Longest Common Subsequence (LCS) Retrieval in Linear
Space and Single-Pass Quadratic Time

for Some Special Cases of the Input

Arian J. Jacildo Eliezer A. Albacea
Institute of Computer Science Institute of Computer Science
University of the Philippines at Los Banos University of the Philippines at Los Bafos
4031 Laguna, Philippines 4031 Laguna, Philippines
+63(049)536-2302 +63(049)536-2302
ajjacildo@uplb.edu.ph eaalbacea@uplb.edu.ph
ABSTRACT The LCS and sequence alignment problems are also considered

as special cases of the string editing problem [4]. Given input

Alignment of DNA sequences is one of the routines in) > | k
sequences x and y, the string editing problem consists of

bioinformatics. ~ The longest common subsequence (LCS)

retrieval problem can be treated as a simple version of the transforming x into y by performing a series of weighted edit
sequence alignment problem. A simple dynamic programming operations on x of overall minimum cost. An edit operation can
(DP) algorithm can solve the LCS retrieval of two sequences x be a deletion, insertion or substitution of a symbol in x.

and y, with lengths m and n, respectively, in O(mn) time and in
O(mn) space. Improvements to the simple DP algorithm are
either on the running time or on the memory space complexity.
In 1975, Hirschberg developed an elegant divide-and-conquer
(D&C) algorithm (HLCS) for LCS retrieval in O(m+n) or linear
space and in O(mn), two-pass quadratic time. The algorithm
presented in this paper, referred to as the modified Hirschberg’s
LCS algorithm (MHLCS), can perform LCS retrieval, still, in

linear space, but in a single-pass quadratic time on some special
cases of the input. Crochemore et. al. used bit vector representation in improving

HLCS [7]. Driga et. al. developed the FastLSA[9] which
improved HLCS by applying double split, horizontal and vertical
split, as compared to the single horizontal split of HLCS. Guo
and Hwang gave a non-DP algorithm using primal-dual algorithm
for LCS, which runs in linear space for constant alphabet size or
1. INTRODUCTION in O(nb) space for b = alphabet size [8].
A subsequence is defined as a sequence that can be obtained by
deleting zero or more symbols from a given sequence. Given
input sequences x and y with lengths m and n, respectively, the
pair-wise LCS retrieval problem is defined as the problem of
finding a third sequence w, such that w is a subsequence of x and
y and the length of w is maximal. The lower-bound analysis of
the pair-wise version of the problem is O(mn) for an unbounded
alphabet [1]. The multiple input sequences version of the
problem is NP-hard [2]. The MHLCS algorithm we present on
this paper will focus on the pair-wise version of the problem. 2. MHLCS ALGORITHM

Given input sequences x = x[1],x[2]...x[m] and vy
y[11y[2]...y[n] where m and n are the lengths of x and y,
respectively and m < n, the LCS retrieval of x and y is using
MHLCS is summarized in the following steps.

A simple dynamic programming (DP) algorithm can solve the
LCS retrieval problem in O(mn) time and O(mn) space [5]. In
1975, Hirschberg, incorporated a divide-and-conquer (D&C)
algorithm to the DP algorithm to perform LCS retrieval in O(mn)
or specifically in two-pass quadratic time and in O(m+n) or
linear space [6]. Since then, his algorithm has been the basis for
most linear space solutions to LCS, sequence alignment and
other related problems.

Keywords

Linear space longest common subsequence, sequence alignment.

The MHLCS algorithm presented in this paper follows a
different approach in improving HLCS by increasing the constant
factor on the space complexity to reduce the constant factor on
the time complexity. It reduces the two-pass quadratic time of
HLCS to a single pass quadratic time on some special cases of
the input. It makes use of the additional space in the form of two
additional arrays to help identify the special cases.

