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ABSTRACT

A generalized hypercube (GHC) interconnection network is
based on a mixed radix number system and supports any
number of processors. For a given number of processors, it
is possible to design a GHC multiprocessor sysem in sev-
eral ways. From these, one can choose the best design to
achieve the performance goals with the available cost. Some
of its powerful interconnection properties are: low diameter,
high connectivity, high fault tolerance and rich embeddings.
Because of these features, it forms the basis of an ideal par-
allel architecture. Thus, the analysis of their topological
properties is important. In this study, we focus on three of
these properties: the bisection width, cut width and total
edge length. Finally, we obtain their exact values for any
generalized hypercube.

1. INTRODUCTION

Due to advances in technology, it is now feasible to build
large-scale parallel computers. A network is an essential
component in a large-scale parallel computer because it pro-
vides communication among the processors and /or the mem-
ories. Since network topology significantly affects system
performance, one crucial step on designing a large-scale par-
allel computer is to determine the topology of the intercon-
nection network.

The hypercube has been studied extensively as a network
topology for parallel computers. Many important problems
such as sorting, prefix computation, fast Fourier transform,
matrix multiplication, matrix transposition, matrix inver-
sion, eigenvalues, connected components, all-pairs shortest
paths, minimum spanning trees, and more, can be efficiently
solved in the hypercube. Aside from that, many other net-
works such as linear arrays, meshes and trees, among others,
can be effectively embedded in the hypercube.
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The generalized hypercube structure was introduced by Bhuyan

and Agrawal in [4]. It can support any number of processors
instead of just a power of 2. For a given number of proces-
sors, it is possible to design a GHC multiprocessor structure
in several ways. The design is based on the allowable di-
ameter of the network. If the diameter can be increased, a
structure with a lower degree can be obtained. These struc-
tures are highly fault-tolerant, they possess a small average
message distance and a flow traffic density.

This paper is organized as follows: In Section 2, we provide
some definitions and notations essential to the paper. In
Section 3 we state some lemmas and theorems needed in the
proof of the main results. Finally, we prove our main results
in Section 4.

2. PRELIMINARIES

In building an interconnection network, it is important to
have a good network design. We need to consider how pro-
cessors are interconnected to create a system, ideally, with
low degree, regularity, small diameter, large bisection width
and high fault tolerance. That is why it is significant to
study network properties. In this section, we define some of
these properties and additional definitions that are necessary
in our discussion. Most of these are standard in computer
science ([3],[8],[13]).

DEFINITION 1. G = (V, E) represents an undirected graph
where V' is the set of nodes or processors and E is the set
of edges or communication links. An unordered pair (u,v)
represents an undirected edge in E connecting nodes u and
v in V. The total number of nodes in G is |V| and the total
number of links in G is |E|.

DEFINITION 2. Two nodes u,v € V' are connected if there
erists a path that joins them. That is, there is a series
of nodes ui,uz,us,- - ,ur € V such that (u,u1), (u1,uz),
(uz,u3), -+, (up,v) are edges in E. The distance between
u and v s the length of a path from w to v that has the
minimum length among all such paths.

DEFINITION 3. The diameter of a graph G is the maxi-
mum distance between any two of its nodes.

DEFINITION 4. Given a graph G, the degree of a node v €



V' is the number of edges incident with v. A graph G is r-
regular if every node has degree r.

Note that the diameter is an upper bound on the number of
communication steps needed to relay information between
any two processors. Thus, in an interconnection network,
we clearly prefer a small diameter. We also prefer a small
maximum degree because it means that the interconnection
network is easier to build.

DEFINITION 5. The node-connectivity of a graph G is the
menimum number of nodes in V' whose removal results in a
disconnected or trivial graph.

DEFINITION 6. A subgraph H of G is a graph such that
V(H) CV(G) and E(H) C E(G). Given a nonempty subset
S of V(G), the subgraph G[S] induced by S is the subgraph
of G whose node set is S and whose edge set is the set of all
edges of G that have both end-nodes in S.

