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ABSTRACT

The goal of the Turnpike Problem is to reconstruct those
point sets that arise from a given distance multiset. Al-
though the Turnpike Problem itself is of unknown complex-
ity, variants of it have been proven to be NP-complete, and
there are no existing polynomial algorithms for it. P sys-
tems with active membranes and P systems with membrane
creation are parallel computing models based on the char-
acteristics of living cells; both have been used to solve NP-
complete problems in polynomial time or better by trad-
ing time for an exponential workspace. In this paper we
present a P system with active membranes and membrane
creation that implements an O(2"n log n)-time backtracking
algorithm for the Turnpike Problem in linear time.

1. INTRODUCTION

Suppose you are driving to a relative’s house in another
province, and you must pass through a number of toll gates
to get from your house to her house. You know the dis-
tances between each toll gate to every other toll gate, but
you do not know the locations of the toll gates. Moreover,
you do not know which pairs of toll gates correspond to
which distances—i.e., you know that there is a toll gate on
either end of each distance, but not which one. The prob-
lem of finding the locations of the toll gates is known as the
Turnpike Problem (or TP).

Formally, TP is defined as follows: given a multiset of k
distances, construct all n-point sets such that in any point
set, every pair of points corresponds to the endpoints of a
certain distance from the given multiset. Thus, if we have
k distances, we expect n points such that (;) =k. In TP
each point set lies on a line, and there may be multiple
point sets that can be constructed from the same distance
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multiset; according to [9], when these point sets are unique
(that is, none of them is a reflection of another), they are
called homometric sets. TP first appeared in the 1930’s as a
problem in X-ray crystallography, and reappeared in DNA
sequencing as the Partial Digest Problem (PDP).

The exact computational complexity of TP remains an open
problem, although certain variants of it, as well as the de-
cision problem of whether n points in R realize a multi-
set of (;’) distances, have been proven to be NP-complete
in [9]. (Similarly, PDP’s own computational complexity is
an open problem; variants of it are proven to be NP-hard
or NP-complete in [2].) However, no polynomial-time algo-
rithm has been found that solves TP. Among the algorithms
that have been proposed is a polynomial factorization al-
gorithm presented by Rosenblatt and Seymour in [8], and
a backtracking algorithm presented by Skiena et al in [9].
The polynomial factorization algorithm relies on a polyno-
mial representation of the distance multiset, and is chiefly
concerned with finding that polynomial’s set of irreducible
factors; the m-point sets arise from certain subsets of the
irreducible factors. The algorithm runs in pseudopolyno-
mial time. The backtracking algorithm, on the other hand,
takes a more intuitive approach—it successively places each
distance on a line and checks if the point arising from the
placement is correct. The point is assumed to be one of
the endpoints of the distance. Once all distances have been
correctly placed, the resulting point set is a solution to the
distance multiset. Skiena et al report in [9] that, although
their algorithm runs in O(2"nlogn) time, its average-case
running time is polynomial; however, a series of instances
for which the algorithm always performs in the worst case
are presented in [10].

The simplicity of the backtracking algorithm has made it our
algorithm of choice for implementation on P systems. In the
succeeding sections we present a more detailed discussion of
how the algorithm works (along with a small example), an
overview of P systems, and the P system we formulated to
solve TP.

2. BACKTRACKING ALGORITHM FOR TP

The backtracking algorithm in [9] examines all possible n-
point sets that may arise from the given distance multiset.
It narrows the possibilities down by assuming that the end-
points of the largest distance in the multiset correspond to
the origin and the rightmost point on the line; thus, at the
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Figure 1: A sample instance of TP solved using the
backtracking algorithm in [9].

start of computation two of the n points have already been
determined. The algorithm then removes the largest dis-
tance from the multiset, and searches for the remaining n—2
points by repeatedly removing the largest unused distance
in the multiset and assuming one of the following: either
the distance’s left endpoint is the origin, or its right end-
point is the rightmost point on the line. (By default, we
assume first that the left endpoint is the origin.) The newly
placed point is the distance’s right endpoint in the former
case, or the left endpoint in the latter case. The algorithm
checks if the new point is valid by looking at the distances
between the new point and every other point that has al-
ready been placed on the line; if the distances are members
of the given multiset, the point is valid, and the algorithm
removes these distances from the multiset. The algorithm
then removes the next largest distance from the multiset and
repeats the checking procedure. Computation proceeds un-
til the distance multiset is empty, whereupon the algorithm
would have found all possible solutions.

Backtracking occurs when a new point is not valid; when
this happens the algorithm removes the new point from the
line and puts all distances previously generated (i.e., the dis-
tances between the removed point and all other points al-
ready placed on the line) back in the distance multiset, hence
abandoning the current possible solution that contained that
point. If the algorithm had assumed that the left endpoint
of the distance is the origin, it backtracks by assuming that
the right endpoint of the distance is the rightmost point,
then proceeds to check the new point thus generated (and
vice versa). If that new point is still not valid, the algo-
rithm backtracks by restoring the last-used distance to the
given multiset and assuming that the right endpoint of the
distance is the rightmost point. If the algorithm backtracks
through all the distances without completing an n-point set,
then the given distance multiset has no solution.

Figure 1 briefly illustrates how the backtracking algorithm
works. D is the given distance multiset; distances removed

from D when a new point is placed are shown in grey. We
expect a 4-point set, since the distance multiset contains 6
distances and (‘21) = 6. Notice the point p; shown in red in
the third step; it is the result of choosing the distance 5 and
taking its right endpoint as the new point. The algorithm
finds that it is invalid because it generates a distance that
does not belong to the multiset (i.e., the distance 1 between
p1 and p2); the algorithm then backtracks by putting the dis-
tance 5 back in the multiset and getting the left endpoint of
the distance when its right endpoint is the rightmost point;
hence, the new point is 3. The new point (which is also
called p1) completes the point set. Other solutions can be
found by incrementally putting the removed distances back
into the multiset and exploring other possible placements.

