An algorithm for solving the open gallery problem

Marianne M. Robles
Institute of Mathemattics,
UPDiliman
C.P. Garcia Ave., Diliman
Quezon City 1101

mmrobles1@up.edu.ph

ABSTRACT

Given a polygon and a desired number of guards resulting
after performing an reflex vertex straddling (RVS) deploy-
ment or a polygonal triangulation, our objective is to find
the minimum number of guards that could cover the en-
tire polygon, that is, each point on the polygon should be
visible to at least one of the guards. The initial number of
guards of the algorithm is obtained by partitioning the poly-
gon. Two methods of partitioning the polygon are consid-
ered. This initial number is then reduced using the sweeping
mechanism of the Parallel Tree Sweep Strategy developed by
Obermeyer et al. [5].

1. INTRODUCTION

Our problem is associated with the one Victor Klee had
proposed in 1973 now known as the Original Art Gallery
Problem: What is the number of guards sufficient to cover
the interior of an n-wall art gallery room (where n refers
to the number of vertices of the art gallery). In 1975 how-
ever, it was Vasek Chvétal who established what has become
known as the Chvétal’s Art Gallery Theorem: [%] guards
are occasionally necessary and always sufficient to cover a
polygon of n vertices.

Although our problem is considered to be NP-hard, we let
the | §] guards (proved by Chvétal) to be our upper bound
and we then determine a “good” lower bound (i.e. a possi-
ble minimum number of guards, if there is), such that this
number of guards would be able to cover the entire polygon.

In this paper, we propose a method of finding the minimum
number of guards given a specific polygon we would like
to call as polygon M. This method is based on an algo-
rithm used in the Searchlight Scheduling Problem which is
known as the Parallel Tree Sweep Strategy (PTSS). To be
able to achieve a schedule, PTSS works roughly in two steps:
(1) partitioning the polygon and, (2) performing the sweep.
However, we do not wish to find a schedule for our guards.
But then again, using the two steps mentioned above helped

12

Joseph M. Pasia
Institute of Mathematics,
UPDiliman
C.P. Garcia Ave., Diliman
Quezon City 1101

jmpasia@up.edu.ph

Henry N. Adorna
Department of Computer
Science, UPDiliman
Velasquez Ave., Diliman
Quezon City 1101

hnadorna@up.edu.ph

us reach our goal and will be further discussed in Sections 3
and 4.

More importantly, we assume that the guards may be lo-
cated at the edges (called edge guards) and/or at particular
vertices of our polygon (called vertex guards). Also, each
guard may perform a 360° sweep about their fixed positions
in a counter-clockwise direction. Moreover, we say that a re-
gion is cleared if at least one guard swept over this particular
region.

2. NOTATIONS AND PRELIMINARIES
This section presents us with the definitions and concepts
that are further used within the study. These definitions will
then prove to be useful in the discussion in the succeeding
sections.

DEFINITION 1. A polygon P is defined as a collection of
n vertices vi, v, . .., Uy and n edges v1v2, V2U3, . . . , Up—1Un, UnU1
such that no pair of non consecutive edges share a point [6].

DEFINITION 2. The collection of vertices and edges is
referred to as the boundary of P, denoted by OP.

DEFINITION 3. A guard g is any point of a polygon
P. Specifically, a vertex guard is one that is positioned at a
vertex of a polygon while an edge guard is positioned at an
edge.

DEFINITION 4. We say that a point z € P is said to
be seen by (or visible from) a guard g if g C P. Here we
note that Zg may touch P at one or more points [6].

DEFINITION 5. A collection of guards S is said to cover
polygon P if every point z € P can be seen by some guard
ges.

DEFINITION 6. The vistbility set V(z) C P from a
point z € P is the set of points in P visible from x [5].

DEFINITION 7. A wistbility gap of a point x with re-
spect to some region R C P is defined as any closed segment
la, b] such that open segment (a,b) C int(R), [a,b] C OV (z)

[5].

DEFINITION 8. A diagonal is an open line segment
that connects two vertices of P and lies in the interior of P

(1.

DEFINITION 9. A decomposition of a polygon into trian-
gles of non-intersecting diagonals is called a triangulation
of the polygon [1].

For the purpose of our study, it is best to give emphasis
on the fact that we are dealing with polygon M with no
holes, having 46 vertices (21 of those are reflex vertices),
and having 46 edges (23 vertical, 21 horizontal and 2 slanting
edges). This is given in Figure 1.

o
)
|

Figure 1: Polygon M

3. PARALLEL TREE SWEEP STRATEGY
Closely related to the Art Gallery Problem is the Searchlight
Scheduling Problem wherein guards want to know how they
should coordinate their sweeping (rotation about a point)
such that they would be able to cover a particular polygon.
[5] then will help us determine this using algortihms for the
Searchlight Scheduling Problem which in turn are useful in
our study.