DEFINITION 7. The fault diameter of a graph G of node-
connectivity ¢ is the mazimum diameter over all subgraphs
of G obtained by removing less than ¢ nodes. The fault di-
ameter is frequently used to measure the fault tolerance of
an interconnection network.

DEFINITION 8. A linear layout of an undirected graph G =
(V, E) with n = |V| vertices is a bijective function l : V —
{0, ,n — 1}. The natural order layout is a linear layout
N such that N(u) = u for every u € {0,--- ,n — 1}. Note
that a linear layout can take any of the n! permutations, not
just the natural order layout.

DEFINITION 9. The width of a graph G wunder a linear
layout 1 at a gap i denoted by C(G,1,1) is a set of edges con-
necting a node at a position less than i and one at a position
larger than or equal to i. That is,

C(G, 1) ={(u,v) € E|0 <l(u) <i<l(v) <|V|]-1}.
Furthermore, we define C~ (G, 1,4) (resp. C(G,1,i)) as the
set of edges connecting nodes whose positions are less than
(resp. larger than or equal to) i. That is,

C~(G,1,i) ={(u,v) € E|0 <l(u) <l(v) < i}.

CH(G11) = {(u,) € Eli < I(u) < I(v) < [V] 1}
Thus, the set E of edges in G is partitioned into three sets

C(G,1,4), C~(G,1,i) and C*(G,1,i). Hence, |E| = |C(G,1,i)|+

|C7(G, L) +]CT(G.1,9).

DEFINITION 10. The bisection width BW (G) of a graph
G is the minimum number of edges which must be removed
to separate the graph into two disjoint and equal-sized sub-
graphs. In terms of the width of a graph under a linear lay-

out, BW(G) is the minimum number of edges in C (G, 1, | |V]] /2)

over all linear layouts. That is,
BW(G) =min|C (G, L [|[VI] /2) ].

DEFINITION 11. The cut width of a graph G under a lin-
ear layout 1 is the mazimum of |C(G,1,1)| over all gaps i.
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The cut width CW(G) of a graph G is the minimum cut
width over all linear layouts. That is,
CW(G) = mlinmaX|C'(G,l,i)|.

DEFINITION 12. The length of edge (u,v) € E under a
linear layout  is |l(u) —1(v)|. The total edge length of a graph
G under a linear layoutlis Y. |l(u)—Il(v)|. Furthermore,

(u,v)EE
the total edge length TL(G) of a graph G is defined as the
minimum total edge length over all linear layouts. That is,
TL(G) = mlin Sl (u) = L(v)].

(u,v)EE

Before we can define the network structure that we are in-
terested in, i.e. the generalized hypercube, we first describe
how the nodes of the structure are labelled.

DEFINITION 13. (A Mized Radiz Number System) Let n
be represented as a product of m;’s, m; > 1 for 1 < i <d.
That is, n = Mg * Myr—1 * -+ - * m1. Then each number from
0 ton —1 can be expressed as a d-tuple (xqxq—1---x1) for
0 <z <m; —1. Associated with each x; is a weight w;

d i1
such that Y z;w; = X where w1 =1 and w; = [[ m; =
i=1 j=1
mi_1*mi_o%---xmy forall 2 <i<d.

EXAMPLE 1. Letn =16 =4 %2 % 2.

mi =2 me=2 m3=4
wr =1 we=2 w3z=4

Then X = (z3z2x1), 0 <21 <1,0< 2 <1, 0< x5 <3,
for X =0,1,2,---,15. Hence, 0 = (000), 9 = (201) and
15 = (311) in this mized radiz system.

DEFINITION 14. (The Generalized Hypercube, GHC) Let
n be the total number of processors. In a generalized hy-
percube structure, each processor X is represented by a d-
tuple in the mized radix number system. The processor X =
(TaTa—1 " Tiy1TTi—1 - T1) 18 connected to processors X' =
(zaza—1 - -~xi+1w;mi_1 ceex) for all 1 < i < d where a:; #*
2, 0< 2, <my — 1.

Hence, the GHC structure consists of d-dimensions with m;
number of nodes in the i** dimension. A node in a particular
axis is connected to all other nodes in the same axis. The
distance between any two nodes is the number of coordinates
in which the addresses differ. Since the addresses can differ
in at most all the d coordinates, the diameter of the structure
is d. Figure 1 shows the GHC structure of the example in
section 13.

