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ABSTRACT

The present paper discusses regular-regulated right-linear
grammars with start strings rather than single symbols. It
demonstrates that these grammars with start strings consist-
ing of no more than n + 1 symbols are stronger than these
grammars with start strings consisting of no more than n
symbols, for all n > 1. On the other hand, these grammars
with start strings of any length only generate the family of
regular languages if they change the position of rewriting
finitely many times during the derivation of any sentence
from the generated language.
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1. INTRODUCTION

In this paper, we discuss right-linear grammars that start
their derivations from start strings rather than single sym-
bols. Specifically, we study these grammars regulated by
regular languages. We demonstrate that the language fam-
ily generated by these grammars with start strings of length
n or shorter is properly included in the language family gen-
erate by these grammars with start strings of length n + 1
or shorter, for all n > 1. From a broader perspective, by ob-
taining this infinite hierarchy of language families, we con-
tribute to a classical trend of the formal language theory that
demonstrates that some properties of grammars affect the
language families that the grammars generate. (For more
information about infinite language hierarchy see [3], [7],

(4])-

Surprisingly enough, however, if during the derivation of
any sentence from the generated language, these grammars
change the position of rewriting finitely many times, they
just generate the family of regular languages no matter how
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long their start strings are. In other words, only if the num-
ber of these changes is unlimited, the above hierarchy holds
true.

2. PRELIMINARIES
We assume that the reader is familiar with the language
theory (see [5], [1], [6]).

For a set, Q, card(Q) denotes the cardinality of Q. I de-
notes the set of all positive integers. For an alphabet, V', V*
represents the free monoid generated by V under the oper-
ation of concatenation. The identity of V* is denoted by .
For a word, w € V”, |w| denotes the length of w. Sub(w)
denotes the set of all substrings of w.

3. DEFINITIONS

In this section, we define the central notions of this paper.

DEFINITION 3.1. Let n > 1. A linear grammar with a
start string of length n, n-LG for short, is a quadruple G =
(N,T,R,S), where N and T are alphabets such that NNT =
0,8 € N*,|S| <n, and R is a finite set of productions of
the form A — x, where A€ N and x € T*(N U{e})T™. Set
V=TUN.

Let U be an alphabet of rule labels such that card(¥) =
card(R), and 1) be a bijection from R to V. For simplic-
ity, to express that ¢ maps a rule A — x € R, to p, where
p €V, we write p. A — = € R; in other words, p.A — x
means Y(A — x) = p.

If p.A— z € R and u,v € V*, then we write uAv = uzv [p]
inG.

Let x € V*. Then G makes the zero-step derivation from
X to x according to €, symbolically written as x =° x [¢].
Let there exist a sequence of derivation steps Xo,X1,--->Xn
for some n > 1 such that xi—1 = Xxi |pi], where p; € U, for
all i = 1,...,n, then G makes n derivation steps from xo
to Xn according to pi...pn, symbolically written as xo ="
Xn [p1---pn]. If for some n > 0,x0 =" xn [p], where p €
U* and |p| = n, we write xo =" xn [p]-

We call a derivation S =" w successful, if and only if, w €
T*.



Let = be a control language over V; that is, 2 € U,

Under the regulation by =, the language that G generates is
denoted by L(G,Z) and defined as

LG,E)={w | S="w[p,peE,we T}

Let i be a positive integer and X be a family of languages.
Set

£(X,i) ={L | L = L(G, X), where G is a i-LG}.

In the same manner we define a right-linear grammar with
a start string of length n, n-RLG for short, where R is a
finite set of productions of the form A — x, where A € N
and © € T*(N U{e}) and define

R(X,i) ={L | L = L(G,X), where G is a i-RLG}.

Specifically, R(REG,i) and £(REG,i) are central to this
paper, where REG denotes the family of regular languages.

DEFINITION 3.2. Let G = (N,T,R,S) be an n-LG for
some n > 1 (See Definition 3.1). G = (N1,Na,...,N,, T,
Ri,Rs,..., Ry, S) is a distributed n-LG, n—q4:5 LG for short,
if

e N = N UNyU...UN,, where N;;1 < i < n are
pairwise disjoint nonterminal alphabets,

e S=X1Xs...Xn, Xs EN;,1<i<n,

e R=RiURsU...UR,,
such that for every A — xBy € R;, A,B € N;, for
some 1 <i<myx,yeT*
and for every A—a € R, A€ N,aeT".

Set ¥; = {p | p.A — aBb € R; or pA — a € R;, where
A,Be N; and a,b € T }.

In the same manner we define a distributed n-RLG,
n—ais RLG for short, if this grammar is n—q;s LG and all
rules are right-linear.

