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ABSTRACT

We consider the integers in the famous Collatz Problem,
classified according to their trajectories. We look at the
distribution of cardinality of S; for 1 < ¢ < 199, and the dis-
tribution of ratio of primes over odd elements of S;, where S;
is the set of integers n whose trajectories contains ¢ instances
of the map n — 3n + 1, such that 0 < n < 100, 000, 000.
The behavior of the graph is similar. We also investigate the
odd integer sequence in the trajectory of positive integer n,
denoted by OT'(n). We realize that for all i > 2, we can find
an n € S;, such that there exists a decreasing subsequence of
OT(n). We also define new ternary infinite sequence base on
S;. We show that this sequence is 2-automatic and therefore
is an image under coding of a uniform morphism.
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1. INTRODUCTION

Let f be a function on the set of natural numbers defined
as follows:

, if n is even

3
f(n) =
3n+1 ,if nis odd

We denote by f%(n) the i iterate of the function f evaluated
at n, that is,
i times
N\

Fitn) = FFFF - f(n) )

The sequence of iterates

(n, f(n), f*(n), *(n),...)

is called the trajectory of n. In [5], the authors classified
the possible trajectories based on Lagarias [3] as follows:

convergent: 3i > 0 s.t. fi(n) = 1;

non-trivial cyclic: the sequence fi(n) is eventually
periodic, and f'(n) # 1 for all i > 0;

divergent: lim;_. f(n) = co.

The Collatz Problem asks for all natural numbers n does
there exist a natural number i such that f(n) = 1? This
means asking if every trajectory is convergent [5]. This prob-
lem is still unsolved since at least 1952. However, Feinstein
showed that this problem is unprovable [1].

Let the trajectory of n be convergent. Let g(n) be the num-

ber of odd numbers in the trajectory of n. In particular,
let

0 Jifn=1
gn) =< 9(%) , if n is even
gB3n+1)+1 ,ifn>1isodd

Otherwise, we define g(n) = co.

EXAMPLE 1. Let n = 2. Since n is even, we have g(2) =
g(1) =0.



EXAMPLE 2. Let n = 3. Since n is odd, we have

9(33)+1)+1 g(10) +1

g(5) +1
g(3(5)+1)+1
g(16) +1
g(8)+1
g(4)+1

9(2) +1

1+1

= 2

Realized that g(2) =1 in Ezample 1.

Using the algorithm below we can generate values of g(n)
for all natural number n efficiently.

AN ALGORITHM FOR GENERATING VALUES OF g(n)
T[n]l«<— -1, for all n

T[1]< 0
G(n) begin

if T[n] is not -1 then
return T[n]

if n is even then
T[n]l«+— G(n/2)
return T[n]

else
T[n]l«— G(3n+1)+1
return T[n]

end

The above algorithm uses dynamic table in the computation
of the values of g(n). Initially the table T has values -1 for
all its entries to mean T[n] has not yet been determined.
If g(n) is computed, the result (a value which is not -1) is
saved at T[n]. And in the succeeding computation the table
is consulted and/or updated.

We provide in Table 1 below values of g(n) for 1 < n <
199 using the algorithm above. To realize the value, say, of
g(167) in Table 1, we look at row 16 and column 7. Hence,
g(167) = 23.

Shallit et al. [5] defined sets of integers based on their trajec-
tories. In particular, they define the set S; = {n > 1|g(n) =
1} as the set of integers n whose trajectories (until such that
f¥(n) = 1, for some integer k,) contains i instances of the
map n — 3n + 1.

EXAMPLE 3. Referring to Table 1 it is easy to realize the
following set:

So=1{1,2,4,8,16,32,64,...}
Sy ={5,10,20,21,40,41,...}
Sy ={3,6,12,13,24,26,...}
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o 1 2 3 4 5 6 7 8 9
0 o o 2 0 1 2 5 0 6
1 1 4 2 2 5 5 0 3 6 6
2 1 1 4 4 2 T 2 41 5 5
3 5 3 0 8 3 3 6 6 6 11
4 1 40 1 9 4 4 4 4 2 7
5 7 7T 2 2 41 41 5 10 5 10
6 5 5 39 39 o0 8 8 8 3 3
7T 3 37T 6 42 6 3 6 6 11 11
8 1 6 40 40 1 19 9 4 9
9 4 33 4 4 38 38 2 43 7 7
o 7 7 7 31 2 12 2 36 41 41
11 41 24 5 2 10 10 5 5 10 10
12 5 34 5 15 39 39 39 15 0 44
3 8 8 8 8 8 13 3 32 3 13
14 3 3 37T 371 6 42 42 42 6 6
5 3 3 6 11 6 30 11 11 11 18
16 1 35 6 6 40 40 40 23 1 16
17 1 45 9 9 9 28 4 9 9 9
8 4 4 33 33 4 14 4 14 38 38
19 38 14 2 43 43 43 7 7 7 43

Table 1: Values of g(n) for 1 <n < 199

A partial list of elements of S; for some i can be obtained
from Table 1. Note that if the trajectory of an integer n
does not converge to 1, then n € Se. In [5], the authors
showed that each .S; is infinite.

