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ABSTRACT

In this paper, we intend to discuss the class of automata be-
tween deterministic finite automata (DFA) and unambigu-
ous nondeterministic finite automata (UFA), which has the
strict tree property. We call this class the Strict Unambigu-
ous Finite Automata (StUFA)'. A reasonable characteri-
zation of these automata based on the transition relation A
will be provided.
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!This class of nondeterministic finite automata was previ-
ously called HrTFA in [1] and SUFA in [2].

1. INTRODUCTION

In [4] the following hypothesis on the computation tree of
any unambiguous nondeterministic finite automata was given:

Strict Tree Property

The computation tree of any minimal M € UFA
on an input w has exactly one path P from root to
a leaf with several nondeterministic guesses and
all paths having only one vertex in common with
P do not contain any nondeterministic branch-
ing.

However, [1] provided a counter example by showing a min-
imal unambiguous finite automaton that accepts a word
wherein the computation tree disobeys the Strict Tree Prop-
erty.

This (strict tree) property on the computation tree of an
unambiguous nondeterministic finite automata is found to
be satisfied by some automata which are different from the
class of deterministic finite automata (DFA). This is the
class of automata that we are interested in.

The paper is organized as follows: In Section 2, we provide
the definitions essential to the paper, however, some termi-
nologies which are standard in formal language theory may
be found in [3]. In Section 3 we discuss the computation
tree of an M € NFA. We also introduce the basic tool we
need for the main results. A counter example for the claim
in [4] is provided in Section 4. We give some state complex-
ity results in Section 5. Finally we prove our main result in
Section 6.

2. DEFINITIONS

Let ¥ be any finite set of symbols. We denote by ¥* the
set of all possible strings or words that can be formed from
the elements of 3. Let A C X*. We define a simple model of
computation that accepts those and only those strings that
are in A.

DEFINITION 1. A 5-tuple M = (Q,X,I,A,F) is called a
nondeterministic finite automaton where Q is a finite



set of states, X is a finite set of alphabet, I C Q is called the
set of initial states, F C Q is a set of accepting states and
a relation A C Q x X x 29,

We will denote the class of nondeterministic finite au-
tomata as NFA.

The relation A is defined only on the elements of Q@ x X,
however the automaton needs to accept set of strings over
3*. In this case, we extend our relation to the elements of
> as follows:

DEFINITION 2. We define the relation
ACQxY x29,

to be the smallest set s.t. for all u,v € ¥*,q,¢',¢" € Q, it
satisfies the following:

(i) ACA,
(ii) (¢,\q) € A,

(iii) (¢,u,q), (¢, v,q") € A = (q,uv,q") € A.

Let w € ¥*. The word w is accepted by an automaton M
iff there are states ¢; € I and gy € F s.t. (g;,w,qr) NA # Q.

DEFINITION 3. We define the language accepted by M
as:

LM)={weX |(Ix{w}x F)NA£0}.

In fact, we can represent these set of strings as paths in the
transition diagram of M. These paths are concatenations of
elements of @ U X. In particular, these paths are subset of

Q-(X-Q)"

We define the following functions:

DEFINITION 4.
Proj,: Q- (SUQ)" — Q"
s.t. for all x € X, Pron(:c) = X\ while for all ¢ € Q,
Proj,(q) = ¢,
Proj: Q- (XUQ)" — X"

s.t. for all ¢ € Q, Proj_(q) = A while for all z € I,
Proj, (z) = =,

We denote the set of all possible paths, whose vertices are
labeled with elements of Q and edges by the symbols in any
w € ¥* in chronological order by Path(M). More precisely,
Path(M) C Q- (X - Q)". Formally,

DEFINITION 5.
Path(M) = {z € Q-(2-Q)" |Fw € ¥" s.t. Proj_(z) =w}.

We note that an automaton M accepts a word w € X* iff
there is a path labeled exactly by symbols in w, which starts
from any state in I and ends in any state in F.

We distinguished the set FPath(M) from paths in Path(M)
as the set of all paths, which starts from any element in
and ends with a state in F) as the set of all accepting paths
of M. In particular, we define FPath(M) as follows,

DEFINITION 6.
FPath(M) = Path(M)NT-(Z-Q)" N (Q-X)" - F.

THEOREM 1. Let M € NFA.
Proj  (FPath(M)) = L(M).