The LCS problem is related to the sequence alignment problem.
Given input sequences x and y, the basic sequence alignment
problem is characterized as the problem of inserting a minimum
number of gaps in x and y so as to maximize the number of

matches and minimize the number of mismatches. The total Step 1. Let p = LCS length of x and y. Compute for p in linear
score of an alignment is based on the sum of matches, gaps and space and in a single-pass quadratic time using DP [5]. In
mismatches. A simple scoring using negative infinity score addition, while computing for p via DP, we also generate array
mismatches is essentially equivalent to LCS [3]. structures L and AUX.

36

Step 2. Generate a candidate LCS w with length equal to p, such
that w is a subsequence of y and that each symbol in w starting
from w[1] to w[p] is matched with at least one x[i]. We will show
that this can be done in linear space and linear time using the
information stored in L.

Step 3. Check if w is also a sub-sequence of x. This process will
also be done in linear space and linear time, using the additional
information stored in AUX.

If w is also a sub-sequence of x then, we already have solved the
LCS retrieval in linear space and single-pass quadratic time. If w
is not a sub-sequence of x, then we extract a partial LCS from w.

Step 4. Incorporate Steps 1 to 3 to HLCS and use w to reduce the
number of recursion in HL.CS.

The following sub-sections will discuss the details of each step.

2.1 Step 1 - solve for p, L and AUX via DP

Solving for p = LCS length of x and y with lengths m and n,
respectively, can be characterized by the recurrence in Figure 1,
which means that p = c(m,n).

0 m=0orn=0
c(m-1,n—-1)+1 xlil=yljl

otherwise

c(m,n)=

max(c(m—1,n),c(m,n—1))

Figure 1. LCS length recurrence relation.

Solving the recurrence can be done via DP using a matrix of size
m by n. The computation via DP will update the contents of a
matrix one row at a time. Hence, it is possible to do it using only
two rows instead of a full matrix. These two rows can be reused
alternately to store the previous and new row values.

01 for i=0 tom

02 for j=0 to n

03 if i==0 or j==0

04 cl[i mod 2][37]1=0

05 else if x[i]l==y[]]

06 if c[(i-1) mod 2][j-1]1+1 > c[i mod 2] []]
07 AUX[J]=1

08 c[i mod 2] [jl=c[(i-1) mod 2][j-1]1+1;

09 else c[i mod 2][jl=

10 max (c[(i-1) mod 2][j],c[i mod 2][j-1])
11 Let L be a copy of the last row c[m mod 2]

Figure 2. Pseudocode of a linear space DP algorithm
for LCS length computation.

Figure 2 shows a pseudocode of a linear space version of the
LCS length computation, which also includes the computation of
the array structures L and AUX (lines 06, 07, 11). All row access
on matrix c are applied with a mod 2 operation keeping row
access limited only to the tworows c[0] and ¢ [1].

Figure 3 illustrates the results of computing for p using the
pseudocode in Figure 2 when x=ADCB and y=ADABCA. The
boxed values above array L are the final values of the two rows
c[0] and c[1], the unboxed values represent the values of
earlier computations. The value of p is stored in the last column
of the last row which is encircled value: c[m mod 2] [n] =
c[4 mod 2] [6]=c[0][6]=3.

37

In line 11 of Figure 2 and as shown in Figure 3, L is simply a
copy of the last row generated in the LCS length computation.

In lines 06 and 09 of Figure 2, AUX]j] is updated with the value
of a row index i only when a match found between x[i] and yl[j],
and the value that will be assigned to c[i mod 2][j] is the highest
value so far in column j. In Figure 3, the shaded values represent
the cases when AUX]j] is updated with row index i.

i 0o 1 2 3 a4 5 s
row i v[ijl A D A B C A
cf0] 0 x[i] 0 0 O0O o0 o0 0 o0
ct1] 1 0a ol 11 1 o1l
clo] 2 b o 102 2 2 2 2
cri] 3 ¢ |o 2l 2121313
ctor a4 s o1 |2]2 5] s |®
I
L |0‘1‘2|2‘3|3|3
AUX | ‘1‘2|1‘4|3|1|

Figure 3. Results of the linear space LCS length
computation.