2. DISTRIBUTION OF INTEGERS IN s;

Let us have a look at the distribution of the cardinality of S;
for some 7 > 0 in some subset P of positive integers. We take
a subset P such that 1 < |P| < 100,000,000 and observe
the distribution of the cardinality of S; for 0 < i < 199.
Interestingly, the cardinality |S;| for some 0 < ¢ < 199 will
reach a peak and goes down until it reaches nullity.

In particular, in our case for 29 < ¢ < 80 the value of |.S;|
ranges between 1000000 to 2000000 and S; reaches its peak
at ¢ = 62, where |Ss2| = 1,764,061. If 20 < ¢ < 29, and
80 < i < 90, we have 1000000 < |S;| < 500000. If 0 < ¢ < 20
and 90 < ¢ > 199, |S;| is between 0 and 500000. The graph
of the distribution is given at Appendix A

We also consider the distribution of the number of odd
integers and primes in S;. It seems that at P such that
1 < |P] < 100,000,000 and S; for 0 < i < 199, the distri-
bution follows the same graph as above. The ratio between
the number of primes over the number of odd integers in S;
is depicted in the following graph at Appendix B. The ratio
oscillates at 11 percent, with extreme value at Ss : of its 523
elements, 57 are odd and 18 of which (31 percent) are prime
numbers.

Note that there are investigations on the distribution of

prime numbers in the Collatz sequence. In this note we
consider primes in each S;.

3. ODD INTEGERS IN THE TRAJECTORY



Let n be any positive integer. We denote by T'(n) the tra-
jectory of m. Realize that T'(n) forms the sequence

(n, f(n), f2(n), f*(n),...)

Then we consider the following subsequence (ax)x>1 of odd
integers of T'(n). Let us call it odd trajectory of n and
denote by OT'(n).

LEMMA 1. Let T(n) be the trajectory of a positive integer
n. Let ay, be the k'™ odd integer in the subsequence OT(n)
of T(n). Then

3a +1=2%ay_1,

for some positive integer 0 > 1.

PROOF: Let n be an integer and consider T'(n). Let a1
be the next odd integer in T'(n) after ay, for some integer k.
Then ag, z1, 22, - Tr,ar—1 is a subsequence in T'(n), where
the z;’s are even integers. Since ay is an odd integer, then
z1 = 3ar + 1. Then z; = z”gl, for all 2 < 3 < r will be
the sequence of even integers between aj and ax_1 in T'(n).

Finally, ax—1 = 5+. Thus, let r = 6y, then

3ar + 1= 29kak_1

as desired. O

LEMMA 2. Let ar and ar—1 be consecutive odd integer in
the odd trajectory OT(n) of a positive integer n. Then

ar = ax—1 if and only if ap = 1.

PRrOOF: It is easy to see that if ax = ar_1, we will have
3ax+1=2%qay;. Then 2% —3 =1andar =1 or 2% —3 = —1
and ar = —1. Since ax > 0, therefore ay = 1.

The other direction is trivial. O

LEMMA 3. Let ar, and ar—1 be consecutive odd integer in
the odd trajectory OT (n) of a positive integer n.

If ar < ax—1 then 3ar + 1 = 2ax—1.

PROOF: By hypothesis arx < ar—1, then ar—1 = ar + 1,
for some r > 0. By Lemma 1, we have 3ax + 1 = 20k (ax +
r) = 2%ay + 2%, Thus, (3 — 2%)ay, = 2%r — 1. Since
r > 0,0, > 1, then 2% — 1> 0.

If 65 > 1, we have a contradiction on the value of (3—2%%)ay.
Therefore, 0, = 1. g

Let n € S;, for some ¢ > 0. Then every n € S; defines a

trajectory that has ¢ odd integers which excludes 1.

LEMMA 4. Let n € S;, for some i > 0. Then there exists
m € S; such that OT(n) = OT (m).
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PROOF: Let n € S; for some ¢ > 0 be an odd integer.
Let m = 2"n, for some positive integer r. By Lemma 1 the
next positive integer in the sequence will be n, then the
conclusion follows.

If n € S; is a positive even integer, then for some positive
integer 7, let # = J- be the first odd integer in OT(n).
Let m = 2"z, for some positive integer k, then the desired
conclusion follows. O

LEMMA 5. Let n € S;, for some i > 0. Then there exists
m € Si+1 such that OT (n) is a subsequence of OT(m).