DEFINITION 3.3. (See [2]) Forn > 1, a linear simple ma-
trix grammar of degree n, n-LSM for short, is an (n+3)-
tuple G = (N1, ... N,, T, S, P) where

o N;, 1 <i<n are patrwise disjoint nonterminal alpha-
bets,

e T is a terminal alphabet, N;NT =0,1<i<mn,
e S¢ NiU...UN, is the start symbol,

e P is a finite set of rules. P contains three kinds of
rules
1. S—z, xeTr

2.8 X1...Xn, Xi€N;,1<i<n,

3. (Xl — w1, X2 — T2,..., X, — xn),
X, € Niya; € T"N;T* UT*, 1< i < n.

For z,y € (NUT U{S})",z = y if and only if

e citherz =S and S — y € P,

e or =1 X1...YnXn, Yy = Y121 ... YnTn,
where y; € T, x; € T*"N,T*UT", X; € N;,1<i<n
and (X1 — x1,...,X,, — x,) € P.

In the same manner we define a right-linear simple matrix
grammar of degree n, n-RLSM for short, if in definition of
P the last rule is

3. (X1 —>(L’1,X2 —>x2,...,Xn —>In),
X, € Njyx, e T"N;UT*,1 <i<n.

For more information about simple matrix grammars, see
2].

DEFINITION 3.4. Let i > 1 and X be a family of lan-
guages. Let L(G,E) be a language generated by G and regu-
lated by Z (See definition 3.1). Set

e M(X,i) ={L | L =L(G,E), where G = (N,T,R,S)
is a i-RLG and E € X}.

e £(X,i) ={L | L =L(G,E), where G = (N,T,R,S) is
ai-LG and E € X}.

o uR(X,i)={L | L=L(G,3),

where G = (N1, Na,...,Ny,T,R1,Ra,...,R,,S5)
is a i—qisRLG and 2 € X }.

e 4:8(X,i)={L | L=L(G,E),
where G = (N1, Na2,...,Nn,T,R1,Ra,...,R,,S)

is a i—qis LG and =2 € X}.

e suR() ={L | L=L(G),
where G = (N1, Na,...,Nn,, T, R, S) is a i-RLSM}.

o suL(i) ={L| L=L(G),
where G = (N1, Na,...,N,,T,S, P) is a i-LSM}.

4. RESULTS

LEMMA 4.1. For every n-LG G = (N, T, R, S), there ez-
ists an equivalent n—qs LG G' = (N{,N3,..., Ny, T', R,
RS, ..., R, S") such that L(G) = L(G").

ProOOF. We will define nonterminals of G’ in the form
(A, k) so that (A, k) € Ny,. Hence,

o N;={(A,j) | Ac N}, where 1 <j <n;
o' =T;

o Ry ={(A,j) —«(B,j)y | A— 2By € R,
(A,1),(B,i) € Nj, x,y € T*} where 1 < j <n;

o S =(A1,1)(A2,2)...(An,n), where S = A1 As ... A,,.



For G' = (N{,Ns,...,N,,,T",R',S") holds N, N N; =0 for
i # 3, 1 <i,j <n. For every derivation a = b [p], a,b €
{NUT}, pA— 2By € R, z,y€T*, A B € N of gram-
mar G there always erists equivalent derivation in G’ in form
a =V [p], d,b € {NUT}, p.(Ai) — z(B,i)y €
R, z,yeT™, (A),(B,i)eN,. O

LEMMA 4.2. For everyn—qsLGG' = (N{,N5,...,N;,, T,
Ry, R, ..., R,,S"), there exists an equivalent n-LG G =
(N,T,R,S) such that L(G) = L(G").

PROOF. We define grammar G = (N, T, R, S) in the fol-
lowing way

e N=N{UNjU...UN,,

o I'=1T,

e R=R{UR,U...UR,,

e S=A1A,.. .An, where S' = A1As .. .An € R'.

A rigorous proof that L(G) = L(G') is left to the reader. [
THEOREM 4.1. For alln > 1, L(n—4;sLG) = L(n-LG).
PROOF. This theorem directly follows from Lemma 4.1

and Lemma 4.2. 0O

THEOREM 4.2. Foralln > 1, L(n—4;sRLG) = L(n-RLG).

PROOF. This theorem directly follows from Theorem 4.1. [

LEMMA 4.3. Leti > 1. 4;s£(REG,7) C sm£L(3). That is,
for every n—q4;s LG G = (N1,...,Nn,T,Ry,...,R,,S) reg-
ulated by regular language = there erists equivalent n-LSM
G'=(N{,...,N,,T', S, P') such that L(G) = L(G").

