Parallel Implementations of Cellular Automata-Based
Traffic Models Using the AGILA Cluster Computer

Eden Delight B. Provido, Mark Adrian Ramires, Winfer C. Tabares, and Rafael P. Saldafia
Computational Science and Scientific Computing Group
Mathematics Deparment, Ateneo de Manila University
E-mail for correspondence: rsaldana@ateneo.edu

ABSTRACT

Previous studies have shown that the simulation using cellular
automata models traffic flow based on theoretical assumptions
and data from the classical theory of traffic dynamics. In this
study, the parallel implementation of the one-lane and two-lane
freeway models of vehicular traffic dynamics on the AGILA
cluster computer are presented. The implementation technique
used is the Master-Slave technique. Results gathered using the
parallel implementations show that the present model benefits
from parallelization.

Keywords

Traffic Modeling, Parallel Computing,
AGILA Cluster Computer

Cellular Automata,

L.INTRODUCTION

Cognizant of the importance of studying vehicular traffic
dynamics, the Computational Science and Scientific Computing
Group of the Mathematics Deparment of Ateneco de Manila
University has embarked on a series of computational work
involving computer simulations and cellular automata-based
algorithms [2, 3, 4, 5, 7].

In the present study, parallel implementations of 1D and 2D
using a modified version of the Nagel and Schreckenberg's [1]
cellular automata model of traffic dynamics are done on the
AGILA cluster computer.

2. THE CAMODEL

The simulations are based on the model developed by Nagel and
Schreckenberg [1]. The following assumptions are made:

o Each time step is equivalent to one second.

o Cars can accelerate from 0 kph to a maximum of 130
kph or, equivalently, from 0 cells to 6 cells forward.

o The movement of the vehicles is from left to right with
periodic boundary.

o Initial arrangement of cars for the program testing is
randomly generated. Hence, a normalization scheme is

20

employed; that is, data gathering will start at the 11"
time step.

o When a car changes lane, it is placed on the cell in front
of it on the other lane.

The simulations for one-lane and two-lane models are
programmed in parallel using C, and implemented on the AGILA
cluster built by the Computational Science and Scientific
Computing Group of the Ateneo de Manila University [6].

3.THE AGILA BEOWULF CLUSTER

In 2000 a team of researchers belonging to the School of Science
and Engineering of the Ateneo de Manila University built a
Beowulf-class parallel computer called the AGILA High
Performance Computing System. Details about the features of the
AGILA cluster computer are reported in [6].

4.PARALLEL IMPLEMENTATION

Parallel programming uses multiple computers, or computers with
multiple internal processors. It is usually employed to solve a
problem that demands greater computational speed. It gives more
opportunity to tackle bigger problems. Parallel programming is
used to solve problems with more computational steps or memory
requirements; the latter is because more total memory is often
possessed by multiple computers and multiprocessor systems than
a single computer. In this study, multiple computers that
communicate between themselves by sending messages will be
used. This kind of implementation is called message-passing
parallel programming. The environment used to run all the
parallel implementation in this paper is the AGILA Cluster
Computer.

There are various techniques in designing a parallel
program. The techniques apt to be used largely depend on the
nature of the problem. In parallel programming, problems are
classified into three groups based on their nature—a problem can
be inherently parallelizable (coarse-grained), moderately
parallelizable, and fine-grained. Inherently parallelizable
problems are problems that can be subdivided into smaller
problems or tasks. They are the easiest to parallelize and are most
likely to benefit from parallelization. The most common technique
used in parallelizing an inherently parallelizable problem is
Partitioning or Divide-and-Conquer. The most difficult to
parallelize are the fine-grained problems. The steps in solving

these problems are very connected and it seems impossible to
divide them into smaller problems. Hence, fine-grained problems
call for careful planning of its implementation [9].

Cellular Automata is classified as a fine-grained problem. This is
largely because the state of each cell entirely depends on the state
of the other cells in its neighborhood. However, it ceases to be a
fine-grained problem if a subdivision of the problem according to
neighborhoods, given that the neighborhood is not very large, is
made.

In this paper, the technique used in parallelizing the CA traffic
models is the Master-Slave technique. It is somewhat like the
boss-worker relationship in human setting. One node will function
as the maste while all the other nodes serve as slaves. The general
framework of a Master-slave technique is as follows:

* Master notifies all the slaves that it is ready to distribute work.

» Slaves reply by sending a request for work.

* When master receives a request message, it sends work if
there is still work available. Otherwise, it sends a message that
there is no work available.

* When the slave receives the work, it instantly does the work
and sends the result back to the master, together with a request
for more work. If the slave receives the no work message, it
exits the work environment.

* When the master receives the results, it saves them or prints
them out.

* When all of its slaves have exited the work environment, the
master does the same.