Proor. FPath(M) is the set of all strings of the form
U = qo0a1¢1a2q2 - - - anqn for some n, where for all 4, 1 <1i <
n, a; € X,¢; € Q,q0 € I, and ¢, € F. Since v repre-
sents a path in M, Vi,1 < i < n,(gi-1,ai,¢;)) € A and
thus in A. Also, since (go,a1,q1) € 3, and (qi,a2,q2) €
3, then (qo,a1a2,q2) € A. Similarly, since (go,as,g3) €
E, then (qo,a1a2a3,q3) € A. TFor the same reason, we
will have (qo,a1a2 - @m,Gm) € A for all m < n. Hence,
(qo,@1a2 - an,qn) € A and Projy(FPath(M)) will be all
strings w = a1a2 - - - an. Therefore for all w, (qo, w, gn) € ﬁ,
and Projy, (FPath(M)) will be the set of all the strings ac-
cepted by M and thus Proj (FPath(M)) = L(M). O

We shall call the set FPath(M) as a path language recog-
nized by M. We note that equivalent automata may recog-
nize different path languages.

Since our model is nondeterministic, we can expect at least
one computation which leads to an accepting state for all
words found in the set of language accepted by some M €
NFA. We denote the set of successful paths that an automa-
ton M made for an input w as FPath(M(w)).

3. THE COMPUTATION TREES
Let M = (Q,%,I,A, F) € NFA. We associate the following
ambiguity function:

ambig,: Z*UN — N,
such that for all w € ¥*,
ambig ,(w) = [{u € FPath(M) | x5 (u) = w }|
and for all n € N,

ambig,,(n) = max

bi .
wer*; |lw|<n amblgm ('LU)

It is imperative that, the above function measures the amount
of paths which can be traced successfully from an element of
I and ending with a state in F' by an automaton on a given
input of length at most n.

DEFINITION 7. Let M = (Q,%,I,A,F) € NFA and w €
¥*. The computation tree of w on M is defined by

Tom={r€Q"|F2z€ X" Fve& PathM)NI-(X-Q)"



st Xo()=z A Proj (v)-z=w}

A path x € Ty m is an accepting path if and only if |z| =
|w| + 1 and the last symbol of x is in F.

We also note that, a computation tree of a word w on M is
simply a proliferation of states on the said input by M.

We can also associate the ambiguity of an input word w
with the number of accepting leaves of its computation tree.
That is, for any automaton M and any word w € ¥,

ambig ,(w) = { € Tw;m | x is an accepting path }|.

DEFINITION 8. For all w € ¥* and M € UFA, that is
the class of unambiguous nondeterministic finite au-
tomata, whenever ambig,,(w) < 1.

LEMMA 1. Let M € NFA.For allw € X7,
|FPath(M(w))| <1 if and only if M € UFA.

PrOOF. Let w € X7, if |[FPath(M(w))| < 1, then for
each w € L(M), there is at most one accepting path, say
V = qoQ1G¢102G2 - - - AnQn for some n € N, where qo € I,qn €
F, such that w = Projy(v) = a1az2 - - - an. Hence, there is at
most one = Proj,(v) = q0q1q2 - - - gn, Where z is a sequence
of states of the accepting path v. Then M € UF A.

The converse follows immediately from the definition of UFA.

Intuitively, ambiguity of an M € NFA connotes the number
of ways it can accept an input w € L(M) or the cardinality
of the set FPath(M).

4. EXAMPLES

Before we present an automaton that negates Strict Tree
Property, we first give the following concepts. An automa-
ton M € UFA for language L is minimal iff it recognizes
L and among its equivalent automaton in UFA | it has the
minimum number of states. We note that such minimal au-
tomaton in UFA is not unique.

EXAMPLE 1. Let M = (Q,%,{q}, A, F) € NFA s.t.
Q={9,91,92,3, 44,45, 46,q7 }
~>={0,1}
F={g}
A ={(g,0,90),(q0,1,90), (q0,1,q1),(qo0,1,4), (q,0, ge),
(¢1,0,42), (g2, 1,93), (g1, 0,95), (g5,0,93), (g6, L, g7),

(q77 07 q3) }

One can easily construct two different minimal automata in
UFA that accepts the same language as M.

Figure 1: An NFA having more than one equivalent
minimal automata accepting the same language.

Although, we have defined formally the above computation
tree in our example, we will explicitly construct a computa-
tion tree of a particular input word by a minimal automaton
below.