PROOF. Let 2 = L(GE),GE = (NE,TE,RE,SE). Let
R =R URyU...UR,. We will define grammar G' =
(N{,...,N,,T',S", P") this way:

° Nl, :{[A,X] | A€N1,X€NE},
e N/ =N;,2<i<n,

e T =T,

Pl ={([A1,X], As,..., Ap) — (u[B1,Y v, Ao, ...
| A € N;y1 <i<n, X,Y € N= and
fA —uBwe R, X — fY €R=,

s An) |

u,v € T},
° P2l :{([A17X]7A27-“;Ajz“'aAn) -
- ([A17Y]7A27-"7Uij7-"7An) I

| A; € Njy1<i<n,2<j<n, X,Y €N=
and f.A; — uBjv € Rj, X — fY € Rz,
u,v € T},

P/:PI/UP;;U{S/—?[Xl,SE]XQ...Xn|
|S=X1.‘.Xn€G, XiEN,h 1§’l§’l’l}

Note that P| is a special case of Py with j = 1.

Let Ln(G) = {z | § =" zinG, € {NUT}"} and
LG ={z | S =" 2inG, x € {NUT}V} We
will prove that L, (G) = h(L,(G")) for every n > 0, where
h is surjective function h : {N{ U...UN, UT"} — {N, U
...UN, UT} defined as

haw) {A, if we N, w=[A,Y],

w, otherwise.

First we will prove that L, (G) C h(Ln(G")) by induction on
n:

Let n =0.

Lo(G) = {X1X2 .. .Xn}, Lo(Gl) = {[Xl, Y]Xz - Xn} be—
cause S" — [X1,Y]X>... X, € P’ and, therefore,

MLo(G")) ={X1X2...X»} = Lo(G).

Let us suppose that the claim holds for all n < k, where k is
a non-negative integer.

Letn=Fk+1.

Consider w € Ly+1(G) and a derivation S =Fy=winG,
so that v = w [p], where v = C1Co...C;1XCiy1...Cy,
w=CCsy.. .Cifl’uYUCiJA .. .Cn,,C]‘ (S Nj @] {T}*, 1<5<
n,p.X — uYv € R, A — pB € R=. From the induction
step, v € h(Lp(G")). As([C1,A]C2...C;1 XCiqr...Cr) —
([Cl,B]CQ . Cifl’uY”UCH,l - Cn) € P/, w e h(LkJrl(Gl)).

Now we prove that L,(G) D h(L,(G")) by induction on n >
0.

Let n = 0. By analogy with the previous part of this proof.
Let us suppose that our claim holds for all n < k, where k
s a mon-negative inleger.

Letn=Fk+1.

Consider w € Ly+1(G") and a derivation S =* v = w in
GI, where v = [Cl,A]CQ . Cq;_lXCH_l . Cn,

w = [C1, B]C2 o CiquYuCigg ... Cn,c]' c N]' @] {T}*, 1<
j < n. From the induction step, h(v) € Ly(G). Sincep. X —
uYv € R, A — pB € R=, we have h(w) € Ly1(G). O

LEMMA 4.4. Let ¢t > 1. ¢is£(REG, 1) O sa£(i) That is,
for every n-LSM G" = (N{,...,N;,T",5', P") there exists
equivalent n—q;s LG G = (N1,..., Ny, T, R1,..., Ry, S) reg-
ulated by regular language = such that L(G) = L(G").

PROOF. G is defined in this way

o Ni=N,1<i<n;

o I'=T";

e S=5;

o R; = {ri;.Ai — u;Biv; | for the jth rule
(Alw-'vAi?-'wAn)_}
— (u1 B1vi, ..., u; Bivi, . .. yun Bpoy) € P,

w,v €T, 1<ji<|P|}, 1<i<n.
and 2 = L(GE),GE = (NE,TE,RE,SE) 8 deﬁned

o N=={QIU{Qy [ 1<i<n—1,1<j<|P|};

o T=={ry |1<i<n, 1<j<|P|};



e R

U]

={Q —7m;Q1,; | 1<j <P}V
U{Qij — 1i41;Qiv1y | 1 <i<n =2,
L<j<IPU{Qn-1j = mn;Q | 1 <5 <|P'|};

[ ] SEZQ

THEOREM 4.3. For all i > 1, 4s£(REG,1) = sarL(i).

PROOF. This theorem directly follows from Lemma 4.3
and Lemma 4.4 O

THEOREM 4.4. For alli > 1, 41 R(REG, i) = smR (7).