The process of backtracking can be traced on a binary search
tree, wherein each node represents the placement of a point
on the line; since a point can be either the left or the right
endpoint of the current largest distance, every node has two
children, one for each possibility. The algorithm traverses
the tree depth-first until all solutions have been found; it
halts when it has backtracked all the way back to the root,
which represents the placement of the rightmost point.

3. PSYSTEMS

P systems are computing models used in membrane comput-
ing, a field of computer science inspired by the architecture
of living cells. P systems span a wide spectrum of cellular
characteristics, ranging from variants that resemble individ-
ual cells (i.e., cell-like variants) to variants that mimic the
behavior of multiple cells grouped together (i.e., tissue-like
and neural-like variants). [6] provides a detailed overview of
these variants.

The basic P system consists of membranes, multisets of ob-
jects and evolution rules; the first two are abstractions of cel-
lular membranes and the chemicals that swim freely within a
cell, the last a formal means of defining the P system’s com-
putations. The objects represent the data with which the P
system computes; they and the regions they inhabit are de-
limited by membranes, which can contain other membranes
as well as objects. The primary feature of a P system is the
membrane structure. For cell-like variants, the membrane
structure consists of the P system’s membranes arranged in
a hierarchy, similar to the nodes on a tree; the outermost
membrane (called the skin) is the root, and the innermost
membranes (called elementary membranes) are the leaves.
It is therefore convenient to refer to the membrane contain-
ing another membrane as the latter’s parent, a membrane
with the same parent as another as the latter’s sibling, and
SO on.

Computation in a P system revolves around its objects and
evolution rules. The objects are capable of evolving—they
can become new objects, they can multiply or dissolve, and
they can enter or leave membranes. Object evolution is con-
trolled by the evolution rules, which specify which objects
can evolve, and how. Whether a rule affects only a specific
membrane (and the region the membrane encloses) or the
entire membrane structure depends on the P system variant:
in the former case, the rules are contained in the membranes
they affect, like objects; in the latter case, the rules are not
represented within the P system at all.



Rules are applied in a nondeterministic, maximally paral-
lel manner. Nondeterminism, in this case, has the following
meaning: when there are more than two rules that can be
applied to an object, the P system will randomly choose the
rule to be applied for each copy of the object. The P sys-
tem assumes a universal clock for simultaneous processing
of membranes—all applicable rules have to be applied to all
possible objects at the same time. Hence, during one unit of
time (or one step) multiple rules may be applied. When no
more rules can be applied, the computations are considered
finished. Output consists of objects either sent out of the
skin and into the environment (i.e., the region outside the P
system), or into a specified output membrane.

During computation P systems go through a series of tran-
sitions from one state to another. The state of a P system is
represented by a configuration, which consists of the mem-
brane structure and the objects at a single step. The initial
configuration and the halting configuration are the states of
the P system before and after computation respectively.

3.1 Extensions

Apart from the general features available to a P system, a
number of extensions have been proposed that add useful
functionality. In [6] Paun describes three extensions that
give additional control over the behavior of membranes and
rules. The first is electrical polarization. Membranes and
objects can have one of three polarizations: positive (+),
negative (—), or neutral (0). According to [6], an object’s
polarization decides which membrane it will enter. If it has
either positive or negative polarization, it must enter an ad-
jacent membrane with the opposite polarization; if it is neu-
tral, it stays where it is. A membrane’s polarization, on
the other hand, may affect its behavior (and hence its com-
putation), as well as the behavior of outer membranes that
contain it. In [5], opposite polarizations are used to control
membrane division.

The second is the use of promoters and inhibitors to control
rule execution. A rule with a promoter can only be applied if
the objects indicated by the promoter are present in the re-
gion where the rule is to be applied; a rule with an inhibitor,
on the other hand, can only be applied if the objects indi-
cated by the inhibitor are not present in the region. Hence,
certain objects are given the ability to influence the flow of
computation by putting restrictions on the behavior of se-
lected rules. Promoters and inhibitors take the form u — v/,
and u — v|-. respectively, where u, v and z are multisets
of objects, and z is the object that should be present in the
former case and absent in the latter case.

The last is the assignment of priority relations among rules.
A priority relation specifies certain rules that can only be
applied when cetain other rules are no longer applicable,
thereby controlling the flow of computation. (Note that us-
ing priority relations lessens the degree of nondeterminism
in a P system, since it directly interferes with the maximally
parallel application of rules.) In [7] Paun introduces the no-
tation p = r; > rj,...,rx > 1, where ry, r;, 7 and r; are
rules, and the symbol > is a priority relation over the rules.
The rule on the right of the > can only be applied if the rule
on the left of the > is no longer applicable.

3.2 P Systems with Active Membranes

The P system with active membranes is a cell-like variant—
it has a hierarchical membrane structure that resembles a
single cell. Its main feature is the evolution of its mem-
branes. Membranes may divide in a process similar to cell di-
vision, wherein all of a membrane’s objects and inner mem-
branes (i.e., membranes contained in other membranes) are
replicated during division. Unlike other P system variants,
P systems with active membranes use rules that are not
restricted to specific membranes, and affect all membranes
simultaneously; they also use electrical polarization of mem-
branes, indicated by the symbols 4, — and 0.

The ability of P systems with active membranes to copy
existing membranes and modify the copies in parallel gives
them the power to search diverging branches of computa-
tion at the same time. When a membrane encounters more
than one possible result for a computation, the P system
divides the membrane into several copies, one for each pos-
sibility; the divided membranes will then proceed with their
computations in parallel. Hence, the P system with active
membranes can solve for multiple solutions simultaneously.
For this reason, P systems with active membranes have been
used to solve NP-complete problems, including the Boolean
satisfiability problem (SAT) and the Hamiltonian path prob-
lem (HPP), in linear time (the reader is referred to [5] and
[4] for the P systems that solve SAT and HPP respectively).
The main tradeoff is the exponential rate at which the mem-
branes multiply as the computations progress; the gains in
computing speed are achieved through the use of a massive
workspace.