EXAMPLE 2. Let M1 = (Q,%,{q},A,F) € NFA s.t.
QZ {CIO,(Jl,CIz,(B,QAL,%}
¥ ={0,1}
F={g}
A ={(a,0,9),(q,1,q),(a,1,q),(q,0,q),(a1,0,q2),

(92,0,¢3),(q2,1,3),(qa,1,45),(g5,0,43) }-

Notice that

FPath(/Vl1) =
q0{{0,1}q0}" {{1¢10¢2{0,1} g3} U{0qa 15 0gs} }.
The language recognized by M is
Proj_ (FPath(M1)) = L(M1) = {0,1}"{{10{0,1}}u{010}}

It is not hard to convince ourselves that My € UFA, and
that it is minimal. Moreover, it could be verified that My
follows the Strict Tree Property for any input w € X*.

ExXAMPLE 3. Let M1 = (Q,%,{q},A,F) € NFA s.t.
Q=1{90,91,92:93,94,95 }
s =1{0,1}
F={g}
A ={(q0,0,), (q0,1, ), (q0,1,q1), (,0,q4), (q1,0, g2),

(q1707 q5)7 (q27 17q3)7 (q47 17q5)7 (q5707q3) }



Figure 2: A minimal UFA that follows the Strict
Tree Property.

It is not hard to see that the language recognized by M1 and
MY is the same. The number of states of M} is equal to
that of M1, hence, M} is also minimal.

FPath(M1) =

q0{{0,1}qo}" {{1¢1 {0g21U0g50} g3} U{0qa1¢50gs} }.

However, it is easy to see that the computation tree for the
input 0101 by M/ contradicts the Strict Tree Property.

Figure 3: An unambiguous minimal automaton that
contradicts the Strict Tree Property.

THEOREM 2. [1] There exists a minimal automaton M €
UFA, which does not satisfy the Strict Tree Property.

Proor. Let M = M}, where M] is the automaton
defined in the preceding example. [

We note that the automaton M} in the previous example is
not deterministic at all. Therefore, we found a class of au-
tomata which is between the classes DFA and UFA, which
satisfy the Strict Tree Property. Thus, we have the following
corollary.

COROLLARY 1. [1] Let StUFA be a class of automata
which satisfies the Strict Tree Property. Then

DFA C StUFA C UFA.

PROOF.
Lemma. _J

This follows immediately from the preceding
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5. STATE COMPLEXITY

In [1, 2], it was reported that StUFA are ‘almost determin-
istic’. However, we show below that the exponential gap
between NFA and DFA with respect to their state com-
plexities is also true between StUFA and DFA.

PROPOSITION 1. Let L be a regular language accepted by
M € StUFA. Then 3 A € DFA, where L(A) = L(M) and

Q| <219,

where Q4 and Qam are the finite set of states of A and M,
respectively.

Proor. This follows from the fact that StUFA is a
subset of NFA. [

COROLLARY 2. There exists a regular language L, ac-
cepted by some M € StUFA such that no DFA can accept
in less than 2/9M1~1 giates.

PROOF. The language
n={zlylz€{0,1}", y{0,1}" "}
C

witnesses this gap.

For a given sequence of automata (M,);>0, we define |Q a4, |
as the number of states of M,. For a function f on the set
of natural numbers with f ¢ O(n) and two classes X7 and
X2 of finite automata, we will say that there is a f(n)-size
gap or f(n) separation between X; and X2, denoted by

X1 =f(n) Xo,

if there is a sequence of regular languages L; € (22* YN for
i > 0, such that there exists a sequence (M;);>0 € X3’ with
L(M;) = L; and |Qum| € O(4) and all sequences (N;);>o €
X{¥ with L(N;) = L; satisfy |Qa| € Q(f(3)).

Therefore, by Corollary 2, we have the following:

THEOREM 3.

DFA <,.—1 StUFA.

It is still not known whether the gap between StUFA and
UFA is exponential or not.

6. MAIN RESULTS

In this section we give necessary and sufficient condition for
a minimal M €UFA to be in StUFA. We assume that
all M €UFA below are minimal. First, we provide the
following definitions.

DEFINITION 9. Let M € UFA. For all w € L(M).
'Cy € Tuim

whenever 3v € Path(M) NI - (X-Q)*, Proj (v) =w



and Pron(v) = 'C,, is an accepting path.

All other paths which leads to either non-accepting or unfin-
ished computation of M on w will be denoted by *C.,, for
i>2.

DEFINITION 10. For all w € (XU Q)*, we define the set
of all proper leading symbols of w as its set of proper prefixes
and is denoted by Pref(w). Note that Vv € Pref(w), |v| <
|w| — 1.

The following are easy observations.

OBSERVATION 1. For alli> 2,

Pref ('Cy,) NPref ('Cy) # 0.