PROOF. This theorem directly follows from Theorem 4.3. [

THEOREM 4.5. For alli > 1, sp£(1) C s L(i + 1).

PROOF. See [2]. O

The main results of this paper follows next.

THEOREM 4.6. For alli > 1,
L£(REG,i) C £(REG,i+ 1).

PROOF. This theorem follows from Theorems 4.1, 4.3 and
4.5. 0O

THEOREM 4.7. For alli > 1,
R(REG,i) CR(REG,i+1).

PROOF. This theorem follows from Theorem 4.6. [

Let G be an n—g4;sRLG satisfying Definition 3.2. Let S =*
w o], we T 0 = p1p2...pm, for some m > 1,1 < ¢ <
m,p; € V,0 €=,

Set

d=card({pjpj+1 13 =1,....,m =1, pj € Uy, pj11 € Uy,
k + h}).

Then, during the generation of w € L(G,E) by S =" w o],
G changes the derivation position d times. If there is a con-
stant k& > 0 such that for every € L(G,Z) there is a gener-
ation of x during which G changes the derivation position &
or fewer times, then the generation of L(G,E) by G requires
no more than k changes of deriwation positions. Let k be
the minimal possible than we write d(G) = k.

Leti> 1,k >i—1 and X be a family of languages. Set

e R(X,i,k) ={L| L = L(G,Z), where G = (N, T, R, S)
is a i-RLG, 2 € X and d(G) = k, the generation
of L(G,E) by G requires no more than k changes of
derivation positions}.

o 4 R(X,i,k)={L | L=L(G,E), where G = (N1, Na,
ooy Nu, T R, Ro, ..., Ry, S) is a i—g;sRLG, E € X
and d(G) = k, the generation of L(G, E) by G requires
no more than k changes of derivation positions}.

THEOREM 4.8. Leti > 1,k > 0.
Then, R(REG,i,k) = :sR(REG, i, k).

PROOF. This proof is analogous to the proof of Theorem
41 0O

DEFINITION 4.1. Let G be an n—q4sRLG G = (N1, Na,
ooy Nn,T,R1,Ro, ..., R, S) regulated by regular language
E. LetZ2=L(H),H = (N, uT,5S,uP). Let A,B€ pN.

We write A ;= B and say B is achievable from A in i-th
component of G in one derivation step if and only if there
ezists derivation A = xB, x € gT in H and x is the label
of some rule from R;.

We write A ;=" B and say B is achievable from A in i-th
component of G #f and only if there exists derivation A =~
xB, x € gT" in H, and z are the labels of rules from R;.

We write i(A) ={B | B€ gN and A ;=" B}.

THEOREM 4.9. For any n,k > 1, R(REG,n, k) C REG.
That is, let G = (N1, Noy ..., Ny, T,R1,Ro,..., Ry, S) be an
n—ais RLG regulated by reqular language Z. Let generation
of L(G, E) by G require no more than k changes of derivation

positions. Then, there exists an equivalent regular grammar
G' = (N',T',8',P") such that L(G,E) = L(G).
PROOF. Let 2= L(H),H = (aN,uT,uS, uP),
N=N; UNQU...U]\{\", and S = S515...5,.
We will construct set N in this way:

o if S ="Ain H A€ N, add
(e,e,...,uSA#,...,e) to N, where gSA# is at the
ith position.

o ifC ;=" Aand A;="BinH i<j, A,B,CepuyN

and <y17y27"~7yi7~~~7y]')'~7yn) S N:
such that y; € {u NN} {CHAH#}, then add

(1,92, YiAB#, ..., yj, ..., yn) Lo N.

e ifC ;=" Aand A ;=" B in H,i>j A B,C¢€pnyN

and (Y1,Y2, -5 Yjs - Yis-- -, Un) € N,
such that y; € {u NN} {CHAM#}, then add

V1,92, Yjs - Ys ABFE, . yn) to N.
e if A ;= x in H, AEHN,AerT and

(V1,925 Yis- -, Yn) € N, such that
vi € {uNuN}Y uN{AM#]}, then add

(y1,92,...,%i®,...,yn) to N.

The construction of N is completed.
M={X|X € N,sub(X)N{e} #0}.

Next, we construct grammar G' = (N',T",S', P') as follows:



1. if X € M, then add
[X,51] to N" and S" — [X, S1] to P'.

2. if .
X =(y1,%2,- -, Yir--,Un) € M,yn = ¢,
() OSh<i—1y,=AB#5, A,BEuNand
A=*C,=D ;=" Band C = qD in H and
Y = aZ [q] in G,
then add [X, Z] to N' and rule [X,Y] — a[X, Z] to P'.

