part)\
+2 . [+str(k-1)+°]"w)_’+str(k)
return answer

d = gcd0£f(pO,t)
p, 9 = p0/d, t/d

# if q is relatively prime to k and
# is greater than 3
if gecdOf(k,q) == 1:
order,unity = unityAndOrder0f (k,q)
denom = unity - 1
b = px(denom/q)
period_part = FractionalPartOf_BaseNumber\
(b, order,k)
answer = sign+’ (°+ str(whole_part)\
+’ . ’+str(period_part)+’~w) _’+str(k)
return answer

# if q is product of prime factors of k and
# a number g0 such that gcd(q0,k)=1

ged = gedOf (k,q)
primefactors = primeFactorizationOf (gcd)

q0 =g
ql = {}
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for prime in primefactors:
ql_temp,r_temp = prime,0
while qO%ql_temp == O:
r_temp += 1
q0 = q0/ql_temp
qllql_templ=r_temp

primes0f_k = primeFactorizationOf (k)
ceiling = [1]
for prime in qi:
ceiling.append(int (ceil(ql [prime]\
*1.0/primes0f_k[primel)))
r = max(ceiling)

# if q is a product of prime factors of k

if q0 ==
kO = k**xr/q
fract_part = FractionalPart0f_BaseNumber\

(k0#*p,r,k)
preperiod = fract_part[0:r-1]
preperiod.insert(r-1,fract_part[r-1]-1)
answer = sign+’(’+ str(whole_part)+’.’+\
str(fract_part)+ ’)_’+str(k)+ \
> or ’+sign+’ (’+str(whole_part)\
+? . 2+str(preperiod)+’ [*+str(k-1)\
+2]"w) _’+str(k)
return answer

# if q0 > 1
else:
ql = q/q0
kO = k¥*r/ql

order,unity = unityAndOrder0f (k,q0)

denom = unity - 1

c,p0 = divmod(kO*p,q0)

b = pO*(denom/q0)

preperiod_part= FractionalPart0f_BaseNumber\
(c,r,k)

period_part = FractionalPart0f_BaseNumber\

(b,order,k)
answer = sign+’ (’+str(whole_part)+’.’+\

str(preperiod_part)+str(period_part)\

+27w) _’+str(k)
return answer

Example 1
Consider the rational number 2/3.

2 . (1,0)2 . w
3 @1 = ([0].[1,01*)2

The output of expandBaseNumber0f(2,3,2) is given by

‘(+)(0].[1,01"w)_2’.



Example 2
Consider the rational number —5/36.

i

(1,0,0,0,1, 1)),
= —([0].[0,0][1,0,0,0,1,1]*)2

(1,0,0,0,1,1)2
26— 1

The output of expandBaseNumber0f(-5,36,2) is given by

‘(=>(fol.[o, 01[t, 0, 0, 0, 1, 11"w)_2’.
Example 3
Consider the rational number 23/36.
28 _1(2
36 4\ 9
1 5
=1 (2+3)
1 35
1 (1,0,0,0,1,1)2
= — 2 -—_—
4 ( + 26 —1 )
= 2 ([1,0101,0,0,0,1,1])z)
= ([0][17 0][17 07 07 07 17 1]“)2

The output of expandBaseNumber0f (23,36,2) is given by
>(+)(fo1.[1, 0I1[1, 0, 0, O, 1, 1]7w)_2".

Example 4

Consider the rational number w

759, 375

25,275,000 _ (2,3,4,3,13,5,0)5
759, 375 15°
(12,3].4,3,13,5,0])15
(12,3].[4,3,13,5])15
(12,3].4, 3,13, 4][14]*)15

The output of expandBaseNumber0f (25275000,759375,15)
is given by

‘(+)([2, 3].[4, 3,
‘(+)([2, 3].[4, 3,

13, 5])_15’ or
13, 41[141"w)_15’

Example 5

Consider the rational number w

—4

998,870,000 249,717,500
—1 - 1
=—(1,1,8,10,6,0,4,10,10);
= —([1,1,8,10,6,0,4,10,9].[10])* |11

The output of expandBaseNumberOf (998870000,-4,11) is
given by

‘(=) I[1,
‘(=) (L1,

1, 8, 10, 6, 0, 4, 10, 10]_11’ or
1, 8, 10, 6, 0, 4, 10, 91.[10]"w)_3".
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