2.2 Step 2 - solve for candidate LCS w

We use L, which is defined in Section 2.1 as the last row
generated in computing for p, to generate candidate LCS w,
where w is a subsequence of y, the length of w = p, and each
symbol in w starting from w[1] to w|p] is matched to at least one

x[i].

Theorem 1. Candidate L.CS w can be generated as a subsequence
of y, where wlk] = y[f(k)] where k = 1 to p and each symbol w[k]
is matched to at least one x[i], in linear time.

Proof: We can prove Theorem 1, using the succeeding lemmas.
The first part of the theorem can be proven by Lemma 1 and the
last part by Lemma 2.0]

Lemma 1. L is sorted in ascending order from left to right
containing all values 0 to p.

Proof: The assignment statements in lines 08 and 09 in Figure 2,
ensures that at the end of the computation of p, L is sorted in
ascending order from left to right containing all values O to p. O

With Lemma 1, we can get the index of the leftmost occurrence
of each number %, as a function of &, for each k =1 to p, flk) =]
such that L[j]=k and j is minimal.

Lemma 2. Each y[f(k)] matches at least one x[].

Proof: If we assume that Lemma 2 is false then it means that
ylf(k)] did not match with any x[i].

Case 1: L[f(k)] may have taken its value from the cell to its left,
this contradicts the fact that L[f(k)] is a leftmost occurrence in L.

Case 2: L[f{k)] may have taken its value from a match above it,
this contradicts the assumption that y[f{k)] did not match any x[i].

There are only two possible cases, both of which result in a
contradiction, hence the claim. [1

2.3 Step 3 - generate partial LCS from w

In the computation of p in Section 2.1 AUX]j] is defined to keep
the row index i of a match encountered when updating v = c[i
mod 2][j] and v is greater than or equal to any value from c[i mod
2]1j1 up to c[1 mod 2][j]. Each value L[j] is a maximum value in
column j, hence, x[AUX[f(k)]] matches w[k] for k =1 to p. So, in
order to check if w is also a subsequence of x, we only need to
check if the values AUX](f(k)], for £k = 1 to p, is monotonically
increasing. This is how Hirschberg defined a subsequence in his
1975 paper [6]. If w is a subsequence of x then w is a valid LCS
of x and y, else we generate a partial LCS based on w[k] where k
is part of the monotonically decreasing values of AUX|(f(k)] for k
=pdownto 1.

2.4 Step 4 — use w to reduce HLCS recursions
To discuss how we incorporate Steps 1 to 3 of MHLCS in solving
the sub-problems of HLCS, we discuss first the concepts of
HLCS problem partitioning in section 2.4.1, and the modified
partitioning in 2.4.2.

2.4.1 HLCS Partitioning

Figure 4 shows the conceptual diagram of HLCS partitioning.
The process of HLCS partitioning starts by bisecting x equally to
xI and x2. Then, L1 is generated as the last row in computing the
LCS length of x1 and y, and similarly L2 is generated as the last
row in computing the LCS length of the reversed x2 and reversed
y. Pivot column j is then computed as the maximum value of
(L1[7] + L2[n—j]) where j goes from 0 to n. Pivot column j is then
used to divide the problem into two smaller sub-problems H1
and H2. The sum of the areas representing the two sub-problems
H1 and H2 is half the area of the original problem regardless of
the position of pivot column j. Hence, the total running time of
HLCS is given by T(a)=T(a/2) + a where a=mn. Following the
recurrence T(a) = a + al2 + a/4 + al/8 +... = 2a = 2mn = O(mn).
The space complexity of HLCS is dominated by the size of arrays
L1 and L2 used in searching for the pivot column j in the first
partitioning of the original problem. Smaller portions of these
arrays are reused in solving the sub-problems. Hence, the total
space needed by HLCS is only linear.

xI[1..m/2] H1

x[1..m]

x2[1..m/2] H2

pivot column j
I y[l..n] I

Figure 4. Conceptual view of HLCS problem
partitioning.

38

2.4.2 MHLCS Partitioning

We can generate the auxiliary space needed by MHLCS at the
same time that HLCS generates the last rows generated in
computing pivot column j. We can reduce the sizes of the sub-
problems based on the partial LCS that can be solved in each
sub-problem.