The work in the given framework can be translated to data or,
specifically in the case of the CA implementation, the
neighborhood and all the attributes of each cell with a car. For the
one-lane model, work consists of the position of the car in the
lane, its velocity, and the state of (up to its maximum velocity)
cells in front of it; that is, if the maximum velocity of the car is 6,
the state of the 6 cars in front of it is considered. In the two-lane
model, work consists of the lane where the car presently belongs,
its position on that lane, its velocity, and its neighborhood which
consists of its forward neighborhood on its current lane, and its
backward and forward neighborhood on the other lane.

The one-lane and two-lane traffic dynamics CA models are
implemented, using the update rules of Nagel-Schreckenberg, in
C and are run using AGILA. The input values are the following:

NODES - number of nodes

lane len - length of the road (number of cells)
time - number of iterations

cars - number of cars
percent - percentage of jeepneys in the system.

In accelerating and decelerating, cars exhibit certain randomness.
To accommodate this randomness, a another variable, p_noise, is
introduced. The variable p_noise is the probability that the driver
will opt to retain his present velocity instead of accelerating when
it is possible to accelerate.

To run the simulation, the user must type the following

21

lamrun -np NODES [simulation name] /ane_len time cars
percent p_noise.

S.RESULTS AND DISCUSSION

Previous studies have shown that the simulation using cellular
automata models the traffic flow based on theoretical assumptions
and data from the classical theory of traffic dynamics [6]. With
that already shown, further investigations only need to check if
the system benefits from parallelization. A system is said to
benefit from parallelization if using more nodes (or processors)
would mean shorter processing time. Since there are several
variables involved in the study, each of them is considered one at
a time. That is, one of variables except the one being considered is
fixed while the number of nodes is varied (one to seven nodes are
used). Then, the time elapsed, or the number of seconds it takes
the program to process the data, is recorded. The default noise
value used is 80%, probability that the drivers will accelerate,
unless specified.

Figures 5.1-5.4 illustrate some of the Time vs Space plots of the
system.

s

i

&

i

#

H

3 i 3 4 ! 5
Figure 5.1 FigureS5.2 Figure5.3 Figure 5.4
One-lane One-lane Two-lane Two-lane
without noise with noise without with noise
noise

The figures above show the behavior of traffic as simulated in
1800 timesteps (roughly 30 minutes). Each row show in Figures
5.1 and 5.2 shows the behaviour of the lane in every second. In
figure 5.3 and 5.4, every pair of rows shows the behavior of traffic
in both lanes. It is obvious that when the randomness of
acceleration is not considered (without noise), the behavior of the
simulation follows a pattern. Once the randomness is introduced,
the behavior of the traffic seems to be somewhat erratic which is
what we usually observe in reality.

First, let us investigate on the general trend when the number of
nodes is varied. Figures 5.5-5.8 illustrate the result of making all
inputs except the number of nodes constant. The system is set

with 400 cells, 3600 iterations or roughly an hour, 300 cars, and
50% jeepneys.

time elapsed vs number of nodes

150
130 |
110 4
90 |
70 |
50 : : : : ‘ |

1 2 3 4 5

time (in seconds,

[}
~

number of nodes

Figure 5.5: One-lane Model without Noise

time elapsed vs number of nodes
T 250
8 200 |
@
® 150
£
~ 100 -
o
E 50 |
- 1 2 3 4 5 6 7
number of nodes
Figure 5.6 One-lane Model with Noise
time elapsed vs number of nodes
]
S 250
8 200 1
1]
® 150
£
=~ 100 -
o
E 50 |
- 1 2 3 4 5 6 7
number of nodes

Figure 5.7: Two-lane Model without Noise

time elapsed vs number of nodes

250
200 -
150 -
100 +

50 : : : : : i
1 2 3 4 5 6 7

time (in seconds

number of nodes

Figure 5.8: Two-lane Model with Noise

The general pattern shows that when the number of nodes is
increased, the elapsed time decreases. In this case, it can be
concluded that the system benefits from parallelization. One can
also observe that as the number of nodes increases, the rate by
which the elapsed time decreases is slower. This is because the

22

efficiency of parallelization is dependent on the number of data
fed into the system; that is, parallelization is useless if the number
of data is very small. If the amount of data fed into the system is
somewhat sufficient, the time taken by the nodes to communicate
to each other is significantly higher than the time taken by the
system to process all the data. Hence, a significant number of
data is needed to perform efficient parallelization.