In this example, 16 is factored as 4%2%2. This GHC structure
can also be described as a product of cliques: K4 X Ko x K».
Of course, it is also possible to express 16 as 8 x 2, 4 x 4
or 2% 2% 2% 2 These will produce new GHC structures
with diameter 2, 2, and 4 respectively. In general, we say



To the best of our knowledge, no exact values for the general
: case have been published as of the writing of this paper.
- - . o Thus, in section 4, we obtain these values for any type of
: generalized hypercube.
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ot - 10},”' = R P 3. FOR GENERALIZED HYPERCUBES
In this section, we restate some of the lemmas and theorems
o e e— 0 cited in [10]. Their proofs are similar to that in the paper

mentioned. We will need the following for the proof of the

main results.
Figure 1: A three-dimensional generalized hyper-

cube with 16 nodes.
DEFINITION 16. A subgraph of C% = Ky X Ky X -+ X

(n) .
that the d-dimensional GHC structure with m; number of K, denoted by C,)7 Xmg X xm g hasn nodes labeled by n in-
nodes in the " dimension is a product of d cliques: Ko, X tegers {n))m 0 to n—1 which are connected in the fm)ne way as
Ky, X -+ K, . Hereon, we represent a d-dimensional GHC ct. Cw?l ma X xmg 1S T induced subgraph OwaZszxnxmd
structure by C? = Ky X Ky X - Ky whenever n < m.

Network Properties of a GHC

LeEmMmA 1. Let f; be the function defined as follows:

A d-dimensional generalized hypercube C? = K, ma X Ky X n(n —1)/2 if n<my
-+ K, has the following basic properties: my—1 =
+i
fi(n) = > {fj+1(“n.J) +
diameter d ’ =0 ] ! ) ]
no. of nodes V| where |[V| =mq -ma - -my (mj —i—1) {%J} if n>m;
regularity r where r = 27:1 (m; — 1)
de- tivit,
?;ul: g?;lrlrllz(t:elrvl y 2+ 1 For alln > 1, Cfr:?xmgx~~><md has exactly fi(n) edges.
no. of links |E| where |E| = r(|V]/2)
LEMMA 2. Let g; be the function defined as follows:
OBSERVATION 1. A generalized hypercube has many sym- n(n }2/ ?1 of n<my
metries. For any pair (u,v) and (u',v") there is an auto- mazx i {fior(ns) + (m; —i— Dna} |
morphism o of G such that o(u) = v’ and o(v) =v'. There gi(n) = i=0
are many such automorphisms. m;—1
no <N <Ky 1 <= 3N if n>m;
i=0

OBSERVATION 2. C? 4s a Cayley graph and hence is ver-

tew transitive. For any subgraph G = (V,E) of C,(ﬁ)xmzx.wm(l, |B| <
g1 (|V]) always holds.

DEFINITION 15. A d-dimensional GHC' structure with c
nodes in each of the d dimensions is a product of d c-node

LEMMA 3. For every n, n) = gi(n) always holds.
cliques. It is also known as the d-dimensional c-ary clique yn filn) =gi(n) Y

Cd
<.
THEOREM 4. C,(,’fl)xmx,__xmd s a mazimum n-node sub-
In [10], Nakano obtained the exact values for the bisection graph of C’f:{)x g x-exmy Whenever n <m.

width, cut width and total edge length of C¢ and are stated

in the following theorems. PROOF.  Follows from the preceeding three lemmas. [

. . . s ~vd d -
THEOREM 1. The bisection width BW (C¢) of C¢ is Levua 4. For any linear layout | and gap i,

It A
any! ] if cis even |C(C4,1,4)| > |C(C%, N, ).
(c+1)(c*=1)/4 if cis odd.