The following definition for a P system with active mem-
branes is from [5].

DEFINITION 3.1. A P system with active membranes is a
construct

= (MT7H7M7w17~‘-7wn7R);
where:

(i) V is the alphabet of symbols;

(ii) T CV is the set of terminal symbols;
(iii) H is the set of membrane labels;
(iv) p is the membrane structure;

(v) wi,...,w, are the multisets of objects present in mem-
branes 1 to n;

(vi) R is the set of rules of the following forms:

(a) Multiset-rewriting rule
[ra — bi,
forhe Ha€ {+,—,0},ac V,be V*
This type of rule is used mainly for the evolution
of objects in the membranes. Membranes do not
interfere with the evolution of objects; membrane
evolution is considered separate from object evo-
lution.



(b) In-communication rule

N
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alnly — [nbl3?,

for h € H,ai,a2 € {+,—,0},a,b €V

This type of rule is used for moving objects into
the region enclosed by a membrane. In this rule,
when an object a is in the region immediately out-
side membrane h, object a will be consumed and
a copy of object b will be generated within mem-
brane h. The charge of the affected membrane
may also be changed due to the object’s entry.

Out-communication rule

[naly* — blnly?,

for h € Hyai,az € {+,—,0},a,b€V

This type of rule is used for moving objects from
within a membrane to the region directly outside
it. In this rule, when an object a is inside mem-
brane h, object a will be consumed and a copy
of object b will be generated immediately outside
the region of membrane h. As in the above type
of rule, the charge of the affected membrane may
also be changed due to the object’s exit.
Dissolution rule

[nali — b,

forhe Hya € {+,—,0},a,b €V

This type of rule is used for dissolving a mem-
brane. After dissolution, all of a membrane’s ob-
jects, as well as its inner membranes, are trans-
ported to the region immediately outside it (that
is, to its parent membrane). As indicated in the
rule, the object a that was previously within the
dissolved membrane is consumed, and the object
b is generated in its place.

Division rule for elementary membranes

[naly" — [n0],2 [nely? s

for h € H,a1,a2,a3 € {+,—,0},a,b,c €V

This type of rule is used for dividing an elemen-
tary membrane. The label h means that a mem-
brane can only be divided if it is elementary. Upon
division, all objects in membrane h are replicated
except for object a, which is replaced by object b
in one of the newly divided membranes and c¢ in
the other. The electrical polarizations of the new
membranes may differ from that of the original,
but both membranes retain their original labels.

Division rule for non-elementary membranes
[ho [hl]z: [hl,]z; [hk+1]2:+1 "'[hn](;:]zs

= IroladJny Il Jig [o sy I oo ra T Ing s

for k > 1, n >k, hy € H, 0 < i < n, and
o, ...,a6 € {+,—, 0}, with {on, 0} = {+, -}
This type of rule is used for dividing membranes

that contain other membranes (called non-elementary

membranes). This is only possible when the non-
elementary membrane to be divided contains two
membranes of opposite polarization; in the result-
ing divided membranes, the membranes of oppo-
site polarization are contained by separate mem-
branes.

An extension of rule (e), presented by Paun in [6],
gives additional flexibility to membrane division;

for example, it allows for the division of a mem-
brane into more than two copies. This extension
takes the following form (note the labels of the
membranes before and after division):

(e¢’) Division rule extension

[nalyt = [1ab]32 [haclyy, for ha ha, hs € H e, e2,e5 €

{+) _»0}7 and a,b,c cV

Like other P systems, computation in a P system with active
membranes occurs through the execution of all applicable
rules in a maximally parallel manner. When rules of type (a)
and of type (b)-(e) are applied simultaneously in a certain
membrane, all rules of type (a) should be executed before
other rules; this ensures that rules for object evolution are
executed before rules for membrane evolution.

3.3 P Systems with Membrane Creation

The P system with membrane creation presented in [3] is
a cell-like variant largely similar to the P system with ac-
tive membranes presented in the previous subsection; it has
the same components (alphabet, membrane structure, etc.),
its rules are almost exactly the same as that of the P sys-
tem with active membranes, and its rules are applied in the
same way (i.e., they affect all membranes, etc.). However,
it does not produce copies of existing membranes through
membrane division; instead, it generates entirely new mem-
branes that contain predefined multisets of objects. This
difference takes the form of the following modification to
rule (e) from the previous subsection: [n,a — [hyV]hs]hys
where a € V, v € V*, and hi,hs € H. Note the absence
of electrical polarizations in the rule; the P system with
membrane creation does not use polarizations, unlike the P
system with active membranes.

A P system with membrane creation was also used to solve
SAT in linear time; the reader is referred to [3] for details.

4. IMPLEMENTATION OF THE BACKTRACK-

ING ALGORITHM

The P system with active membranes was an attractive
choice for implementing the backtracking algorithm in [9];
its ability to divide membranes provided a way to explore di-
verging branches of computation simultaneously, thus elimi-
nating the need for backtracking. Recall from section 2 that
the backtracking algorithm can be traced on a binary search
tree; computation diverges into two possibilities every time
a point is placed using either the left or the right endpoint of
the current largest distance. In order to explore other pos-
sibilities, the algorithm must backtrack through the nodes
it has already discovered before it can find a new branch to
explore. In a P system with active membranes, all possible
branches can be explored at the same time—every time the
system encounters a fork in computations, it can divide the
membrane handling the computations into as many copies
as there are computational branches. The divided mem-
branes would then divide whenever they encounter similar
forks further down the search tree. Hence, the system does
not need to backtrack to find all the n-point sets that satisfy
the given distance multiset; instead, it constructs all of these
point sets simultaneously, thus vastly reducing the original
algorithm’s running time.



