An Algorithm to Efficiently Generate an Approximation of a
Theory Set’

Jasmine A. Malinao and Henry N. Adorna
Department of Computer Science
(Algorithms and Complexity)

Velasquez Ave., UPDiliman
Quezon City 1101

{jamalinao, ha}@dcs.upd.edu.ph

ABSTRACT

A theory set essentially consists of patterns that summarizes
the observed inherent behavior of each cluster of observation
in a data set. Furthermore, it is used in evaluating the clus-
ter membership of new sets of data. Due to the large amount
of computational resources needed to generate a theory set
of a given data set, we propose an algorithm to approximate
this set efficiently.

The Approximate Crisp Theory Set Formation (ACTSF) al-
gorithm is proposed to efficiently generate an approximation
of theory set of a given k-tagged linearly inseparable data
set. It is based on the methodologies developed in the Log-
ical Analysis of Data (LAD) introduced by Peter Hammer.
Since ACTSF is an approximation algorithm, it is inevitable
to have an increased number of unclassified observations. To
compensate for this, we extend ACTSF to include a discrim-
inant function. This paper shows the improvement in the
classification power of the theory sets as this discriminant
function is injected in the proposed methodology.

We show the effectiveness of this algorithm by testing it on
a data set from the UCI Repository of Machine Learning
Databases, University of California. In particular, we use
the famous multivariate Iris data set created by Fisher in
the 1988. Then, we compare the average performance of our
algorithm against other known algorithms in the literature
to measure its competency. ACTSF performed better than
almost all of them.

*This is partially supported by a grant from ERDT project
entitled “Information Visualization via Data Signatures”.

1. INTRODUCTION

In the 1980s, Peter Hammer, a Romanian mathematician
(who died in 2006) developed a data analysis tool called
Logical Analysis of Data (LAD). The main distinguishing
factor of LAD from other frequently used data analysis tools,
e.g. Neural Networks, Support Vector Machines, Decision
Trees, Bayesian-based classification rules, is that ”instead
of just asking the question whether a new observation is
positive or negative, it tries to approximate the subspace of
R" containing the positive and that containing the negative
observations” [1].

Thus, logical explanations are directly derivable from the
clusters. In this case, explaining the behavior of these group-
ings is relatively easy and well understood and may provide
new and insightful information of the data set. Apparently,
the terms positive and negative connote data sets having at
most two clusters.

It had undergone series of developments to suit the needs of
data analysis. From concepts ranging from Boolean Logic
to pattern generation of certain data spaces, LAD has found
numerous practical and medical applications over the years
[1, 3, 4].

In particular, it has been applied to explain medical data
sets with tags such as {poor prognosis, good prognosis} for
breast cancer cases, {high risk, low risk} to mortality by a
certain disease [1]. In most cases, these data clusters are
crisp in nature, i.e. a clear boundary exists between them,
each of which contains exclusively positive or negative ob-
servations.

Following the concepts inherent in LAD, we develop the Ap-
proximate Crisp Theory Set (ACTSF) algorithm to be able
to deal with classes which are linearly inseparable from one
another. Furthermore, we would also deal with data sets
with & number of tags, where k > 2.



2. DEFINITIONS
The Data Set

DEFINITION 1. Let 3 be a data space, that is could either
be nominal or numeric.

A data set S™ is a set of observations or (n + 1)-tuple
Xi = (i1, %i2, - -+, Tin,t), where x;;,t € B, where each x4
as the attribute value in the jth dimension of X;, and t is
the cluster to which X; belongs.

We call t as the tag associated to X;.

Note that for convenience, we would also use the notation
z;,j € {1,2,...,n} to simply refer to the 4" dimension of
the data set.

We note that tags can either be elementary or nonelemen-
tary. By elementary, we mean that no other tag composes
it and nonelementary are combinations of elementary tags.
If we let T denote the set of all distinct tags, then in our
case we set |T| =k > 2.

Let m € T. We identify a cluster of observations P, in the
data set whose tag is m, for every m. We would often times
use the term k-tagged data set to mean a data set whose tag
set T has k elements.

It is always the case that |P,| > 1, and no two clusters

contain the same observation, i.e. (| P, = 0. If we take
meT
the union of all these clusters in S, we have

gl U P, C g™
meT

This suggests that clusters of observation in S™*! partition
the data set S™ 11,

Linear Separability

Let r and s be distinct tags in T. Let P. and Ps be the
clusters in S™*! corresponding to these tags.

Let the observation X, = (x4, Zgo, ..., Tg,,,r) € P, and the
observation Y, = (Yn1,Ynos s Ynp,s S) € Ps.