PrROOF. From Defn 9 and Defn 16, it is easy to show

THEOREM 2. The cut width CW (C2) of C¢ is that |C~(C?, N,i)| = |sz)1xmzx,._xm(l|. Since the natural
cle+2)(c? —1)/4(c+1) if cis even and d is even order layout of C?% has bilateral symmetry, we also have
Ae+2) (¢t =1)/4(c+1) if ciseven and d is odd |ctH(C? N,i)| = |C(C* N,n — i) = |C(”7X") ]
d . . ) ) y 4V myXma X xmgl*
(e+1)(c" —1)/4 if cis odd. Note that for any linear layout [, C*(C?,1,4) and C~(C?, 1, n—
i) are (n—1) and i-node subgraphs of C'?, respectively. From
d . (n—1) _ d .
THEOREM 3. The total edge length TL(C?) of CZ is Thm 4, OO 1,1) < |C naxxmy| and C7(C,1,4) <
TL(CH) = (c+ 1)c(c* — 1)/6 1C8) ey |- Tt follows that [CF(C%,1,0)] < [CF(CY, N, i)
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and [C~(C%1,i)] < |O7(C? N,i)|. Recall that for any
graph G and linear layout [ of G with E the set of edges
of G, |E| =|C(G,L,i)| 4+ |C™(G,1,i)| + |CT(G,1,1)|. Hence,
|C(C9,1,1)] > |C(C?, N, i)| for any linear layout [ of C¢. [J

As a result of Lemma 4, we have simplified the computation
for the following parameters for C:

e BW(C?) = |C (C% N, ||[V]/2])],
o CW(C?) = max|C(C?, N, i),

V]-1
o TL(CY) = Y |C(CY N, i)

i=1

We also define several notations that will be referred to in
the next section.

DEFINITION 17. An edge is called a dimension k edge if
it links two nodes that differ in the k' bit position. Partic-
ularly, we define Cd[k:] as the set of all dimension k edges
of C?. That is,

CUK] = {(u,v) € BE(CY|up, # vi} for 1 <k <d
where (uqua—1 -+ -u1) and (Vava—1 - - - v1) are mized radiz rep-
resentations of nodes u and v respectively. Hence, E(C’d) is
partitioned into d subsets: C4[1],C?%[2],--- ,C[d].
Furthermore, we let C(C?[k],1,i) denote a set of edges de-
fined as follows:

C(CUk],1,4) = C(C?1,3) N C[k].

That is, C(C%k],1,1) is the set of all dimension k edges
which are separated at gap © under linear layout I.

4. MAIN RESULTS

‘We now extend the theorems stated in section 2 to any gen-
eralized hypercube.

THEOREM 5. Given a d-dimensional generalized hyper-
cube C* where C¢ = Koy X Ky X -+ X Ky, with my <
ma < -+ < mg. Let e be the largest index for which me is
even. Set e =1 if each factor has odd size. Then,

d
BW(CY = S BW(K, )M,
where M; =Zr_ni_1mi_g ~emy for 2 <i<d with M; = 1.

Note that ) . '
BW(I{WH) = { m; /4 if m; is even

(m? —1)/4 if myis odd.

PrOOF. C% has mg C4 ! = Ky X Kyp X - X Ky
Furthermore, the corresponding nodes of the mgq C4 s are
connected by K,,,. Thus the mq C% s are connected by
Mgy Ky,’s. Similarly, each of the C% ! has mg_y C42 =
Ky X Ky X -+ X K, , where the mq_1 C?% 2’5 are con-
nected by Mg—1 Ky, ,’s. We repeat this procedure until
we reach the 1-dimensional C* = K,,, which has m; nodes
where each pair of nodes are connected by an edge.
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Suppose that m, is even. Then to separate the graph into
two disjoint and equal sized subgraphs we only need to
group together 7t C%! to form one subgraph and the
rest will form the other subgraph. Since the mg C? s
of C? are connected by My K, .’s, the problem of find-
ing the bisection width of C? is reduced to computing for
the bisection width of each of the My K, ’s. That is,
BW(C?%) = My - BW(Kn,).