3.1 Searchlight Scheduling Problem

The Searchlight Scheduling Problem is that of determining
a way (or finding a schedule) to move a set of searchlights
in a polygon P such that an intruder in P can be detected.
Hence, this problem consists of an environment and a set of
stationary guard positions [7].

e

Figure 2: A schedule for two searchlights.

In 1990, Sugihara, Suzuki and Yamashita were the first to
introduce and consider the problem of searching for a mo-
bile robber in a simple polygon using stationary searchlights.
Their primary task was to devise a schedule for aiming the
searchlights so that the mobile robber will be detected in fi-
nite time. But more importantly, in 2007, two simple asyn-
chronous distributed searchlight scheduling algorithms for
multiple robotic agents in non-convex polygonal environ-
ments were developed in a paper by Obermeyer, Ganguli
and Bullo, [5]. These are the Distributed One Way Sweep
Strategy (DOWSS) and the Parallel Tree Sweep Strategy
(PTSS).

To illustrate DOWSS, let us consider Figure 3. The config-
uration in (a) results from s clearing the very top of the

13

region with the help of s?!, s/, and s followed by s!*! at-
tempting to clear the semiconvex subregion below where 5l
is aimed. When s gets stuck, it requests help by broad-
casting the thick black polyline in (a), in this case just a line
segment. s then helps s but gets stuck right off, so it
broadcasts the thick black polyline shown in (b). Next st
helps s but gets stuck and broadcast the polyline in (c).
Similarly s broadcasts the polyline in (d), in this case a
convex polygon, which only sB1 can clear. In general, in-
formation passed between guards during any execution of
DOWSS will be in the form of either an oriented line seg-
ment (a), a general oriented polyline (b) and (c¢), or a convex
polygon (d)[5].

E/WL% /\Nﬁl
sl ‘L

T

]

|

=
N \\

TERE @ s _J‘)aﬂ
L

=

1
(c) @

Figure 3: An example execution of DOWSS.

Also, according to [5], DOWSS can be a very slow algorithm
in clearing the entire environment since only one searchlight
may sweep at a time. Hence, this gave them the reason to
develop another algorithm, the PTSS, in which searchlights
sweep in parallel if guards are placed according to an en-
vironment partition which they called PTSS partitions. In
addition, another comparison they have observed between
the two algorithms is that, the DOWSS allows flexibility in
guard positions; while PTSS requires that guards are posi-
tioned according to a PTSS partition, specifically a PTSS
tree which will be discussed in the following section. Here
we note that this last observation may then be helpful in
achieving our objective in this paper.

3.2 Reflex Vertex Straddling (RVS) deploy-

ment

Using now polygon M and a PTSS partition called a Reflex
Vertex Straddling (RVS) deployment, we were able to deter-
mine not only the positions of our guards, but also the num-
ber of guards who can cover the entire polygon. This RVS
deployment begins with all guards located at the “root”.
This “root” may be chosen arbitrarily but in our case, we
consider only choosing among the four (4) main corners of
polygon M. From this root, one guard moves to the furthest
end of each of the root’s visibility gaps, thus becoming the
children of the root. Likewise, further guards are deployed
from each child to take positions on the furthest end of the
child’s visibility gaps.

In Figure 4, we chose the lower left corner of polygon M to be
the “root” i.e. the circled guard, and the other guards as its
children. Respective children will now become the parents
and will then create their children, shown in (b) and (c).
The final positions of the guards after the RVS deployment
is shown in (d) where the PTSS partitions are represented
by coloring the cells alternately (shaded area does not depict
clarity) and the lines show edges of the PTSS tree.

Figure 4: Guard positions resulting from an RVS
deployment. 12 guards.

Hence, we were able to determine the number of guards who
can cover polygon M after performing the RVS deployment.
However, results also show that this number depends on
where we assign out “root”. Even though we tried to min-
imize the number of vertices which may be considered as
the root by choosing just among four vertices, this gave us
different numbers of guards resulting from the RVS deploy-
ment. Moreover, the RVS deployment cannot be applied to
all four vertices. Only two out of these four vertices - either
the lower left or the lower right corner as root - gave us a
number of guards that can cover polygon M (see Figures 4
and 5).

o

Figure 5: Lower right corner of polygon M as root.
10 guards.

Now we consider the upper left or upper right corner as
our chosen root. Based from our results, saying that the
RVS deployment cannot be applied for these two vertices
meant that we were not able to determine the number of
guards that can cover polygon M. There are dead spots (or
a region) in polygon M not seen by any guard. Having a

14

closer look at Figure 6, the shaded areas represent the dead
spots. Hence, we decided to construct an algorithm such
that we would still be able to get a number of guards using
any of these two particular vertices as our root.

