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ABSTRACT

The field of bioinformatics relies heavily on efficient algorithms
for the alignment of two or more DNA or protein sequences. This
paper introduces the basic optimization problems and their
variations, discusses complexity issues, and surveys some of the
classic and recent alignment algorithms.'

Keywords
sequence alignment, dynamic programming, linear-space
alignment, wavefront parallelism, progressive alignment

1. INTRODUCTION

Given two finite sequences X and Y of symbols over some fixed
alphabet X, the basic sequence alignment problem is that of
inserting a minimum number of gaps in X and Y so as to maximize
the number of matches and minimize the mismatches when X and
Y are aligned. In molecular biology, the sequences are often
either DNA sequences over the four-letter nucleotide alphabet
{A,T,C,G}, or protein sequences with a 20-letter amino acid
alphabet. The total score of an alignment is based on adding
scores based on matches, and penalties based on mismatches or
the presence of insertion and deletion gaps (also known as indels).
Figure 1 provides an example with a pair of short sequences, a
simple scoring matrix s:(ZU{}) X(Zu{})—>Z, and two sample
alignments of the pair of sequences and their corresponding
alignment scores.

Sequence X = ATTCGA
Sequence Y = ATCTCA
s - A T C G
- -0 -1 -1 -1 -1
A -1 +2 -1 -1 -1
T -1 -1 +2 -1 -1
c -1 -1 -1 +2 -1
G -1 -1 -1 -1 +2
Sub-optimal alignment Optimal alignment
with score = 5 with score = 8
X = ATTC-GA X = ATTC-GA
Y = AT-CTCA Y = AT-CTCA

Figure 1. Alignment of a pair of sequences

' A version of this paper was presented at the 2™ Symposium on
the Mathematical Aspects of Computer Science, University of
the Philippines Baguio, May 2004.
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Applications of sequence alignment include the comparison of
two or more sequences for similarity as a basis for measuring
evolutionary distance, and the search for related sequences and
subsequences in publicly available databases to infer possible
similarity in gene functions.

For the case of two input sequences and a simple scoring function
with a negative infinity score for mismatches, this problem is
essentially equivalent to the well-known longest common
subsequence problem.  While there exist polynomial-time
algorithms for the case of two sequences, researchers continue to
design more efficient algorithms due to the unusually large sizes
of most biological sequence data (e.g., tens of thousands of
symbols are sometimes present in a sequence).

For multiple sequence alignment involving k>2 sequences,
polynomial-time algorithms are unlikely (for arbitrary k) and the
search for fast approximation algorithms that yield good
alignments is an important task.

2. DYNAMIC PROGRAMMING
ALGORITHMS

The basic alignment problem for two sequences of length m and »n
can be solved in O(mn)-time and O(mn)-space using a
straightforward application of dynamic programming. In contrast,
a brute-force approach that tries to evaluate all possible
alignments can easily consume exponential time and such a
method is clearly undesirable for very long sequences. A key to
the design of a dynamic programming algorithm is the
formulation of a recurrence relation for the score function. This is
followed with an analysis of the dependencies, best represented
with a directed graph. A topological ordering of the nodes
provides the actual algorithm where partial scores are saved in a
table to avoid redundant calculations.

For a 0/1-valued scoring matrix, one can establish a basic
recurrence on the scores s/7,¢/ of the partial alignments of X/1..r/
and Y/1..c],forr=20, 1, ..., myand forc =0, 1, ..., n.

The dependencies on these partial scores can be derived from the
recurrence relation and the basic pattern is shown in Figure 2.

A table of partial scores when aligning GTCCT and GCCAAT' is
shown Fig. 3. The alignment score is found in the lower-right
corner of the table and the actual alignment can easily be traced
back in O(m+n) steps from this table by finding the maximum of
three neighboring values. Alternatively, an augmenting matrix of



back pointers can be constructed as we evaluate all the partial
scores in O(mn)-time.

0, if r=00rc=0
s[r,c]= slr-Le-1]+1, if X[r]= Y]c]

otherwise

max(s[r - 1,c],s[r,c- 1]),

Figure 2. Dependency digraph of the recurrence relation.

We note that this algorithm is essentially that of finding a shortest
path between two corner nodes in the dependency digraph with
edge weights.

- G C C A AT
- 0ONO O O O 0 O
G 0NN 1 1 1 1
T O 171 1 1 1 2
C 0 11\2\2 2 2 2 GTCC--T
C 0 1 2 \3\-3--3\ 3 G-CCAAT
T 0 1 2 3 3 3 \4\ score = 4

Figure 3. Partial scores and extracting the optimal alignment.