Although membrane division is at the core of our imple-
mentation, we were limited by the kind of rules native to
the P system with active membranes. We found ourselves
working with multiple multisets of objects that we could not
adequately control without using additional features. We
needed the ability to create new membranes that were not
merely copies of existing membranes. We needed to direct
the application of certain rules so that they would not be ap-
plied out of sequence, since our rules followed a logical order
based on the backtracking algorithm. We needed to perform
complex functions that had to be compressed into one rule.
For these reasons, we turned to the P system with membrane
creation and some extensions to the basic P system, all of
which were discussed in the previous section. We incorpo-
rated the membrane creation rule and the extensions, many
of which were modified in varying degrees, in a P system
with active membranes. In the following subsection we dis-
cuss the nature of our additions and modifications in more
detail.

4.1 Additional Features and Modifications

4.1.1 Active Membranes with Membrane Creation
According to Gutiérrez et al in [3], P systems with active
membranes and P systems with membrane creation are two
distinct variants; the membrane division and membrane cre-
ation features are not normally incorporated in the same
system. Moreover, using the membrane creation feature in
a P system with active membranes as defined in [5] implies
the assignment of polarizations to created membranes (re-
call from the previous section that P systems with membrane
creation do not employ electrical polarization).

In our system, membrane division and membrane creation
may occur simultaneously through the application of a sin-
gle rule, and a newly created membrane is assigned a default
polarization. This type of rule takes the form [, ul;! —
[haVlns W] 2157 - [na®[ns U]y 2 Ins s Where ha, ..., hs are the mem-
brane labels, a1, ...,as € {4, —, 0} are the polarizations and
u, v, w, x and y are multisets of objects.

4.1.2 Notation

Most of the objects in our system are classified into sets to
distinguish them from one another; these are the objects
that represent distances and points. Furthermore, these ob-
jects have indices to distinguish elements from the same set,
and exponents to refer to the value that the object repre-
sents. In [6] a symbol with an exponent refers to multiple
copies of the same symbol; this notation is used as a form
of shorthand when referring to multiple copies of objects in
rules. We also used this notation’s original form, but for two
objects only: ¢’ and ¢”.

In the case of distance objects that represent the original
distance multiset, the indices are also used to impose an
artificial order on the distances. This artificial order results
from the sorting procedure that the system carries out at the
beginning of computation; the object with the smallest index
has the smallest value, the object with the next smallest
index has the next smallest value, and so on.

We have also used the name of the set to refer to a group
of objects in a rule when it was difficult to enumerate the

objects in the rule.

4.1.3  Complex and Cooperative Rules

Rules in P systems generally carry out only one specific func-
tion (recall the forms of the rules for the P system with
active membranes from section 3.2). In particular, commu-
nication rules only allow an object to either enter or leave
a membrane; other functions, such as the object generating
multiple copies of itself, are handled by separate rules. We
modified communication rules to allow an object to evolve
while it is on its way to an adjacent membrane—specifically,
we allowed an object to generate a copy of itself in the mem-
brane that it is about to leave. We also adapted the move-
ment of a multiset of objects into or out of membranes (in-
stead of just one object) from the subvariant of P systems
with active membranes presented in [1]. The resulting modi-
fied communication rules take the forms [,u]n — [pu]nu and
uln]n — ulpuln, where h is the membrane label and u is a
multiset of objects. (Note that, in P systems with active
membranes, multiple objects may pass through membranes
at the same time due to the maximally parallel application
of rules; the difference is that, in the communication rules,
only one object is specified as passing in or out of a mem-
brane.)

The rules presented in [1] are known as cooperative, or coop-
erating, rules since they specify the simultaneous evolution
of a multiset of objects; this type of rule was introduced in
[7]. Most of the rules we used are cooperative rules.

4.1.4  Rules with Inhibitors and Priority Relations
In [6] rules with inhibitors are local to specific membranes,
unlike the rules used by P systems with active membranes
(recall the form of rules with promoters and inhibitors in
section 3.1). For this reason, they no longer need to specify
the membranes which they affect. Using them in a P sys-
tem with active membranes, however, implies making them
applicable to every membrane in the system. We used rules
with inhibitors for certain membranes only; to ensure that
the rules are applied correctly, we have specified the mem-
branes to which their effects are limited. Rules of this type
take the form [pu — v|-w]n, where u, v and w are multisets
of objects and h is the label of the membrane that contains
them.

The priority relations in [6], like the rules with inhibitors,
were intended for specific membranes; they affect only those
rules that are in the same membrane. Applying them to
the rules in a P system with active membranes implies giv-
ing them a wider range of effect, although they are still re-
stricted to those rules they specifically control. We adapted
the notation used by Paun in [7] and modified it to ac-
commodate sets of rules on either side of the > symbol;
our priority relations belong to a set p = {{ri,...,7;} >
{Pkyees T}y ooy {Twy s T2} > {ry,...,72}}, where i, rj, 74,
Tl Tw, Tz, Ty, and r. are rules.

4.1.5 Electrical Polarization

In the P system that solved SAT that was presented in [5],
electrical polarizations were used to control membrane di-
vision; two adjacent membranes with opposite polarizations
forced their parent membrane to divide. The positive po-
larization (+) was also used for another, somewhat lesser



function: whenever the system sent its output outside the
skin, the skin’s polarization was changed from neutral to
positive to prevent the system from sending out more than
one copy of its output (since it could produce more than one
at the end of computations). We have used this latter func-
tion extensively to ensure that a rule is applied to a certain
membrane only once.

4.2 Solving TP

Here we define the P system we formulated to solve TP.
First, we examine the sets and multisets we used to classify
the objects within the system.