Figure 6: Upper right corner as root.

3.3 Algorithm for finding the number of guards
using the upper right and upper left cor-
ners of polygon 1V as roots

Figure 7: Upper left corner as root. 12 guards.

Consider Figure 7. Without loss of generality, we consider
the upper left corner as our root and then perform the RVS
deployment. We would then observe from (a) that there is
a region in our polygon not covered by any guard, i.e. dead
spots. Focusing now our attention to this said region, we
would consider the visibility gap shown in (), separating the
“covered” (unshaded) region from the “uncovered” (shaded)
region. We then choose the vertex right next to the furthest
point on the visibility gap, reached by a guard and then
apply again the RVS deployment, see (c¢). We continue this
process of finding “new roots” until our guards cover the
entire polygon. (d) shows the final positions of the guards.
We may do the same for the upper right corner as root. This
resulted to 12 guards as well.

Observe that we need to verify if 10 and 12 are less than | % |
by Chvatal’s Art Gallery Theorem. But since our polygon
has n = 46 vertices, clearly, we did not violate the said the-
orem. It is also very important to point out that according
to [5], the final positions resulting from an RVS deployment

show that the guards are able to cover the whole of the
polygon.

4. THE ALGORITHM

For us to be able to solve the minimum number of guards
needed to cover polygon M, we constructed an algorithm
which comprises of two steps, mainly (1) preprocessing/ ini-
tialization and (2) reduction.

4.1 Preprocessing/Initialization

In this step, we partition polygon M. Two different ap-
proaches of partitioning are considered namely, the RVS de-
ployment discussed in Section 3 and the triangular parti-
tioning and 3-coloring.

Simply stated, a partition of a polygon into triangles is
known as triangulation. And since this is one way of parti-
tioning a polygon, again, as mentioned earlier, it is the first
step of many advanced algorithms. Therefore, it reduces
complex shapes to collection of simpler shapes. We know
that every polygon can be triangulated, however, triangula-
tion is not unique (see Figure 8).

i\
/|

Figure 8: Three different triangulations.

On the other hand, a k-coloring of a graph is an assignment
of colors to the nodes, one color per node, using no more
than k colors, such that no two adjacent nodes are assigned
the same color. The nodes of the triangulation graph corre-
spond to the vertices of our polygon, and the arcs correspond
to the polygon’s edges plus the diagonals added during tri-
angulation. In particular, we let k = 3 [6].

In [6], Fisk’s proof on the Art Gallery Problem using con-
cepts on triangulation and 3-coloring showed that there ex-
ists a number of guards (< | %) that can cover a polygon
of n vertices.

4.2 Reduction Process

After determining the number of guards after partitioning
our polygon, we then use sweeping to check if we can still
reduce that number such that the guards can still cover the
whole area of our polygon (see Steps 1-4 in the following
section for the description of this process). Note that the
algorithm stops after we finish checking the sweep made by
all x guards.

4.3 Step-by-Step Algorithm
The Algorithm for Finding the Minimum Number of Guards

Preprocessing: Apply RVS deployment or, triangular par-
titioning and 3-coloring into our polygon. For 3-coloring,

15

we count how many times each color appears on our poly-
gon and then select the color which has the least number.
By choosing the smallest color class, these guards can then
cover the whole polygon. The number and the positions cor-
responding to the smallest color class serve as our basis for
our algorithm.

Step 1. Suppose we're done partitioning our polygon. As a
result, we get number of guards to cover the whole of our

polygon.

Step 2. Let i = 0 and ctr = . We orient polygon M in a
counterclockwise or clockwise direction and then denote the
guards as g1,92,. .., 9x-

Step 3. Sweeping: Let ¢ =i+ 1. We consider guard g;.

Step 3.a. We aim g; as far clockwise as possi-
ble so that it is aligned along the clockwise-most
edge. Step 3.b. We will then sweep counter-
clockwise through the polygon, stopping every-
time it encounters a visibility gap, until it is
pointing along the edge immediately to its left.
Note that our guards can sweep up to 360°. Step
3.c. If i > 2, go to Step 4. Otherwise, repeat
Step 3.

Step 4. Let Ry, be the region swept by guard g;. If (Ry, ;N
Ry, # ©) and [Ry; C (Rg, URg, U...URy,)] or (Rg;_, C
Ry;) then we let ctr = ctr — 1 and then repeat Step 3.
Otherwise, just repeat Step 3.

Stopping Criterion: The algorithm stops when 7 > =z.
The minimum number of guards will be given by the value
equal to ctr.

5. RESULTS

Here are some of the results after performing the algorithm
discussed in Section 4. We first assume that polygon M is
oriented in a counterclockwise direction.