We say that P, and Ps are linearly separable if and only if

there exists a set of coeflicients @ = {qo,q1,...,qn},q; € R,
such that

n
> 4iTg; = qo, Xy € P, and
=1

n
Zq]yhj Zq()) VY—)LGPS
j=1

If no such solution exists, then P, and P; are linearly insep-
arable.

Suppose we are given the data set S* with the tag set
T = {C1,C2,C3} as shown in Figure 1, we see that we can

express observation A = (a1,a2) € Po1 as a; = (3)(b;) +
(2)(c;j), where B = (b1,b2), and C = (c1,c2) € Pea. Thus
Pc1 and Pco are linearly inseparable.

X ¥X; | X3 | Tag
A 1 2 [
B 2 1. | G2
C -2 1| €2
D 0 1 | €3

Figure 1: Sample Data set S"*!

However, by introducing a process introduced in [3] known
as data binarization to these two clusters, we can easily ob-
tain separation between them. This process converts the
numeric- and nominal-valued attributes into Os and 1s. The
binarization of the data set in Figure 1 is illustrated in Fig-
ure 2.
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Figure 2: Sy, 7' of Sample Data set

Linear separability is observed when our set of coefficients
in the linear inequalities is @ = {0,1,—1,0} .

This binarization process apparently becomes helpful in the
process of discriminating sets of observations. It breaks
down the raw information of the data set into finer de-
tails. Notice that a dimension in the original data set S™*1
is mapped into one or more binary dimensions b; forming
S’bm"/“, n’ >> n. Each b; is associated to a parameter
called a cut point[3]. We see in Figure 2 these cut points
as real values indicated below each b;. They may however
take nominal values depending on the type of dimensions
at hand. These cut points are used to transform numeric
or nominal values into Os and 1s by conducting attribute-
cut point tests. We provide a detailed discussion on this
transformation on the subsequent sections.

2.1 Pattern Space

To enable us to describe the behavior of each cluster in the
data set S”!, we need to generate a set of patterns for each
of them.

Let a literal be a dimension z;%, 1 < j < n,a € {0,1}. We
may interchangeably use the notations z; and z; to denote
the literals ;' and x;°, respectively.

Let LogicOperators = {IsEqual(a,b), IsNotEqual(a,b),



1sGreaterThan(a,b), [sLessThan(a,b),
IsGreaterThanEqual(a,b),sLessThanEqual(a,b)}. The
elements of this set contain relational operations to test the
relationship of the first parameter a to the second parameter
b with the logical operations =, #, >, <, >, <, respectively.
It returns 1 (i.e. TRUE) when a and b conforms with the
specified boolean operation, 0 (i.e. FALSE) otherwise.

We associate to the literal ;< the tuple L = (V, OP), where
we have the set of cut points V = {v|v € 8} and OP =
{op|lop € LogicOperators}, |V| < 2. Each element v € V
associates to an element op € OP such that |V| = |OP|.

A term T'r is a conjunction of literals, i.e.

T?"= /\ il‘jaj.

The number of literals in the term T'r is the degree of T'r.

DEFINITION 2. Let an observation Yi = (Yi1, Yio, - Yin,
m) € Pn(C S™Y). Let a term Tr = z;% asso-
J€{1,2,...,n}
ciated to Ly = (V;,0P;), where |V;| < 2,05 € {0,1}. Let
the function NOT XOR(a,b) be the usual boolean operation,
i.e. NOTXOR(a,b) =1 if a =b, 0 otherwise.

Let r € T\m.

We say that Tr is a pattern of P, true to Y; if and only if

. NOTXOR(aJ-,opjg(yij,ng)) =1, and (2.1)

o for all Ze = (Ze1, Zea, v, Zen,T) € S"TH\Pry,
NOTXOR(aj,opjg(zej,ng)) =0, (2.2)

where v;, € Vj, and op;, € OPF;,j € {1,2,...,n}

If T'r is a pattern of P, for the observation Y;, we say that
Tr covers Y;, and conversely, Y; is being covered by T'r.

This definition implies patterns are not self-contradictory,
i.e. aliteral z; and its negation Z; cannot appear simultane-
ously in a given pattern. However, a literal (or its negation)
can appear at least once but will be associated to different
values of the tuple Lj;.

Suppose we are given the following 3-tagged data set S* in
Figure 3 with n = 3,7 = {G1,G2,G3}.