The multiset D = {do,ds,....,dx—1},k € N describes the
given distance multiset. D is represented in the system by
the multiset D’ = {Ag“,A'f‘, ...,A:k:ll , wherein the expo-
nent of each element in D’ corresponds to one of the elements
in D. Apart from D, we assume that another distance mul-
tiset U = {uo,u1,...,uc—1},e € N is given as input. U
is a subset of D that contains a copy of each distinct dis-
tance in D. U is represented in the system by the multiset
U' = {By°, B, ..., B.“]'}, wherein the exponent of each
element in U’ corresponds to an element in U. D’ and U’
are used by the sorting procedure that the system performs
at the start of computation (this procedure will be discussed
further in the next subsection). During the course of this
procedure, there may be multiple copies of D’ and U’ in
separate membranes within the system. Every copy of D’
contains the same elements as the other copies of D’; the
same goes for every copy of U’.

After the sorting procedure, the system produces the dis-
tance multiset S = {so, s1, ..., Sx—1}. k € N. S contains the
same elements as D, only its elements are sorted in ascend-
ing order according to index. S is represented in the sys-
tem by a multiset S’ = {X3°, X}',..., X;"7'}. There may
be multiple multisets S’ in separate membranes while the
system computes; however, unlike D’ and U’, each S’ may
contain different elements due to the nature of the compu-
tations taking place in the membrane to which it belongs.
Membranes compute independently of one another, in paral-
lel; recall that P systems are distributed computing models.
Hence, we can distinguish each S’ from every other S’ by
associating it with the membrane that is using it for com-
putations.

Every S’ is used to reconstruct an n-point set P = {po, p1, -,
pn-1},n € N ((3) = k), which is a possible solution to D.
Each P is represented in the system by a corresponding mul-
tiset P = {0,Y", ..., Y, "'}, wherein the exponent of each
element in P’ corresponds to an element in P. Note that
one of the elements of P’ is the special symbol 0—the left-
most point in P’ is assumed to be the origin, and no longer
needs to be computed. The remaining elements follow the
form Y, 1 < ¢ < n—1. Like S, there may be multiple
multisets P’ in separate membranes, with each P’ contain-
ing elements which may be different from the elements of
every other P’. The only common elements among the mul-
tisets P’ are the point representing the origin and, when it
has been computed after the sorting procedure, the right-
most point (i.e., Yo' ~*). Every membrane containing a P’
is independently computing a distinct solution to D, since

the system simultaneously generates all possible solutions;
hence, we can distinguish each P’ from every other P’ by as-
sociating it to the specific membranes that is reconstructing
it.

During the reconstruction of a P’ the system produces a
distance multiset C' = {co, c1, ..., ¢m—1}, m € N. C contains
the distances from the most recently reconstructed element
of P’ (i.e., an object that represents a point) to every other
element of P’ (i.e., the objects that represent previously re-
constructed points). Each C is represented in the system
by aset C' = {N5°, N{' ..., N, 7'}, wherein the exponent

m—1

of each element in C’ corresponds to an element in C. A
new C’ is produced every time a new element of P’ (i.e.,
a new point) is reconstructed; like S’ and P’, there may
be multiple multisets C’ in separate membranes within the
system. These are also distinguished from one another by
associating them with the membranes that are using them
for computations.

‘We now present the P system we formulated to solve TP.

The system is a construct
= (‘/;T7 H7/"‘7w17w27w37w47R7P)7

where:

V={a,B3,0,0,L,R,t',t"YuD VU US UP UT
T={t}

H= {17 27 37 47 407 417 ey 4671? 57 507 517 sy 51672}

= lialsls AL AN AP BROBM L BT 1S 013 019)°
w1 = {A}, where X is the empty string
W = {0}
w3 = {0’}
wy = (AL, AT L AR B, B L, B

the set R contains the following rules:

(1) [+Bg°By" ... BS1']d
— [1oB5° B84, [4, By [s B84, -
[, Be21 s By I8a, s
where e is the number of elements in U’

(2) [518 = [501%, 5118,

where k is the number of elements in D’

[5k—2]gk—2’

dj Huy u
(3) [4, A7 B]8, — [, B"]i,,

i

where uw; = d;, w; € U, d; € D, AJ € D', B € U’,
0<j<k—1,0<i<e—1

(4) ‘4? [5j]g,‘ - [5j‘41('ii];rj?

where AV € D', d; € D,0<i<k—10<j<k—2



(5) [s, BUAY]E — t ifui > dj,
(6) [5, Bl AV, — 1" if u; = dj,
(7) [5thiAja];rh — Xif u, < dy,

where AT € D',B}* € U/, u; € U, d; € D, 0 < i <
e—1,0<j<k—1,0<h<k—2for rules (5) to (7)

(8) [a, Byt t" — Xy X4 X
9) [, Bt — X3 | ]E

Uy ’ s Spp1 Spp ’
where B € U', X7=, X "', ..., X, € &, and

Ui = Spy Srt1y s Srtqy, 0 ST < e—1,
r is the number of #"’s in membrane 4;, 0 < j <e—1,
and

1)

¢ is the number of ¢"’s in membrane 4;, 0 < j<e—1

for rules (8) and (9)
(10) [5, X7, — X7,
where X7 € 8, 0<i<k—1l,and 0<j<e—1

(11) [XE ' 0l§ — [608 aYay ™,
where p,,_1 is the farthest point from the origin, p,,—1 €
Posp1€8, Xrtes, Yt e P

(12) [sX;'B 18 — [sX;°]5 X;*,
where X" is the X object with the largest index in its
corresponding membrane 3, X;* € S’

(13) [20]8 — [LI3[2R]3

(14) RLX = VI [ Y 1o ),
where Py, is the left endpoint of the distance s,_1 —
s; when its left endpoint is the origin, sx_1,s; € S,
Prew € P, X7 €5,0<i<k—1, and
£ is the largest Y object index in Yﬁ’f w’s parent mem-
brane except n — 1; if only the index n — 1 is present
in this membrane, £ will be 0; Y/ € P’

(15) RX;" — Y/ [v Yire 1508,
where ppew is the right endpoint of s; when s;’s left
endpoint is the origin, s; € S, Prew € P, X' € 5,
Y e PL0<i<k-1