3. if () is untrue and if X = (Y1,92,.--,Yi,---,Yn) €
M,y» =¢,0<h<i—1,y; = AB#y,, A,B € uN and
A;="C;=Band C=¢qgBin HandY = aZ [q] in
G, then add [{(Y1,Y2,-- Uz -+ Yn) Z] to N’ and rule
[X,Y] = al{y1,92y -, TUss- - sYn), Z] to P' and replace

(W1,y2, - Yin - Yn) With (Y1, 92, ..., Ty, -

4. if () is untrue and if X = (Y1,Y2,---,Yi,---,Yn) €
Myn=e,0<h<i—1,y = AB#, A,B¢c yN and
A="C=BandC=qgBinHandY = a[q] in G,
then add [(y1,Y2,---,& .- Yn), Sit1] to N’ and rule
[X,Y] — a[(y1,y2,...,,...,yn), Siy1] to P" and re-
plafe\(yl,yg,...,yi,...,yn> with (Y1,Y2, .-, €, ..., Yn)
in M.

Suppose that S,+1 = €.

5. Add [(e,...,e),e] =& to P.

6. If X = [(&,...,&,0,%i,...,yn), Y] € M, then replace

X with [(g,...,€,&,Yi,...,YUn), Y] in M.

7. T =T.

Next we prove that L(G,Z,k) = L(G").
L(G,E,k) C L(G") : for every w € L(G, =, k), there exists a
derivation of the form

S i1=" (1AL 1= 1@ As ;=" iy

*

1 N % .

&) 1= Qe Qp1Ap1 5, =" . gy =qin H
and

S1...S7‘,1...S7‘2...Sn = S]...’IU1X1...S¢2...S»,I, [ql] =*

*

=* S1 ...’LU1X1...U)2X2...Sn [QQ] E
=* Wiy oo Wiy g - - .ﬁipo,1 LWy, [qp,1] =*
=YW cow, [gp] =w

i G, where qn € Rp,1 < h <n.

Derivation (1) can be rewritten in this form

X=(Y1,y2, -, HSAIHY; s oy ALAFY, s T, H9,o Yn)
which belongs to M. We start derivation in G’ from start

symbol [ X, S1].

[X7SI] = [(ylﬁy%-'-7HS‘41#§7;17~“
B A1A2#§i27'“7?1;#.7"‘7?-/71)751] ="
=" wi [(g, Y2, o, HSAIFHY, 5 - - -
-~~A1A2#§7‘,27~--7@p#.:~-~7yn>75’2] ="
=" =2 wy . owe, (8,8, Yn), Sl =T
= wy oowi, (g, E) 8] = wiy .o wi, = w.

Hence, a w € L(G,E, k) implies w € L(G").
L(G,E,k) D L(G") : for every w € L(G'), there erists a
successful derivation from start symbol [X, S1]

(X, 81] = [(y1, 92, - -, #SALH#T, - - -

cee 441A2#@2, cee 7?1)#.7 cee 7yn>7 Sl] ="

yYn) in M.

=" wi, [(g,92, ., WSAHT, - - -

. ..AlAg#yh,.. .,@p#O,.. .,yn>,52] =7
=Yoo= wyowi, (6, 8,Un), Se) =7
=% wiy .ow, (8., 8), 8] = wey L w;, = Ww.

X e M is of the form
X=(y1,y2, e, HSAl#ﬂilv ey AlAz#@m, .
X defines the derivation

Up e, Un)

5

uS =" AL =" Al ;=" R
ip,1=>* qi .. ~qI)—1Ap—1 1P=>* qi-.-qp = ¢ i H

which regulates grammar G in this way

S1~--Si1 S’LzSn =" Slw1X15225n [ql] =*
= 5'1...’w1X1.."UJ2X2.‘.Sn [QQ] =" ="
=" Wiy - - wip_l .. .@ipo_l <o Wiy, [qp_l] ="
=" Wiy .ows, (@] =w

in G, where g, € Rp,1 < h <n.

Thus, w € L(G,Z,k) so L(G,Z, k) = L(G").

2 (nxk)

Because card(N') < card(uN) and all rules are regu-

lar, G’ € REG. O

As opposed to Theorem 4.6, the next theorem demonstrates
that if during the derivation of any sentence from the gener-
ated language, these grammars change the position of rewrit-
ing finitely many times, then they always generate only the
family of regular languages independently of the length of
their start strings.

THEOREM 4.10.
R(REG,n, k) = REG.

PROOF. REG = R(REG,1,0) C R(REG,n, k) C REG
(see Theorem 4.9). [
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