Let the term Tr = T;. We associate to the literal z;
the tuple L1 = (Vi,0p1) where Vi = {2.0} and Op; =
{IsGreaterThanEqual(a,b)}. This association tells us to
test whether the negated (or complemented) result (note
that oy = 0) of evaluating if the value of an observation in
its z1 dimension is greater than or equal to 2.0.

More precisely, we express Tr = (1 > 2.0). For the above
data set S*, we see that Tr covers e, f € Pga. Furthermore,
Tr does not cover any observation in the union of Ps1 and

= X xa X3 Tag
a | 3.3 | 300 greetl 1
b | 25 | 235 | wellow | Gl
c | 50| 250 ted 1
g 1.0 | 240 otange | G2
il [ T yellow | G2
g | 20 | 205 Steet 2
h | 50 | 225 otatige [ G3

Figure 3: Data set S*

Pgs. These tests satisfy conditions (2.1) and (2.2) in Defi-
nition 2, respectively. Thus, we say that Tr is a pattern for
the cluster Pga.

We also see the patterns Tr1 = (3.0 < z1 < 3.75) and
Try = (23.0 < z2 < 23.75) for some observations in Pgi.
Additionally, the term Trs = (22.0 < z2 < 22.75) is a
pattern for Pgs. All of these patterns have degrees equal
to 1.

Theory Set
DEFINITION 3. A theory Tp,, is a disjunction of patterns

collectively covering all observations of a given cluster Py, (C
S"+1). Formally,
\/ TT‘Z‘

1<i<|Pm|

TPy =

VX € Py,,3Tr; covering X.

Using constraint (2.2) of Definition 2, it follows that

ﬂ TP, =(Z).

Vm:meT

The set of all theories generated for the data set S"*! is
called a theory set.

LAD creates a theory set such that each of the observation
in the training set is described by at least one pattern in the
set. This assures us that each theory of a cluster has a char-
acteristic of being complete - i.e. it is capable of describing
every observation in the training set collectively. Further-
more, we use the patterns of the theory set to evaluate the
cluster membership of new sets of data.

2.2 Data Binarization

To be able to generate pattern sets with more descriptive
power, LAD introduces the concept of data binarization [3].
This process converts the numeric- and nominal-valued at-
tributes into Os and 1s. We transform the data set S™+!
into its binarized form Sy;,,™ T1. We follow the steps given
below to do this transformation.

1. Let x; be a dimension of S"*,1 < i < n. Let P, C
S 2 <m <k



Let T be the set of tags in the data set S™*1.
Let T'(k) be the k" element in 7.

Let ci be the number of observations tagged to T'(k),
k=1,2,...,|T.

Let the number of level cut points[3] be denoted as
CPrvl. Level cut points are the cut points associ-
ated to literals in patterns having a tuple L = (V, OP)
where |V| = 1. Then,

IT| IT|
CPLvl = E Ck E Ci/ .
k=1 k'=k+1

Let the number of interval cut points[3] be denoted as
CPrnt. Interval cut points are the cut points associ-
ated to literals in patterns having a tuple L = (V, OP)
where |V| = 2. They are used only for numeric-valued
dimensions. Then,

CPr,
CPrnt = ( QL l>.

We transform a dimension z; into e b;s, where

e < CPryi + CPrns.

We let these b;s be the dimensions of S;,T-,,,”/H, where
n <nxe.

. The transformation in (1) converts an attribute value
v € Bin X; to a value v’ € {0,1}.

Let Vals,, = {dim, do%m, .., d;%m} f < |S™T,
m € T be the distinct values of the dimension z,; of
gl

Let u = d,%" and w = dp**s, a # b, v € T, and
s € T\r. Compute for u and w’s level cut point Cl
as

For all continuous-valued dimensions, v’ =1 if v > v,
v’ = 0 otherwise. On the other hand, for nominal-
valued dimensions we simply take the cut points equal
to the attribute values themselves. v’ = 1 if the at-
tribute value is equal to the level cut point, 0 other-
wise.

After computing all level cut points, we generate all
interval cut points, say CP; and C' P, by taking 2 level
cutpoints and associating them to a binary dimension
b; with a tuple L = (V,OP) where V = (CP;,CP),
OP = (<,<). fCP, < v < CP,, then v' = 1, else
v =0.

Suppose we choose the following cut points reflected
in Figure 4 and use them to binarize our original data
set in Figure 3.

Next we obtain the corresponding binarized data set
Spin™ *1 as shown in Figure 5.