(16) [3’13/ - [3{)]g’0 [31]3’1 [3;”_112;1_17
where m is the number of Y objects in the parent
membrane of 5],

i P50 i iy Pil+
(A7) Y% [y Y57 ]y — Vi 1y Y'Y 5,

where Y £ Y7, YPL Y7 € P11 <id,j <n—1,
0<h<m-1

0[3g]g'h - 0[3;,01321

where 0 < h<m-—1

(18

=

(19) [ YY)l — N,

where ¢, is the distance between p; and p;, cn € C,
YPLY € Plopip; € P, 1<4j<n—10<h<
m—1

(20) [ 0V, — Ni,

where ¢;, is the distance between p; and the origin,
cpbelC,pie P,O<h<m-1
(21) N{'[sls — [sN{']s,
where N € ¢/, 0<i<m—1
(22) [3C'S"X;4)8 — [36]% o
(23) [C'S"18 — ¢,
where X7 € 5", 0<i<k—1,

C’ is the multiset of distances from the most recently
placed point to every other point in its corresponding
membrane 2, and

~

S”" is the subset of S’ whose elements’ exponents are
equal to the exponents of the elements in C’ (i.e., the
distances they represent are equal)

(24) [st]s — ¢
(25) [ot]3 — [2]3 ¢
(26) [1t]) — [1]9 ¢

the set p is a set of relations that determine priority over
the rules in R:

p={{(4),(5),(6),(N} >{(8),(9)},(22) > (23)}

To prove that this P system solves TP, we show that the
system is able to reconstruct all n-point sets that satisfy D.
Consider the following three operations from the backtrack-
ing algorithm: finding the largest remaining distance during
point reconstruction; the reconstruction of an n-point set,
and; detecting whether or not a point set satisfies D. These
operations form the core of the reconstructions of all point
sets. In the following lemmas, we prove that the system per-
forms these operations. (For convenience, we shall refer to
the original sets—i.e., D, U, S and so on—in these proofs,
and not the sets of objects representing them that have been
used in the evolution rules.)

LEMMA 4.1. The P system with active membranes and
membrane creation sorts D in ascending order.

PROOF. Recall from section 2 that the backtracking algo-
rithm repeatedly takes the largest remaining distance from
D in order to reconstruct each point in an n-point solution
set. In order to avoid repeating this operation for every
point throughout the computations, we opted to sort D in
ascending order as a form of pre-processing—the distances
in the resulting sorted multiset S would be sorted accord-
ing to their indices, and the system would simply take the
distance with the highest index every time the largest re-
maining distance is needed.

The system sorts D by comparing each distance in D to ev-
ery other distance in D. These comparisons determine the
ascending-order position of every distance in D by count-
ing how many distances are smaller than the distance, since
these smaller distances precede it in S. To make sure that



distances with multiplicities greater than 1 are placed next
to one another in S, the system uses the multiset U as the
basis for comparisons. The system generates a membrane
substructure for each distance in U which compares that dis-
tance with all the distances in D except the one equal to it;
if it represents a distance with multiplicity greater than 1, it
is compared to all of them except one. Membrane division
and membrane creation generate the membrane substruc-
tures and allow the substructures to perform comparisons
in parallel. [

LEMMA 4.2. The P system with active membranes and
membrane creation detects whether or mot a reconstructed
point set satisfies D.

PROOF. Apart from generating all n-point sets that sat-
isfy D, the system also generates those point sets that started
out as possible solutions, but were eventually abandoned by
the system when they failed to satisfy D at some point.
A membrane substructure stops reconstructing a point set
when no more rules can be applied to it; the rules are formed
in such a way that they can only be applied to those point
sets that still qualify as valid solutions. When a substructure
stops computing before it finishes reconstructing an n-point
set, then the point set it has been working on does not satisfy
D. Otherwise, that substructure will produce an n-point set
that satisfies D when the system halts. [

LEMMA 4.3. The P system with active membranes and
membrane creation reconstructs an n-point set that satisfies
D.

PROOF. The reconstruction of a point set relies heav-
ily on finding the largest remaining distance in D, since
that distance provides the means for locating a new point.
Lemma 4.1 shows that the system sorts the distances in D
to avoid finding the largest remaining distance repeatedly
during computation; hence, what remains is to use that dis-
tance to reconstruct a new point.

Recall the assumption from section 2 that the leftmost and
rightmost points in a point set are assumed to be the origin
and the rightmost point on the line; only the remaining n—2
points need to be reconstructed. The system reflects this by
having an object O represent the origin, and by using the
largest distance in the sorted multiset S to reconstruct the
rightmost point (which is the element of P with an index
of 0). Both objects are present in each membrane substruc-
ture reconstructing a point set. For the remaining points,
a substructure loops over the following operations: finding
the largest remaining distance in D and using it to locate a
new point, generating the distances from the new point to
every other point that has been found so far, and checking if
that new point is valid using the generated distances. Based
on Lemma 4.2, once a substructure has reconstructed n — 2
points, the resulting point set satisfies D. [

THEOREM 4.1. The P system with active membranes and
membrane creation solves TP.

Figure 2: Initial configuration for D = {2,3,3,5,6,8}

PROOF. Recall from the introduction that the goal of TP
is to reconstruct all possible n-point sets that arise from D.
Based on Lemma 4.3, the system can reconstruct an n-point
set that satisfies D. Recall from the beginning of this section
that the system reconstructs all possible n-point sets simul-
taneously by producing a membrane substructure for each
new possible point set it encounters. Whenever the system
reconstructs a new point for each point set currently being
generated, it explores both possible point reconstructions by
dividing into two the substructure currently computing the
point; as the computations progress, the system will even-
tually generate a substructure for every possibility. When
the system halts, all possible n-point sets would have been
generated. Note that, by finding all solution point sets in
parallel, the system avoids backtracking altogether. [

4.3 An Example

To illustrate how the system works, we shall solve a small in-

stance of TP. Given a distance multiset D = {2, 3,3,5,6,8}

and its corresponding subset of distinct distances U = {2, 3, 5,
6,8}, we expect the solution point sets to have 4 points each,

since (;) = 6. As mentioned in subsection 4.2, by default,

one of the elements in all point sets will be equal to the ori-

gin (i.e., for all sets P, po = 0); hence, the system will only

be computing three more points, p1,p2 and ps.