Having shown the general pattern, the efficiency of the system
when the number of cars is varied is examined. For this purpose,
a system with 400 cells, 3600 iterations or roughly an hour, and
50% jeepneys will be used. This set-up is executed using 2, 3, 4,
and 5 nodes. In the figures below and for the rest of the figures,
the line with square dots result using 2 nodes, triangle dots for 3
nodes, cross dots for 4 nodes and the diamond dots for 5 nodes.

time elapsed vs number of cars

250

200 4

150 -

100 -

50 4
0 . . . |

0 100 200 300 400

time (in seconds

number of cars

Figure 5.9: One-lane Model without Noise

time elapsed vs number of cars

250

200 +

150 -

100 -

50 4
0 T T T i

0 100 200 300 400

time (in seconds)

number of cars

Figure 5.10: One-lane Model with Noise

time elapsed vs number of cars

250

200 4

150 -

100 -

50 4
0 . . . |

0 100 200 300 400

time (in seconds

number of cars

Figure 5.11: Two-lane Model without Noise

time elapsed vs number of cars

250

200 +

150 4

100 -

50 A
0 T T T i

0 100 200 300 400

time (in seconds

number of cars

Figure 5.9: One-lane Model without Noise

time elapsed vs number of cars

300
250 -
200 -
150 -
100 +

50 -

time (in seconds)

o

100 200 300 400

o

number of cars

Figure 5.12: Two-lane Model with Noise

The figures show two things. It shows that as the number of cars
in the system increases, the time elapsed increases as well. This
result is obvious since it takes time to compute the properties of
each car. Moreover, it also shows that more nodes working
together makes the computation time faster. Again, in this case,
the system benefits from parallelization. It can also be seen that
the rate of change of the time elapsed is decreasing, as in the
previous step.

For the next set-up, all inputs except the number of cells or the
length of the road is fixed. The system is set with cars consisting
50% of the number of cells, 3600 iterations, and 50% jeepneys.
The first notable thing about the graphs in Figures 5.13-5.16 is
that they have the same trend as those in the previous set-up. The
topmost line is for the 2-node set-up, and the line at the bottom is
for the 5-node set-up.

time elapsed vs road length
@ 150
c
8 100 1
[
7]
£ 50 %2;
(]
E o0 ; ; ; |
= 50 150 250 350 450
road length

Figure 5.13: One-lane Model without Noise

23

time elapsed vs road length
& 150
c
8 100 4
@
)
£ 50 %
Q
E 0 . . . |
- 50 150 250 350 450
road length

Figure 5.14: One-lane Model with Noise

time elapsed vs road length
w
2
H 150 4
3
w 100 -
c
€ 50 ‘4‘%
)
E o : ‘ : ‘
R
50 150 250 350 450
road length

Figure 5.15: Two-lane Model without Noise

time elapsed vs road length

n

2

s 150 4

3

@ 100 4

£ 50 %

[}

E 0 ! ! ! |

- 50 150 250 350 450
road length

Figure 5.16: Two-lane Model with Noise

Each graph in Figures 5.13-5.16 shows that increasing the
number of cells in the system will make the computation time
longer. However, the fact that increasing the length of the road
leads to an increase in the number of cars (set as 50% of the
number of cells) should also be considered. For the table, the
system is set with 100 cars, 100 iterations and 50 jeepneys. It
shows that if the number of cells or the length of the road is
increased without increasing the number of cars, the elapsed time
will almost be the same.

lé?l;lh time elapsed
200 2.39
250 2.39
300 2.40
350 24
400 2.39
450 24
Table 5.1

This result explains why the graphs are very similar those in the
previous set-up, when the number of cars in the system is varied.
This, as in other cases, leads to the conclusion that the system
benefits from parallelization.

In the next system, all the inputs except the number of iterations is
held constant. In the following graphs, the highest line is the data
for set-up with 400 cells and 200 cars, and the lowest line is for
the set-up with 100 cells and 50 cars. The system is set with 5
nodes and 50% jeepneys, and a variable number of iteration that
ranges roughly from 30 minutes (1800 iterations) to 3 hours
(10800 iterations). It can be seen that, as the number of iterations
increases, the time elapsed also increases. However, this does not
give any proof of parallelization efficiency.

time elapsed vs number of iterations

200
150 -
100 -
50 -
0 : T T T i
1000 3000 5000 7000 9000 11000

time (in seconds!

number of iterations

Figure 5.17: One-lane Model without Noise

time elapsed vs number of iterations

200
150 +
100 +
50 4
0 :
800 2800 4800 6800 8800 10800

time (in seconds]

number of iterations

Figure 5.18: One-lane Model with Noise

time elapsed vs number of iterations

200 -
150 -
100 +
50 -
0 : : : : i
1000 3000 5000 7000 9000 11000

time (in seconds

number of iterations

Figure 5.19: Two-lane Model without Noise

24

time elapsed vs number of iterations

200
150 -
100 -
50 4
0 : : T T i
1000 3000 5000 7000 9000 11000

time (in seconds;

number of iterations

Figure 5.17: One-lane Model without Noise

time elapsed vs number of iterations

\
i

200 +
150 4
100 +
50 -
0 : i
1000 6000 11000

time (in seconds

number of iterations

Figure 5.20: Two-lane Model with Noise

The only input left to be examined is the percentage of cars in the
system.