ProOOF :  Without loss of generality, let n € S; for some
t > 0 be an odd integer. Let m be an odd integer such that
m = 22=L for some positive integer r. It is not hard to see
that m is not in S; but in S;—;.

If m is an even integer, then let m = 2k(2T”T’1), for some

positive integers k£ and r. It is easy to see that m € S;+1. O

THEOREM 1. For all i > 2, there exists an n € S;, such
that there exists a decreasing subsequence of OT (n).

Proor:  Without loss of generality, let n € S; be an odd
integer and let a; = n. Let k be a positive integer such that
1<k <. Let (aij)o<j<r, where 5o =k and 0 < i, < k. We
claim that:

Qi < Qi1 < a;;, = 4z + 3, for some integer z.
We now prove the claim. By Lemma 3, we have

3ai, + 1 =2a:;,_1. (1)

Since a;;, and a;j_; are odd integers, then let a;;, = 2m—+1,
for some integer m and let a;;,_1 = 2¢q + 1, for some integer
q. By substituting these values in Equation 1, one obtains
2q —1
o 201

— @)

which implies that 3 divides 2g — 1, since m is an integer.
Thus ¢ = 2( mod 3), then ¢ = 3¢ 4 2, for some integer t.
Then Equation 2 yields that m = 2t 4+ 1. Therefore, a;;, =
2(2t + 1) + 1 = 4t + 3 as desired.

For the other direction, let a;;, = 4z + 3, for some integer z.
Then by Equation 1, we have 3(4z +3)+1 = 122 + 10 =
2(6z + 5). Realize that 6z + 5 is odd and 6z +5 > 4z+3. O

4. INFINITE SEQUENCE BASED ON s;

We will construct a new infinite ternary sequence based on
the trajectories of integers. First, let us fixed our termi-
nology. For detailed discussions on automatic sequences we
refer to [4] and for automata and formal languages we refer
to [2] and [6].

We will call a finite set ¥ an alphabet and its elements sym-
bols or letters. Concatenation of symbols in ¥ will be called
words or strings. By 7, we mean set of all possible non-
empty strings over 3.



A subset L of ¥* is called a language. A regular expression
over the alphabet X is a well formed word over the alphabet
SU{N 0,(,),+,*}. If the word w is a regular expression, then
L(u) represents a language that u specifies. A language L
is regular if L = L(u) for some regular expression . In
particular, every finite language is called regular.

We are aware of the standard finite automaton models which
either accept or reject any given input string [2], [6]. We will
be interested in more general models of function computa-
tion by finite automata. Let w be an input string. The au-
tomaton moves from state to state according to its transition
function ¢, while reading the symbols in w. After reading the
whole string w, the automaton halts in a state, say ¢. Then
the automaton outputs 7(¢), where 7 is the output map-
ping. This automaton is called an automaton with output.
In particular, we define a deterministic finite automaton with
output (DFAO) as 6-tuple M = (Q, %, 9, go, A, 7) where the
sets @, %, 6 and qo are define classically as in a DFA in [2]
and [6], A is the output alphabet and 7 : Q — A is the
output function. Machine M defines a function from ¥* to
A, which we denote as fa(w), as follows:

fu(w) = 7(6(qo0, w)).

In this note we will be particularly interested in the case
where the input represents a number in base k, for some
positive integer k > 2. If this is the case our DFAO will be
called k-DFAO.

DEFINITION 1. The sequence (an)n>0 over a finite alpha-
bet A is called k-automatic if there exists a k-DFAO M =
(Q,%,0,q0,A,7) such that an = 7(5(qo,w)) for alln > 0
and all w with [w]i = n.

Note that this definition requires that the automaton returns
the correct answer even if the input possesses leading zeros.

Alternatively, we can characterize automatic sequences as
follows. Let (an)n>0 be a sequence over A, let k > 2 be
an integer and let d € A. Define the set I((an)n>0,d) =
{[n]x |an = d} as k-fiber.

LEMMA 6. [4] The sequence (an)n>o0 s k-automatic iff
each of the fibers I((an)n>0,d) is a regular language for all
de A.

Let us now define a sequence (¢, )n>o0 as follows:

0 ,ifn=20
cn =14 g(n) ,ifg(n)=1lorg(n)=0
2 , otherwise

Hence

(cn)n>0 = 000201220212222202221122222222220 - - -

We list in Table 2 below the first 200 terms of (¢ )n>0. To
know the term ci6s in the sequence, we look at row 16 and
column 8, which gives a 1.

01 2 3 4 5 6 7 8 9
0 0 0 0 2 0 1 2 2 0 2
11 2 2 2 2 2 0 2 2 2
2 1 1 2 2 2 2 2 2 2 2
3 2 2 0 2 2 2 2 2 2 2
4 1 2 1 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2
6 2 2 2 2 0 2 2 2 2 2
T2 2 2 2 2 2 2 2 2 2
8 1 2 2 2 1 1 2 2 2 2
9 2 2 2 2 2 2 2 2 2 2
0 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2
12 2 2 2 2 2 2 2 2 0 2
13 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2
6 1 2 2 2 2 2 2 2 1 2
17 1 2 2 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2 2 2 2
19 2 2 2 2 2 2 2 2 2 2

Table 2: The first 200 terms of (cn)n>0.