Figure 5 illustrates the partitioning of MHLCS as compared to
the partitioning of HLCS shown in Figure 4. We define a
function mhlcs(x,m,y,n) as a function that retrieves the LCS of
two input sequences x and y with lengths m and n respectively,
m < n. mhlcs(x,m,y,n) = MH1 + templ+ temp2 + MH2 is the
concatenation of the parts of the LCS where templ and temp2 are
the partial LCS generated while MH1 and MH2 are the reduced
versions of the sub-problems. The dimension parameters:
rowpivotl, colpivotl, colpivot2 and rowpivot2 are determined
based on the length of the partial LCS rempl and temp2. The
area of MH1 and MH2 are determined by colpivotl*rowpivotl
and (n-colpivor2)*(m/2-rowpivot2), respectively.

\l/ mhles(x,m,y,n) = MHL + templ +temp2 + MH2
MH1 rowpivor1| MHL = mhlcs(x1[1.. rowpivot1], rowpivor1,

I[L.m/2] y[1..colpivot1].colpivorl)

. ﬁ MH2 = mhles(2rowpivor2+1..m/2],
m/2-rowpivoi2,
ylcolpivor2..n],n-colpivot2)

x{L..m] colpivorl él
H n-colpivor2 ~ €—
templ l/ / P
x2[1.m/2] . 2 I
emp’
m/2-rowpivor2
MH2

pivot column j
I y[1..n] I

Figure 5. Conceptual view of MHLCS problem
partitioning.

3. SPECIAL CASES OF MHLCS

A special case is defined as the part of a sub-problem that
MHLCS can solve using the candidate LCS generated for the
sub-problem.

Figure 6 shows an example when an entire sub-problem falls as a
special case for MHLCS. It illustrates the computations made
after a sub-problem is identified and shows the computations
made for L, AUX and the partial LCS. The shaded cells in L, are
the leftmost occurrences of numbers 1, 2 and 3. The indices of
these cells 1, 2, and 4 are used to initialize the candidate LCS
w=y[1],y[2],y[4]=ADB. Since the corresponding row indices
stored in AUX are monotonically increasing: AUX[1]=1,
AUX][2]=2, AUX[4]=3, then w=ADB is a valid LCS for this sub-
problem.

J 0 1 2 3 4 5 6
row i yIjl A D A B C A
c[0] 0 x[i] O 0 0 0 0 0 0
Cl1] 1 A 0 1 1 1 1 1 1
Cc[0] 2 D 0 1 2 2 2 2 2
Cl1] 3 C 0 1 2 2 2 3 3
Cc[0] 4 B 0 1 2 2 3 3 3
L 0 1 2 2 3 3 3
AUX 1 2 1 4 3 1

Figure 6. Example of a full special case.

On the other hand, Figure 7, shows an example when only a part
of a sub-problem falls as a special case. Figure 7 uses a similar
setup as in Figure 6 but uses a different input example. The
shaded cells in L, are the leftmost occurrences of numbers 1, 2
and 3. The indices of these cells 1, 4 and 5 are used to initialize
the candidate LCS w=y[1],y[4],y[5]=BDC. And since the values
in the corresponding auxiliary array AUX[1]=4, AUX[4]=2,
AUX][5]=3 are not monotonically increasing, then the partial LCS
will be extracted based on the monotonically decreasing value in
the auxiliary space starting from the right given by AUX[5]=3
and AUX[4]=2. The corresponding partial LCS that can be
extracted is given by y[4],y[5]=DC. The remaining part will
serve as the reduced sub-problem part which will be solved
recursively.

50 1 2 3 4 5 ¢
row i v[jl B A A C A
c[0] 0 x[i] O 0 0 0 0 0 0
cl1l] 1 A 0 0 1 1 1 1 1
c[0] 2 D 0 0 1 1 2 2 2
cl[1l] 3 C 0 0 1 1 2 3 3
c[0] 4 B 0 1 1 1 2 3 3
L | 0 | 1 ‘ 1 | 1 ‘ 2 ‘ 3 | 3
au o EEEEE

Figure 7. Example of a partial special case.