Suppose that mg is odd. We group together defl ¢t
and another % C% ! in a separate group. To divide
them, we need to divide each of My K, ,’s connecting them.
But there is 1 remaining C%~! that needs to be split into
the two groups. Recall that C¢~! has mq_1 C* ?’s which
are connected by Mq—1 Km,_,’s. If mq_y is even, “4=L
C972 will be in the first group and the rest will be in the
second group. To divide them, we need to divide each of
the Mq—1 Km, ,’s connecting them. Hence, BW(C?%) =
My-BW(Kmy)+My—1- BW(Kpm,_,) . Butif mq_1 is odd,
we do a similar procedure as above until we have either an
even me or my.

Thus, BW(C%) = My - BW(Km,) + Ma_1 - BW(Km,_,) +
-+ 4+ M. - BW(K,,) where e is the largest index for which
me is even or e = 1 if all of the m;’s are odd. [

THEOREM 6. Given a d-dimensional generalized hyper-
cube C* where C = Ky X Kmy X -+ X Km, with mi <
mo < - < my. Then,

d k-1
CW(Cd) = E <Mkik(mk - ik) + (Z hfjij) (me — 245 — 1))
j=1

k=1

where Ms = ms_1ms—_o-+-mq for 2 < s <d with M1 =1
and

mp—1 - -
. . , ZE== i f my is odd
if at least one ms is odd, then iy, = mg .f ket

ek if my is even.

g_nq = 20
else,{ e Fra_2q forqe {0,1,---, 4 +1}
Ga-g-1 = —5 — 1
PROOF.

Let 4gi4—1 - - i1 be the mixed radix representation of i.
Note that for all k € 1---d, |C(C“[k], N,q)|
=[m1...mag—1ig+m1...mg—2ig—1+--+mi...Mr_19 +
mi...Mg—1 — z](mk — Zk)’tk —+ [l — M1 ... M_10 — *++ —
ma .. .md_ﬂd](mk - ik - 1)(’Lk + 1)

d d
= Z ]\L’j’i]’ + My — 1 (mk—ik)ik—i- 17— Z ]\[]’L]> (mk—
i=k i=k
ik — Dk +1)
k—1
= (]\/I-kik(mk — k) + (Z ]\/[jij) (M — 245 — 1)) .
i=1

Hence, we have |C(C4[k], N,i+1)|—|C(C4[k], N,7)| = my, —
2i; — 1 for every k. That is, the width at gap i changes by
my — 21 — 1 as ¢ increases.

Suppose that my, is odd. Then |C(C?[k], N,4)| is maximum
when my — 2i, — 1 =0, i.e, iz, = “5—. Now let’s suppose
that my, is even. To maximize |C(C%[k], N,1)|, we select ei-
ther i = % or ix = %r — 1.

Next, we assume that for all k, my is even. Note that
|C(C4d], N,i+1)uC(C%d—1],N,i+1)|—|C(C%d],N,i)u



C(Cd — 1], N,i)| = mq — 2iqg — 1 +ma_1 — 2ig_1 — 1 and
is maximal when mg — 214 + mg—1 — 2ig—1 — 2 = 0. Thus,
we should select iy = mT'd and ig_1 = % — 1. Similarly,
we have i4_» = de‘Q and ig_3 = m"T‘Z —1. And g2 =
Mmd—2q

20 g gq1 = 9722 —1for g€ {0,1,---, 2+ 1}. O

THEOREM 7. Given a d-dimensional genmeralized hyper-
cube C* where C¢ = Koy X Ky X -0 X Ky, with my <
mo < -+ <mgy. Then,

d
TL(CY) = 3 M; [T myTL(Km,),
i=1  g#i
where M; = mi_1m;—o---mq for 2 <i <d with My = 1.

c—1
Note that TL(K.) = > i(c —1).

i=1

PrOOF.  Since C¢ has [] m; Ky, ’s, in the first dimen-
3#1
sion we have a total edge length of [[ m; - TL(K,,,).
A1

In general, for all i € {1,---,d}, since C* has [[ m; Kum,’s,
J#i
we have a total edge length of M; - [[ m; - TL(Km,). Note
J#i
that adjacent nodes of C?® in the i*" dimension are of dis-
tance M, in the natural order linear layout.

d
Summing up, we have TL(C?) = > M; [ m;TL(K.,). O
=1 A
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