A topological ordering of the digraph can be obtained in several
ways, three of which are: (a) by rows in sequence, (b) by column
in sequence, or (c) by southwest-to-northeast diagonals in
sequence, all summarized in Fig. 4. The first two orderings are
useful for sequential algorithms based on this dynamic
programming strategy, and the third is useful for a parallel
algorithm based on wavefront patterns.

— 7

Figure 4. Possible topological orderings for the dependency
digraph

This full-matrix algorithm can be modified to run in O(min(m,n))
linear-space if we only need the final alignment score. This is
accomplished by using only two rows (or two columns, whichever
is shorter) in computing and saving the values in the next row. If
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we need the actual alignment, other space-efficient algorithms
based on the classic divide-and-conquer strategy can be used and
these will be discussed in the next section.

Sub-quadratic time algorithms also exist, and one approach is to
compress the sequences using special data compression
algorithms and perform the alignments on the compressed data.
Details of this approach can be found in [7, 8] Another possibility
is to restrict the computations in the matrix to a diagonal band of a
certain width, which prevents long contiguous indel gaps in the
alignments. A third approach is to preprocess the sequences by
performing a maximal unique match (MUM) decomposition [9].

Binary-valued scoring matrices are often inadequate to properly
model sequence data, particularly in the case of protein sequences.
This is because some pairs of amino acids are more alike than
other pairs, and hence a more general scoring matrix should be
considered. Most researchers and popular software tools (e.g.,
BLAST or ClustalW) use either the family of PAM (percent
accepted mutation) matrices or BLOSUM (blocks substitution
matrix) in their computations of alignment scores. A modified
recurrence relation is given below that considers such general
scoring schemes.

0, if r=0andc=0
_ | slr-10]+ gap, if c=0
srel= s[0,c- 11+ gap, if r=20
max, otherwise

s[r-1l,c]+ gap

wheremax = max s[r,c- 1]+ gap

s[r-1,c- 1]+ Pscore(X[r],Y[c])

Here, gap is the gap penalty, Pscore(a,a) is the match bonus taken
from the PAM or BLOSUM matrices, and Pscore(a,b) is the
mismatch penalty for any distinct pair of symbols @, b in the
alphabet X. Modifications in the dynamic programming algorithm
are straightforward with similar running times and storage
requirements.

The scoring of alignments is made more complex by considering
various ways indel gaps are penalized. In our basic algorithm, we
simply penalized each gap by a constant amount. An {\it affine
gap model} uses a linear penalty function that includes a constant
penalty for initiating a gap and another term that is proportional to
the length of the gap. Other researchers insist on using models
based on concave gap functions (rather than linear functions) as
they feel the affine gap model is still inadequate in representing
the underlying mutations or other biological mechanisms that lead
to these gaps. Both models basically address the biological
specification that a single long gap should be penalized less than
several short gaps with the same total length. Details on how the
recurrence relation should be modified to consider these models
can be found in [22].



Our initial description of the sequence alignment problem in
which we align the entire sequence is referred to as global
alignment. Semi-global alignment is similarly defined but the
gaps located at the beginning or at the end of the alignments
should not be penalized. This assumption is particularly relevant
in deducing evolutionary relationships among organisms as one or
both DNA sequences may have been padded with leading or
trailing residues that are unrelated to the specific region of

interest.
AGTTCACAATTGATTCG AGTTCACA-ATT-GATTCG
AG---ACA--—-—— TTCG  —-=——-- AGACATTCG—-—-—---

Figure 5. Global alignment vs. semi-global alignment

Modifications in the dynamic programming algorithm to produce
semi-global alignments are fairly straightforward. To ignore
trailing gaps in one of the sequences, for example, we search the
last row or the last column in the matrix of partial scores for
maximum values.

The search for regions of local similarity, commonly referred to as
local alignment, is a third type where the goal is to find the best
alignment between substrings of the two sequences. Finding the
optimal local alignment is a classic combinatorial problem. A
brute-force extension to our basic O(mn) dynamic programming
algorithm wherein all pairs of possible substrings are aligned
results in an impractical O(’n’) algorithm. However, a careful
analysis and reconstruction of the recurrence relation can result in
a more efficient O(mn) algorithm, which was first developed by
Smith and Waterman in 1981 [23].

0, for aligning empty strings
s[r-1lc- 1]+ for a match
Pscore(X[r],Y[c]), or mismatch

= - l,c]+
s[r,e]= max) slr-le] for a delete
Pscore(X|[r],-),
s[r,c- 1]+ ]
for an insert
Pscore(-,Y[c]),

This results in a table of local alignment scores where multiple
maximal paths can be derived. Alternative global and semi-global
alignments can also be assembled from this matrix by searching
for compatible local alignment paths, which is yet another
interesting combinatorial optimization problem based on the
dependency digraph.