OBSERVATION 2. M € UFA, then Vw € L(M), Vi, j >
17 Z#.% Elzcw7JCwETw;M s.t.

Pref (‘Cy,) NPref (7Cy,) # 0.

LEMMA 2. Let M € UFA.
M € StUFA iff Vi,j > 1,

Pref (‘Cy) NPref (7C,) C Pref ('C,,).

PROOF. (=)  Let M € StUFA. Let w € L(M).
Suppose there are i, 7 > 2, such that Pref (‘Cy,)NPref (?Cy)
¢ Pref (1C,). _ ,
Therefore, we can find u € Pref (*Cy,) N Pref ('Cy), s.t.
u & Pref (1C,). If we denote by |w| the length of any string
w, then it should be clear that |u| < |'Cy|, |"Ci|. Hence,
there is a v <* Cy, and a v’ <? Oy, such that v = zy, and
v’ = zy/, for some y,3y’ € Q. This violates the strict tree
property, and hence, M ¢ StUFA. Therefore, for all i and
Js

Pref (ZC’u) N Pref (jC'w) C Pref (1Cw).
(<) Let M € UFA. Let for all 4,5 > 1,
Pref (‘C,) NPref ('C,) C Pref ('C,).

We need to show that M € StUFA. That is, it follows the
strict tree property.

Suppose M € UFA but does not follow the strict tree prop-
erty. This means there exists a nondeterministic compu-
atation path from 'C,, that has another nondeterministic
branch. Let such nondeterministic path be ‘C,,, for some
positive integer i. Let its nondeterministic computation path
other than that with 1C,, be denoted by YC,, for some pos-
itive integer j.

Now, there exists some u € Pref (*C,,) NPref (C,,), such
that u ¢ Pref ('Cy,). Therefore, Pref (“C\,)NPref (C,)
Pref (!C,). But this is a contradiction. Therefore, M €
StUFA. [

THEOREM 4. Let M € UFA. For all w € L(M),
M € StUFA if and only ifVi,j € N,i,5 > 1,1 # j,

38 C Pref ('C,) s.t. Pref ("C,)NPref (C,)—S = 0.

PROOF. (=) Let M € StUFA. By Observation 2,
we have for all w € L(M), and for all ¢,57 > 1,
Pref('C,) NPref(’C,,) # 0.
Define
S;; = Pref('C,) N Pref(’C,,).
Let
S = S;; NPref ('C.,).

We need to show that S;; — S = 0.

Suppose S;; — S # 0. Then there is a u € S;; such that
u ¢ S. That means, there is a u € S;;, for all € S, such
that |z| < |u| < |w|, where |z|, |u|, and |w| are lengths of
strings x,u, and w, respectively.

Let w = max{ |v| |v € S;; }. In particular, define

U =qoq192 - - qk—14¥,
where qo is the start state, gy is some final state (not nec-
essary accepting). Since |u| < |*Cu|, [?Cw|, then there is a
v € Pref (*Cy), and v’ € Pref (‘C,,), such that v = uy, and
v’ = wy’, for some y € Pref(‘Cy), and y' € Pref(Cy).
Therefore, this tells us that the computation tree of M for

w does not follow the strict tree property , hence M €
StUFA. Therefore, S;; — S = 0.

(<) This follows directly from Lemma 2. [C

DEFINITION 11. Let M € UFA. Define
S;; = Pref (‘C,,) N Pref (C.,)
where the *C\,’s are as defined in Definition 9, k € {i,3}.

COROLLARY 3. Let M € UFA.
M € StUFA < Vw e L(M),Vi,j € N,i,5>1,i#7,

3 an ordering of the Si;’s s.t. S’Z-(;) C SZ-(? C...C Si(;’) C
Pref (1Cy).

PROOF. (=) From Theorem 4, Vw € L(M), Vi,j €
N,i,j > 1,i # j,38 C Pref('Cy) s.t. Pref(’Cy,) N
Pref (’C,) - S5=10

Note that Vi, j, S;; = Pref (*C,,) NPref (‘C,,). By Lemma
2 each of the S,; is contained in Pref (*C,,). Hence 3 an
ordering of the S;;’s such that SZ(}) C Sg) c-.- C S’f;z) c
Pref(1C,).

(&)  Vi,j € N,i,j > 1,i # j, Sij = Pref("Cy) N
Pref(’Cy)

Applying Theorem 4, take S = S;;. Pref (‘C,,)NPref (C,,)—
S;; = 0. Hence, M € StUFA. [C
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