Figure 2 shows the initial configuration of the system; note
that D is represented in the system by a multiset D' =
{‘4%7 A:137 A37 A§7 *427 ‘42}7 a’nd U/ = {Bg7 B%? Bgv B?? BE}

The system begins with the sorting procedure:

STEP 1 (through rule (1): Membrane 4 divides into 5
membranes 4; (0 < i < 4), one for each element of U’
(i-e., for each distinct distance in D). Each membrane
4; contains a copy of the set D’, a copy of one element
from U’ and a newly created membrane 5, which con-
tains another copy of the element from U’.

STEP 2 (through rules (2)-(3)): Each membrane 5 di-
vides into 5 membranes 5; (0 < j < 4), each of which
contains membrane 5’s copy of the element from U’.
The membranes 5; will be responsible for comparing
the element of U’ to every element in D’ except for
the one to which it is equal. This object is consumed



STEP 4 (through rules (5)-(7)): Each membrane 5; (0

through rule (16). Note the change in the polariza-
tion of membranes 4; (0 < ¢ < 4); this ensures that
rule (3) happens only once for each membrane (i.e, if
membrane 4;’s U’ element is equal to more than one
element of D', only one of the latter is consumed).

STEP 3 (through rule (4)): Each element of D’ moves

to a membrane 5; (0 < j < 4) which does not already
contain element of D’. Note again the change in po-
larization in the rule; this prevents multiple elements
of D' from entering the same membrane 5;. Figure 3
shows the configuration of the system after performing
this step.

IN

i < 4) compares the element of U’ and the element of
D’ that it contains. If the former’s exponent is greater
than the latter’s, the membrane 5; dissolves and pro-
duces an object t’. If the former’s exponent is less than
the latter’s, the membrane 5; simply dissolves. If the
former’s exponent equals the latter’s, the membrane
5,; dissolves and produces an object t”.

STEP 5 (through rules (8)-(9)): Each membrane 4; (0 <

i < 4) consumes its copy of an element from U’ and
produces an element of the set S’ which contains copies
of the elements in D’ in ascending order. The S’ el-
ement’s index indicates the number of elements in D’
whose exponents are smaller than its own; this index
depends on the number of ¢'s among the elements of
S’ in the corresponding membrane 4;. Elements of D’
whose exponents are equal are placed next to one an-
other in S” through rule (8). Note the inhibitor in rule
(9); it ensures that only those elements of U’ whose
corresponding elements in D’ are unique (i.e., no ¢"s
were produced while the elements of U’ were being
compared to the elements of D’ in the previous step)
will be transformed based solely on the number of ¢'s
in their corresponding membranes 4;.

STEP 6 (through rule (10)): Each membrane 4; (0 <

i < 4) dissolves, releasing its corresponding element
of S’ into membrane 3. Membrane 3 now has all the
elements of S', where S’ = {X3, X}, X3, X5, X§, X8}

STEP 7 (through rule (11)): The object o signals the

end of the sorting procedure when it is consumed by
membrane 3, and the object 3 is produced in its place;
outside membrane 3, membrane 2 produces the object
a. Both 8 and a will be used in the succeeding steps.
Membrane 3 also consumes the element of U’ with the
largest index (i.e., the largest element in D’),which
triggers membrane 2 to produce Y:ﬁl", which repre-
sents the point in P which is the farthest from the
origin (i.e., its distance from the origin is equal to the
largest distance in D). In our example, the element in
U’ with the largest index is X35; hence p, 1 = 8 and
Yyt =ve .

The next steps loop for the last 2 points that will complete
the 4-point set:

STEP 8 (through rules (12)-(13)): Each membrane 2 is

divided into two copies with the same label. The sym-
bol «a triggers this operation and is replaced by the

Figure 3: Configuration after 3 steps for D =
{2,3,3,5,6,8}

symbol L for one copy of membrane 2 and symbol R
for the other one. L and R will later be used to gener-
ate the new point to be placed in each membrane 2’s
P’. At the same time, each membrane 3 replicates a
copy of the element having the largest index in its S’
and will move that element to the outer membrane 2.

STEP 9 (through rules (14)-(15)): The element of S’
present in each membrane 2 is used to evaluate the
new point to be placed in P’. Membranes containing
L generate the left endpoint equivalent of this distance
in S” while those containing R generate the right end-
point. Also, a new membrane labeled 3’ having a copy
of the new point generated is produced. This step is
illustrated in Fig 4.

STEP 10 (through rule (16)): Each membrane 3" is di-
vided into m membrane 3;’s (0 < i < m—1), where m
is the current number of elements in P’. Later, these
membranes will be used to generate the distances from
the new point to every other point in P’ (i.e., the ele-
ments of set C').

STEP 11 (through rules (17)-(18)): Copies of each el-
ement in P’, except for the element with the largest
index, move to each membrane 3; (0 < i < m — 1).
Note that we again use a change in polarization to en-
sure that only one element is placed in each membrane

STEP 12 (through rules (19)-(20)): The two elements
in P’ present in each membrane 3; (0 <i < m—1) are
consumed to produce an element of C’; this element
represents the distance between the two points. Upon
its production, membrane 3} is also dissolved.

STEP 13 (through rule (21)): From membrane 2, the
elements of C’ are moved to membrane 3 where they
will be used for the end-of-loop check.