Determining whether or not a given alignment is statistically
significant is a non-trivial but important task. This is particularly
true for small alphabets such as the 4-letter alphabet in DNA
sequences in which some of the pairs of symbols will definitely
align even for randomly permuted sequences. Unfortunately, little
is known about the exact tail distribution of alignment scores even
with known frequencies of the symbols in the alphabet X.

A simple but computationally expensive approach for determining
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statistical significance is through a Monte Carlo simulation. The
sequences are permuted and re-aligned several times under some
ideal sampling strategy, and a frequency distribution of their
scores is used as the basis for statistical significance. More
sophisticated methods are provided in [24].

3. LINEAR-SPACE ALIGNMENT AND
WAVEFRONT PARALLELISM

Recall that the full-matrix dynamic programming algorithms
require quadratic space to store the partial scores and to retrieve
the optimal alignment. When aligning very long DNA or protein
equences, a more space-efficient algorithm is clearly desirable.
Hirschberg in 1975 presented the first linear-space algorithm for
the closely-related longest common subsequence problem
\cite{waterman, chaol}. It uses the classic divide-and-conquer
strategy to reduce storage requirements from O(mn) to
O(min{m,n}), with only a moderate increase in running time.

The basic idea is to bisect one of the sequences, say X, find the
best alignment scores of the two halves of X with the other
sequence Y, and recursively align two pairs of smaller
subsequences. This divide-and-conquer algorithm is presented in
more detail in Fig. 6, along with a graphical representation in Fig.
7.

algorithm align ( sequence x, int m, sequence y, int n ) {
if (m+n is small enough) {
align_directly(x, m, y, n) using dynamic programming;
b
else {
split x equally into x/ and x2;
find the best score of aligning x/ and y;
find the best score of aligning reverse(x2) and reverse(y);
find the column j that has the maximum
sum of the scores in the middle row;
recursively align (x1, m/2, y[1..j],j );
recursively align (x2, m/2, y[j..n], n-j );

Figure 6. Hirschberg’s divide-and-conquer algorithm

y[1..n]

mi2

x[1..m]

!
|

Figure 7. Graphical illustration of Hirschberg’s algorithm
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Note that the total cost of the two sub-problems is half the cost of
the original problem (7 = mmn). Continuing recursively, we then
get a fourth of the original cost, then an eighth, then a sixteenth,
etc., i.e, T + T17/2 + T/4 + T/8 + ... = 2T. 1t follows we need
twice the time to come up with the optimal alignment as compared
to the classic full-matrix algorithm, but this divide-and-conquer
variant uses only linear storage.

Another linear-space algorithm known as FastLSA (Fast Linear
Space Alignment) [10] generalizes both the full-matrix and
Hirschberg's algorithm. An important feature of fastLSA is that it
is adaptive to the amount of available storage. By setting a
parameter that indicates the amount of available memory, it can
behave like a full-matrix quadratic-space algorithm, or a linear-
space algorithm. An added advantage is that localization of the
computations avoids excessive memory swaps and claims of
reduced running times have been empirically observed [10].

Recall that Hirschberg’s method recursively divides the problem
in half, and saving the row information. In FastLSA, both input
sequences are divided, i.e., the matrix is bisected both row-wise
and column-wise, and both row and column boundary information
are saved. A double split allows the computation of an optimal
alignment while recalculating fewer values, as demonstrated in
Fig. 8a.

y[1..n]
E
=
mi2
\ P
I* =
ni2 (k=2)
y[1..n]
E
=
— o \ mr2
ni2 (k=4)

Figure 8. Fast LSA with (a) binary double splits, and (b) k>2
subproblems
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Partitioning the sequences into £>2 subproblems (Fig. 8b) can
yield even better performance, where an optimal choice of & is
based on available cache or main memory sizes. A careful analysis
shows the storage requirements S(m,n,k), with a kxk grid cache,
is expressed by the inequality S(mnk) < kx(m+n) +
BaseCaseBuffer. Worst-case running times for FastLSA remain
quadratic at T(m,n,k) = m x n x (k+1)/(k-1). Note that this upper
bound decreases as the value of & increases. Details, as well as
extensions to a parallel implementation, are in [10].

These algorithms can be extended when p processors (e.g.,
Beowulf clusters) are available [15]. A common theme associated
with the basic dynamic programming recurrence is to use the
wavefront pattern [3] in Fig. 9. In this digraph, each node
represents a kxk contiguous sub-block (where & = n/p) of the
dynamic programming matrix that can be assigned to one of the
processors.