We redefine S; as follows
Si ={ln]2|g(n) =i, n>0}.

Here we have S; as the set that contains the binary repre-
sentation of a positive integer n with g(n) = i.

LEMMA 7. The fibers of (¢n)n>0 are all regular languages.

PROOF: It is not hard to see that the following are the
fibers of (¢n)n>0 over {0,1};

I2((Cn)n20,0) = S() = L(IO*)

L((¢n)ns0,1) = S1 := L(1(01)*010*)

I2((Cn)7120,2) = {0, 1}* — (S() @] Sl)

Therefore, they are all regular languages. 0O

Note that Shallit et al. [5] proved that S; is 2-automatic
for all 7 > 0. The following Theorem follows directly from
Lemma 6 and Lemma 7.

THEOREM 2. (¢p)n>o0 is 2-automatic.

Moreover we can construct a 2-DFAO
M = (Q?E?d?q()?A’T))
for (cn)n>0, where

Q={A,B,C,D,E,F,G, H,1},

2 ={0,1},q0 = A,A = {0,1,2}.



The transition function ¢ is defined as follows:
6 0 1
A A B
B C 1
C D E
D D 1
E F 1
F G H
G G 1
H F 1
I I I

and 7: Q@ — A is defined as follows

T(I)=2

To see that M is indeed a 2-DFAO for (cy)n>o0, it is enough
to verify

0 for w € So,
7(0(A,w)) =4 1 forwe 51,
2 otherwise.

5. IMAGE UNDER CODING OF A UNIFORM
MORPHISM

We will show that (c¢n)n>0 is an image under coding of a
uniform morphism at a fixed point. The existence of these
morphisms is assured by Cobham’s Theorem. First, we de-
fine the following;

DEFINITION 2. A morphism is a map ¢ from ¥* to A*
satisfying p(zy) = p(x)p(y) for all z,y € 7.
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If for all x € X, there is positive integer k such that |p(z)| =
k, then we call ¢ a k-uniform morphism.

In particular, if for all x € X, there is positive integer k such
that |p(x)| =1, ¢ is called a coding.

Let a € 2. If p(az) = az, for some x € ¥* with |z| =k — 1,
we say that ¢ is prolongable on a. In this case, the infinite
word

w = ¢”(a) = azp(a)p®(2)p’ (x) - -

is the unique fixed point of ¢ starting with a.

Let us consider the following 2-uniform morphism ¢, based
on the transitions in the 2-DFAO M for (¢n)n>0-

p(A)=AB ¢(D)=DI ¢(G)=GI
¢(B)=CI @(E)=FI @(H)=FI
¢(C)=DE ¢(F)=GH ¢o)=1II

where ¥ = {A, B,C, D, E,F,G,H,I} = A.

Let

X = ¢“(A) = ABp(B)¢*(B)¢’(B)y'(B):--
= ABCI*(B)¢*(B)p*(B) -
= ABCIDEIIY*(B)p*(B) ---
= ABCIDEIIDIFIIIII---

Then

w(X) =@(ABCIDEIIDIFIIIII---)
ABCIDEIIDIFIIIII---

X

Certainly, ¢(X) = X implies that X is the unique infinite
fixed point of ¢ starting with A.

Now, let us use the morphism 7: @ — A is defined above
as follows

T(E)=7(F)=7(G)=71(H)=1
T(I)=2.

Then get the image of ¢(X) under 7, that is,

7(p(X)) =7(p(ABCIDEIIDIFIIIII---))
7(ABCIDEIIDIFIIIII---)
T(A)7(B)T(C)r ()T (D) (E)r(I)7(I)
(D) (D7 (F)r (D)D) (I)7(I)- -+
= 0002012202122222 - - -



It is not hard to see that

T(p(X)) = (cn)n>o0

since the morphisms we used are essentially the transition
function ¢ and output function 7 of the automaton M for
(¢n)n>o0. Finally, we have shown that,

THEOREM 3. The infinite sequence (cn)n>0 S an tmage
under coding T of a 2-uniform morphism ¢ fized by A.
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APPENDIX
A.

Distribution of Cardinality of Sifor N=100,000,000

2000000
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=
=2
=
=
=
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Cardinality

1000000 ﬂ =
500000 2

0
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Distribution of Ratio of Primes over Odd Elements

of Sifor N=100,000,000

T

1

14 27 40 43 BE 79 82 105 118 131 144 157 170 183 196

Si

45