time elapsed vs percentage of jeepneys

'
]

7.3
7.2 4
71 A

77‘\,/0/’—%0

6.9
10 20 30 40 50 60 70 80 90 100

time (in seconds

percentage of jeepneys

Figure 5.21: One-lane Model without Noise

time elapsed vs percentage of jeepneys

§ 74

o 7.3

3

» 7.2 HW—H
£ 71

o

E 7 o [o

- 10 20 30 40 50 60 70 80 90 100

percentage of jeepneys

Figure 5.22: One-lane Model with Noise

time elapsed vs percentage of jeepneys

LD S U SN

time (in seconds

10 20 30 40 50 60 70 80 90 100

percentage of jeepneys

Figure 5.21: One-lane Model without Noise

time elapsed vs percentage of jeepneys

7.4
7.3 A
7.2
7.1 A

7 : : : : : : : : :
10 20 30 40 50 60 70 80 90 100

e, "+ "0+ o o,

time (in seconds

percentage of jeepneys

Figure 5.23: Two-lane Model without Noise

time elapsed vs percentage of jeepneys

7.4
7.3
7.2 4
7.1

7

O/—H—H_Q/‘—‘\./‘

time (in seconds)

10 20 30 40 50 60 70 80 90 100

percentage of jeepneys

Figure 5.24: Two-lane Model with Noise

However, as the results in Figures 5.21-5.24 show, varying the
percentage of cars in the system barely affects the computational
time. Hence, using it to test the parallelization efficiency of the
system will be redundant since it will just give results similar to
the first set-up where the number of nodes is varied.

In summary, the variable that affects the efficiency of
parallelization are the number of cars, the number of cells, and the
number of iterations.

6.CONCLUSION

A parallel version of Nagel and Schreckenberg’s one-
dimensional and two-dimensional, multi-state, deterministic and
stochastic cellular automata was programmed in C and
implemented using AGILA Cluster Computer. The following
observations have been noted:

» Taking all the input values into consideration, the system
benefits from parallel implementation.

25

e When the number of nodes is increased, the time it takes for
the processors to execute the work (elapsed time) decreases.

* As the number of cars in the system increases, the time
elapsed increases as well. Moreover, more nodes working
together makes the computation time faster.

e If the number of cells or the length of the road is increased
without increasing the number of cars, the elapsed time will
almost be the same.

¢ Even if the number of iterations is varied from 30 minutes to 3
hours, the system still benefits from parallelization.

* Varying the percentage of cars in the system barely affects the
computational time. Hence, using it to test the parallelization
efficiency of the system will be redundant.

7. ACKNOWLEDGEMENT

We would like to acknowledge funding support from the
Commission on Higher Eduation (CHED) Center of Excellence
Fund of the Mathematics Department of Ateneo de Manila
University. We also thank Mr. William Yu for his assistance in
parallel programming and the development of the AGILA cluster
computer.

8.REFERENCES

[1] Nagel, K. and M. Schreckenberg (1992). “A Cellular
Automaton Model for Freeway Traffic”. J. Physique,
Vol. 2, pp. 2221-2229.

[2] Saldafia, R. and Tabares, W. (2000). “Mathematical and
Computatonal Aspects of Modeling and Simulation of
Traffic Flow Dynamics”. 19" Annual PAASE Meeting
and Symposium. Makati City, Philippines.

[3] Saldaiia, R. and Tabares, W. (2000). “Traffic Modeling on
High Performance Computing Systems.” Proceedings
of the First Philippine Computing Science Congress
(PCSCS 2000). Manila, Philippines.

[4] Saldadia, R. and Tabares, W. (2001). “A Study on Modeling
Vehicular Traffic Dynamics: Comparison Between
Macrosimulation and Microsimulation Methods.”
MODEL 2001. Mindanao State University-Iligan
Institute of Technology, Iligan City, Philipppines.

[5] Saldafia, R. and Tabares, W. (2001). “A Cellular Automata-
Based Study of Vehicular Traffic Dynamics.” 2"
Philippine Computing Science Congress (PCSC 2001).
Mindanao Stuate University-Iligan Instittue of
Technology, Iligan City, Philippines.

Saldafia, R., Garcia, J.,, Muga, F., and Yu, W. (2001).
Development of a Beowulf-Class High Performance
Computing System for Compuational Science
Applications. Science Diliman, vol. 13, no. 2, pp. 97-
99.

[7] Tabares, Winfer C. (2002). “A Cellular Automata-Based
Study of Vehicular Traffic Dynamics.” M.S. Thesis,
Ateneco de Manila University, Quezon City,
Philippines.

(6]