4. ANALYSIS OF MHLCS

In this section, we analytically prove the correctness of MHLCS
and its improvements.

Theorem 2. MHLCS is correct.

Proof: The recursive part of MHLCS rides on the correctness of
the HLCS. The partial LCS extracted as w[k] where k is part of
the monotonically decreasing values of AUX[(f(k)] for k = p
down to 1, ensures that the partial LCS extracted is valid.

39

Theorem 3. MHLCS will maintain the quadratic time and linear-
space complexity of HLCS on the worst-case.

Proof: When no special cases are found, MHLCS will be
reduced to HLCS. MHLCS will incur an overhead cost of O(r)
where r=number of matches and 7 is at most mn, hence, MHLCS
will maintain a quadratic time complexity. MHLCS only added
linear space auxiliary structures to HLCS, hence, also
maintaining the linear space complexity. [

In practice, the case when there are r=mn happens only when the
two input sequences are taken from an alphabet with size b=1.
This, however, is not a worst-case scenario at all for MHLCS
since it is in fact, one of the full special cases for MHLCS. When
the alphabet size b > 1 and assuming the symbols are equally
likely to occur in the input sequences, then the total matches is
reduced from mn to (mn)/b. So, when the alphabet size b > 1, the
overhead for MHLCS will be further reduced. For practical
applications, it is unlikely that MHLCS will incur an overhead of
mn operations.

Theorem 4. MHLCS will speed up HLCS from two-pass
quadratic time (2*O(mn)) to one-pass quadratic time ((1*O(mn))
for some special cases of the input.

Proof: When the candidate LCS w generated solves entirely the
first two sub-problems and there is no significant overhead due
to the number of matches, then, MHLCS will run in a single-
pass quadratic time ((1*O(mn)) whereas HLCS will still have to
solve sub-problems recursively and eventually run in two-pass
quadratic time (2*O(mn)).C

5. EMPIRICAL RESULTS

5.1 Input Generation

There are two parameters used in generating the inputs: first is
the length of the input sequences, N = 100, 000 and 50, 000 and
second is the perturbation rate PR = 0%, 1%, 5%, 10%, 25%,
50%, 75% and 100%. The first input sequence is always
generated by randomly selecting one character at a time from an
alphabet with size twenty. The second input sequence is
generated as a perturbed version of the first input sequence. The
perturbation of the second input sequence is performed using the
following steps:

Step 1. Make a copy of the first input sequence and store it as the
second input sequence.

Step 2. Randomly select (PR*N)/50 perturbation points out of a
total of N indices of the second input sequence e.g. at PR=5%
and N=100, 000 so that there will be 5000/50 = 100 perturbation
points.

Step 3. In each perturbation point, randomly select from the two
possible actions: either insert 50 characters randomly selected
from the same alphabet or delete 50 characters from the second
input sequence.

Step 4. To keep similar input sequences lengths, either append
new characters, randomly selected from the same alphabet, at the
end of the second input sequence or truncate it.

The idea of the perturbation rate is to generate a second input
sequence that will maintain (1-PR)*N characters from the first

sequence. For example at 0% perturbation rate the second input
sequence generated is an exact copy of the first input sequence
and at 100% perturbation the second input sequence is generated
randomly just like the first input. Hence, the smaller the
perturbation rate the higher the similarity of the two input
sequences.

There are also five random instances generated for each setup,
hence, there is a total of 80 pairs of input sequences (2 input
lengths * 5 instances * 8 perturbation rates).

5.2 Implementation Setup

The implementations of MHLCS and HLCS were done using C
language and were run on an Athlon 900MHz PC with 256MB
DDR3 memory. The two implementations were run sequentially
on a dedicated PC to process the 80 different pairs of input
sequences.

5.3 Comparison of Actual Results

Figure 8, shows the graph of actual running time in seconds of
MHLCS and HLCS based on varying perturbation rates and
different lengths of inputs. There are four graphs shown namely:
MHLCS-100k, HLCS-100k, MHLCS-50k and HLCS-50k. The
names correspond to the algorithm and the input lengths used.