The algorithm using “RVS - sweeping” (RVSS hereinafter)
is illustrated in Figures 9 and 10. Figures 9(a) and 10(a)
show how we perform the deployment using as our root the
lower right and upper left corner of polygon M, respectively.
To check, we can refer to Figures 5 and 7. Figures 9(b)
and 10(b) is a representation of Step 4 where the vertices
marked with X are not chosen as guards. Lastly, the final
positions of the guards and the angle of their sweep is given
in Figures 9(c) and 10(c).

On the other hand, the algorithm using “triangulation - 3-
coloring - sweeping” (T3S hereinafter) is illustrated in Fig-
ure 11. (a) shows the positions of z = 11 guards after trian-
gulation and 3-coloring. Similarly, (b) is a representation of
Step 4 where the vertices marked with X are not chosen as
guards. And the final positions of the guards and the angle
of their sweep is given in (c).

Here we recall that triangulation is not unique. Hence, what
is shown in Figure 11(a) is just one of the few ways of trian-
gulating polygon M. In addition, if we use RVS deployment
and try to consider the lower left or upper right corner of

i

Figure 9: A sample execution of the algorithm using
RVSS (lower right corner as root). 9 guards.

Figure 10: A sample execution of the algorithm us-
ing RVSS (upper left corner as root). 10 guards.

polygon M as our root, and then perform the same algo-
rithm, we should be able to get 11 guards for each.

Comparing now that results we got from RVSS (on four
specific corner points) and T3S, we have observed that we
were able to find a triangulation for polygon M that gave
us fewer number of guards.

It is known that according to [1], T3S can be computed in
O(nlogn) time while RVSS can be computed in O(n) time
according to [5]. Nonetheless, we would like to emphasize
the fact that our proposed algorithm is a heuristic approach.
Although T3S is optimal in the worst case, see Figure 12,
other polygons (e.g. polygon M) may give us a number less

than Lg]

6. RECOMMENDATIONS

In this paper, we emphasize that we only deal with polygon
M to test our algorithm. Hence, people may be interested in
working on different and more complex polygons to check if
the algorithm still applies in such cases. You may specifically
consider orthogonal polygons, polygons with (or without)
holes, monotone polygons, star polygons, and the like. Here
are some examples shown in Figures 13 and 14.

At the same time, since one of the main properties of our
algorithm is partitioning the given polygon, you may find
ways other than the RVS deployment and triangulation to
partition your polygon. Note that some polygonal partition-
ing may be dependent on the polygon of your choice.

Based from our algorithm, we were able to observe that the
number of sweeps made is equal to the number of guards
after partitioning the polygon. This is because we wish
to check the area swept by each guard before determining
which can be removed. Hence, considering also that sweep-
ing is a crucial stage in our algorithm, one may decide to

16

318 Loy

11 trd

Figure 11: A sample execution of the algorithm us-
ing T3S. 8 guards.

\ \ \ I\ I\ I\
//\\ AEEN A AWA
/R A A U AW AR WA

Figure 12: Comb-shaped polygon

improve it by creating their own process of sweeping such
that the number of sweeps made will be less than the num-
ber of guards after partitioning the polygon.

(a) (b (e

Figure 13: Polygon A (n = 32) oriented counterclock-
wise; using RVSS. 8 guards.

7. REFERENCES

[1] M. BERG, M. vAN KREVELD, M. OVERMARS, AND
O. SCHWARZKOPF, Computational Geometry:
Algorithms and Applications, Springer-Verlag Berlin
Heidelberg, Germany, 1997.

[2] A. EFrAT, L. J. GuiBas, S. HAR-PELED, D. C. LIN,
J. S. B. MITCHELL, AND T. M. MURALI, Sweeping
Simple Polygons with a Chain of Guards, PhD thesis,
Stanford University, Tel Aviv University, University at
Stony Brook, 1999.

[3] S. EIDENBENZ, C. STAMM, AND P. WIDMAYER,
Inapproximability results for guarding polygons and
terrains, Algorithmica, 31 (2001), pp. 79-113.

[4] S. M. LavaLLE, B. H. Simov, AND G. SLUTZKI, An
algotrithm for searching a polygonal region with a
flashlight, International Journal of Computational
Geometry and Applications, (2000).

[5] K. OBERMEYER, A. GANGULL, AND F. BuLLo,
Asynchronous Distributed Searchlight Scheduling, PhD
thesis, University of California, University of Illinois,
2007.

Figure 14: Polygon B (n = 64) oriented counterclock-
wise; using T3S. 14 guards.

(6] J. O'ROURKE, Art Gallery Theorems and Algorithms,
Oxford University Press, Inc., New York, New York,
1987.

[7] J. URrUTIA, Art Gallery and [llumination Problems,
PhD thesis, University of Ottawa, 2000.

[8] P. ZyLiNski, Watched guards in art galleries, Journal
of Geometry, 84 (2005), pp. 164-185.

17