.

Figure 9. Wavefront computation

Under a message-passing model of cluster computing, the
computation of p sub-blocks along a wavefront diagonal will be
done in parallel. After computing each block, only the bottom row
vector, right-most column vector, and corner value need to be
passed along to the neighboring blocks below and to the right.

4. MULTIPLE SEQUENCE ALIGNMENT

The simultaneous alignment of several sequences is significantly a
much harder problem than pairwise alignment. Extending the
dynamic programming algorithm to 3 or more dimensions is
computationally impractical in terms of both running time and
storage. The general problem is in fact NP-hard [11, 6, 12] and
thus polynomial-time algorithms are unlikely to be found. Jiang
[13]further showed that even the simpler longest common
subsequence problem for »n sequences cannot be approximated
with ratio n’ for some & > 0 in polynomial time, unless P = NP.
The development of fast approximation algorithms that yield
reasonably good alignments for several long sequences will
therefore continue to be the focus of many research groups.

Several heuristic methods for multiple sequence alignment are
employed in the widely-used bioinformatics packages (e.g.,
ClustalW). These are often based on greedy-type heuristics and
commonly referred to as progressive alignment. Many of the more
powerful iterative multiple alignment methods are still under
testing and have yet to be incorporated in the more popular
packages.

Progressive alignment uses a simple greedy technique which
works as follows: Two of the closest sequences are aligned



together, and the resulting alignment replaces the original pair.
This process is repeated until all sequences have been pairwise
aligned. One way of determining which sequence is to be aligned
next is based on the construction of a phylogenetic tree, which in
turn is based on the graph-theoretic notion of Steiner trees [11].
This is itself an NP-hard problem but several good approximation
algorithms exist [21]. A more sophisticated variation of the
progressive alignment algorithm that allows user-specified
constraints on where certain sequence positions should appear
relative to others makes this method relatively powerful [16].

A more powerful (but often slower) class of methods is based on
the iterative improvement of multiple alignments. This includes
the use of Tabu search [20], and not surprisingly for the
application -- genetic algorithms [2,18]. A more extensive survey
of such methods can be found in [17].

Tabu search involves the iterative improvement of a multiple
alignment by perturbing some sections of the solution, but uses a
set of restricting rules to avoid local traps and allow a more
extensive exploration of the solution space.

Genetic algorithms are based on the iterative improvement of a
population of feasible solutions using the principles of natural
selection. Within each iteration, each solution is evaluated, and
some of the best ones are probabilistically selected as parents for
the next generation of feasible solutions. A recombination
operator is applied to certain pairs of parent solutions to produce
new child solutions which hopefully will inherit some of the
better alignment building blocks of their parents. Mutations that
change some aspect of the solutions, when applied with a small
but significant probability, can prevent premature convergence
and allow further exploration of the solution space. After several
generations, the best multiple alignment encountered serves as the
final solution.

One specific implementation of a genetic algorithm for multiple
sequence alignment is SAGA [18], and it involves several
additional problem-dependent operators to improve its
performance. This includes a two-phase crossover operation (in
which only the better of the two children produced is retained),
gap insertion, block-shuffling, block searching, and sub-optimal
rearrangement.

A parallel implementation is but natural for genetic algorithms
due to the need to maintain multiple feasible solutions. In the
island model of parallel genetic algorithms [2], the population is
partitioned and each group assigned to a processor. A genetic
algorithm can run fairly independently in each processor but each
subpopulation are also occasionally allowed to exchange some of
the better solutions with its neighboring processors.

5. DISCUSSION

It is interesting to note that the island model of parallel genetic
algorithms in a way mirrors the way in which modern biologists,
physicists, mathematicians, statisticians and computing scientists
co-evolve as they identify domain-specific problems, search for
potential solution methods from neighboring disciplines and
integrate these with their own strategies.
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These efforts should yield further collaboration among different
disciplines in several avenues. In basic computer science
education for example, we have applied the principles of multiple
sequence alignment in the automated detection of plagiarism in
student programming assignments with good initial results. Just
knowing that instructors have automated tools that can potentially
check on hundreds of assignments is a great deterrent to
plagiarism and can therefore improve students' efforts in
programming. Given the fundamental nature of sequence
comparison problems, such methods can also be useful for
computer virus detection and taxonomy, as well as for the
automated classification of web documents.

The automated discovery of short but powerful protein
subsequences called motifs by mining megabytes of sequence
databases is another one of the advanced applications of sequence
alignment. Besides the obvious impact on medical and
agricultural applications, having better knowledge of just how
biology works at the molecular level might eventually lead us to
practical DNA-based computers for solving future computational
challenges.
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