STEP 14 (through rules (22)-(23)): Computation con-
tinues for as long as a subset S” of S’ exists whose
elements’ exponents are equal to the exponents of the
elements of C’. The transition from one loop to the
next is controlled by rule (22), which generates a copy
of 8 in membrane 3 and sends a copy of a in mem-
brane 2 to prepare the system for the next loop. At



on X6 XO2 X6
X3 ) X )
X23 Y38 XZ3 Y38
X3® Xg° 2
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Figure 4: Configuration after 9 steps for D =
{2.3,3,5,6,8}

Figure 5: Halting configuration for D = {2,3,3,5,6, 8}

this step, those membrane 2 substructures that are
computing point sets that fail to satisfy D will stop
evolving. When the two remaining points have been
generated, rule (23) will dissolve membrane 3 and pro-
duce a copy of ¢ in the membrane 2’s that finished
reconstructing the remaining three points (i.e., p1, p2,
and p3).

There will be an additional three steps (rules (24)-(26)) to
transport the symbol ¢ into the environment. Note that
each membrane 2 will gain a positive polarization when it
sends out a copy of ¢; hence, the number of ¢’s indicates the
number of point sets that satisfy D, and those membrane
2’s whose polarizations are positive contain the completed
n-point sets. Figure 5 shows the halting configuration from
our example. The possible point sets, which also include
reflected solutions, are P = {0,3,6,8} and P = {0,2,5,8}.

4.4 Amortized Analysis

Here we examine the time (measured in steps) the system
takes to reconstruct all n-point sets that satisfy D. We break
the system’s computation into two main operations: sorting
the given distance multiset in ascending order, and recon-
structing n — 2 points for every possible n-point solution set.
Sorting and the reconstruction of a single point both take
a constant number of steps; the running time of the entire
system is linear in the number of points to be reconstructed.
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(Again, we shall refer to the original sets—i.e., D, U, S and
so on—for convenience.)

LEMMA 4.4. The P system with active membranes and
membrane creation sorts the distance multiset D in ascend-
ing order and finds the largest distance in D in 7 steps.

PROOF. Lemma 4.1 shows that the system employs a
brute-force approach to sorting—every distance in D is com-
pared to every other distance in D, and its corresponding
copy in S is assigned an index that reflects how many dis-
tances are smaller than it. Hence, the smallest distance in D
is given an index of 0 in S, and the largest distance an index
of k — 1, where k is the number of distances in D. Because
D may contain multiple copies of some distances, the set U
is used as the basis of comparison; distances with multiple
copies are given consecutive indices to preserve the order in

S.

Membrane division allows the procedure to maintain its run-
ning time regardless of the number of distances in D. The
system generates e membrane substructures,consisting of
membranes with labels 4; and inner membranes 5;, 0 <14 <
e, 0 < j <k — 2, to handle the comparisons; e is the num-
ber of distances in U (i.e., the number of distinct distances).
Each substructure contains copies of the distances in D, and
an equal number of copies of one of the distances in U. The
substructure is in charge of determining the resulting index
(or indices) for the distance in U. Rules (1) to (4) generate
all of the substructures in 3 steps.

The comparisons themselves take only 1 step. Each sub-
structure compares each copy of the distance in U that it
contains to a copy of every other distance in D; all of these
comparisons happen simultaneously. Rules (5) to (7) handle
the cases of whether the distance in U is less than, greater
than or equal to the distance it is being compared with.
Once the comparisons are finished, it takes another step to
generate the set S through rules (8) and (9). Finally, the
membranes containing the elements of set S are dissolved
through rule (10)

After sorting, the system signals the end of preprocessing
by sending the largest distance outside membrane 3, which
takes 1 step (rule (11)). O

LEMMA 4.5. The P system with active membranes and
membrane creation reconstructs n—2 points in Tn—14 steps.

PRrROOF. Point reconstruction consists of three major op-
erations: finding the current largest distance in the given
multiset and using it to find a new point, generating dis-
tances from the new point to every other point that has
been found so far, and checking if the new point is valid us-
ing the generated distances. Reconstructing one point takes
7 steps; the system loops over the steps to find all n — 2
points.

Finding the current largest distance takes only 1 step be-
cause of the sorting procedure; the distance in membrane 3
with the largest index is the largest distance. Rule (12) takes



that distance and sends it into membrane 2. Recall that the
backtracking algorithm chooses either the distance’s left or
right endpoint as the new point; the system tries both pos-
sibilities by dividing membrane 2 (rule (13)). The division
happens at the same time as the selection of the largest dis-
tance due to maximal parallelism.

The new point is created in 1 step through rules (14) and
(15), each of which handles one of the possibilities for the
new point’s location.

After the new point has been created, the set C', which con-
tains the distances between the new point and every other
point in membrane 2, is generated through rules (16) to (22)
in 3 steps. Similar to the comparisons in the sorting pro-
cedure, the distances in C' are produced by making several
copies of the new point and comparing each copy to every
other point; multiple inner membranes are produced that
execute the comparisons at the same time.

The new point is valid if C' is a subset of D (and, therefore,
a subset of S). The system checks this by sending the dis-
tances in C' to membrane 3 (through rule (21)), where it will
proceed to cancel them and their corresponding distances in
S; this takes 1 step. If the system is unable to cancel all of
the distances in C', the new point is not valid; computation
then halts in the membrane containing that point. Other-
wise, the system checks if there are any remaining distances
in membrane 3. If there are no more distances from which
to choose the largest, then the system has finished finding
all n — 2 points; otherwise, the system resumes computing.
This end-of-loop check through either rule (22) or (23) takes
1 step. O

THEOREM 4.2. The P system with active membranes and
membrane creation reconstructs all n-point sets that satisfy
D in Tn — 4 steps.

PROOF. Based on Lemmas 4.4 and 4.5, the system fin-
ishes its computations in 7 4+ 7n — 14 = 7Tn — 7 steps. It
takes an additional 3 steps for the system to send its output
outside the skin through rules (24) to (26); hence, Tn — 4
steps. [

5. CONCLUSION

We have presented a P system with active membranes and
membrane creation that solves TP in linear time by using
an exponential workspace. This performance is character-
istic of P systems with active membranes that have been
used to solve NP-complete problems, although TP itself is
of indeterminate complexity as of this writing.
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