The results show that at lower perturbation rates, MHLCS
performs faster than HLCS with maximum improvement of
almost 50% at exactly similar input sequences. At lower
perturbation rates or highly similar input sequences MHLCS can
exploit the occurrence of special cases and can reduce larger
number of recursions. Hence, confirming the claim that MHLCS
can perform a single-pass quadratic time algorithm on some
special cases.

The results show that at higher perturbation rates, up to 100%,
MHLCS performs similarly as fast as HLCS with minimal
overhead. It means that MHLCS was able to compensate for its
overhead in checking for special cases with the reduction in the
recursions.

1500.0

1000.0

time in seconds

//

——

0% 1%
5432 | 7138
1053.6 | 1047.2
1354 | 188.6
2612 | 2612

500.0

5%
956.4
1049.0
220.8
261.4

10%
1002.2
1057.2

240.6
262.2

25%
1044.4
1057.8
252.8

263

50%
1070.2
1067.0
262.4
264.4

75%
1089.2
1065.2
268.2

265

100%
1090.4
1067.2
268.2
266

0.0
perturbation rate
—4— MHLCS-100k
—=— HLCS-100k
—— MHLCS-50k
—=— HLCS-50K

Figure 8. Graphs of actual running times in
seconds

It must also be noted in the same implementation setup,
allocating a quadratic space matrix based on either of the two
input lengths will result to an insufficient memory error.

40

6. CONCLUSION

In conclusion, MHLCS - the algorithm presented in this study,
has improved the constant factor in the running time performance
of HLCS - Hirschberg’s algorithm, from two-pass quadratic time
to single pass-quadratic time on some special cases of input.
Empirical results verified that MHLCS can indeed reduce the
actual running time of HLCS by 50% in highly similar input
sequences and maintain similar actual running times with
minimal overhead in highly random input sequences.

We consider applications such as comparison of different
versions of similar documents and also bioinformatics
applications where the inputs are from a given sequence and its
slightly mutated version, as possible real-world applications for
MHLCS.

7. ACKNOWLEDGEMENTS

The authors thank the Institute of Computer Science and the
College of Arts and Sciences of the University of the Philippines
at Los Baflos for their financial support through ICS-GF
#2326103 and CAS-TF #8217300, respectively.

8. REFERENCES

[1] J. D. Ullman, A. V. Aho, and D. S. Hirschberg, “Bounds on
the complexity of the longest common subsequence
problem,” J. ACM, vol. 23, no. 1, pp 1-12, 1976.

[2] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness.

New York, NY, USA: W. H. Freeman & Co., 1990.
[3]

J. M. Samaniego, “Alignment problems in bioinformatics: A
guided tour,” in SMACS 2004: 2nd Symposium on
Mathematical Aspects of Computer Science Preproceedings.
Baguio City, Philippines: Computing Science Society of the

Philippines, 2004, pp. 8-15.
(4]

A. Apostolico, “String editing and longest common
subsequences,” pp. 361-398, 1997.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms 2nd ed. McGraw-Hill Higher
Education, 2001.

D. S. Hirschberg, “A linear space algorithm for computing
maximal common subsequences,” Commun. ACM, vol. 18,
no. 6, pp 341-343, 1975.

M. Crochemore, C. S. Llipoulos, and Y. J. Pinzon,
“Speeding-up hirschberg and hunt-szymanski 1cs
algorithms,” Fundam. Inf., vol. 56, no. 1, pp. 89-103, 2003.

[8] J. Y. Guoand F. K. Hwang, “An almost-linear time and
linear space algorithm for the longest common subsequence
problem,” Inf. Process. Lett., vol. 94, no. 3 pp. 131-135,

2005.

[9] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, and 1.
Parsons, “Fastlsa: A fast, linear-space, parallel and
sequential algorithm for sequence alignment,” Algorithmica,

vol. 45, no. 3, pp 337-375, 2006.