Bi | @ | 85 | B | B
%72 20|%;24.25\2.0 2 %% 4 25| %72 21 5] 772 22.0)

Bs | b | B | ke
xz223.0 | %2 2375 | 772245 | 2222525 |

E?m | E:'H | 'E:'J'Z'
2152 xgw 220 |22.D L Xxp% 23.D|23.D T xps 23.?"5|

B | b
2375 25 24.5| 2452 x2< 25.25'

Figure 4: Chosen Cut Points Data set S™'*
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flojojofjtji|1j1rjrj1jofojofjo|lo|E
glt|tjojojojojojojofof{ojojof0|z2
hi{tjijoftf{rjofojojofoji1jofo|0|G3

Figure 5: Binarized Data set Sbm”,+1

2.3 Support Sets

The explosion of the number of dimensions from data set
St 4o Sb,-n"/“ becomes a hindrance to the efficient gen-
eration of optimal theory set for each cluster. Furthermore,
we can expect that there exists a number of binary dimen-
sions in Sbm”,*'l which may not be necessary in distinguish-
ing one cluster from another. Thus LAD develops the use
of support sets[3]. A support set is a set obtained by elim-

. . . /
inating a number of binary dimensions from Sp;,™ ™! so as
to obtain a contradiction-free data set, i.e. there does not

exist an observation in more than one cluster in the data set
Sbinn 1 .

By inspection, we see that we can eliminate the dimensions
{b2,bs, b7, bs, by, b10,b13} so as to obtain a contradiction -
free set from the data set in Figure 5. Notice that we have
SUP = {b1,b3,bs,bs,bi1,b12,b14} so that every observation
X, € P,, has a Hamming distance of at least 1 from all other
observations Y, € Spin™ T'\Pn. We define the Hamming
distance for two observations as the number of positions
wherein their components have different values. For exam-
ple, the observations a € Pgi, and g € Pgo differs in the
components corresponding to the dimensions bs, be, bs, bio,
b11, and b12, thus their Hamming distance is equal to 6.

In other words, using this set assures us of at least one di-
mension which differentiates an observation X, € P,, from
all other clusters where X, is not a member thereof. The
choice of this set induces the disjointness (crispness) of the
theories across all clusters in the data set. This set is a sup-
port set of Sbm"/“. We can actually obtain another sup-
port set be adding the dimension x13 to SUP, i.e. SUP =
{b1,b3,b4,bs,b11,b12,b13, b1a}. Notice that if we are to elim-
inate the dimensions in this solution (as well as the compo-
nent values they represent) from Sb,-,n”,H, the vectors {a, f}
in the remaining data set would be the same, thus, contra-



diction arises.

Suppose we take SUP = {b1, bs, bs, bs,b11, b12, b14} from our
table in Figure 5, we form Ssy,!"Y? %1 with the following
vectors as shown in Figure 6.

K |b|bg|ba|bs|bs|biz| bag|Tag
all|1|1f{t{o|of0]El
b{1[1|(1f{1)0) 1] 0|3
cllijojiftf{ojof1l |l
(001100 0]|G2
flojoji1f{i|olo|0]|G
glt|ojofojo|o|o|a2
hi{l|0Of1f{1] 10| 0|33
[SUP|+1

Figure 6: Ssyp

We see that we can generate a theory Tp., = b1b3ba Vb11b14.

If we are to associate back the literals of the patterns in
TPe1» We find that the patterns covering the observations in
the cluster Pc1 would be

{(z1 >2.0)(2.0 < z1 < 4.25)(zs > 21.5),

(22.0 < 25 < 23.0)(24.5 < 25 < 25.25)}.

2.4 Pareto-optimality of Patterns

Generating exhaustively for patterns to comprise the theory
set of a data set requires a lot of computational resources.
This is still true even when we have used the support set in
finding these patterns. There exists an exponential number
of them. At times, some of these patterns may not be neces-
sary when they can be represented by other patterns within
their own theory.

The concept of finding Pareto-optimal patterns is discussed
in [6]. In the same paper, a criteria is set to find these special
sets of patterns categorized into three namely:

e Strong Patterns
e Spanned Patterns

e Strong Spanned Patterns

We discuss how we eliminate some patterns in a given clus-
ter’s theory by the criteria set in [6].

2.4.1 Strong Patterns

Two criteria introduced in [6] relates to this type of pat-
tern namely (a) Simplicity Preference, and (b) Evidential
Preference. We discuss each one of them in the following
subsections.

Simplicity Preference

DEFINITION 4. A pattern T'r1 is simplicity-wise preferred
against another pattern Tro (expressed as Trix=, Tr2) if and
only if the literals of Tr1 (denoted by Lit(Tr1)) is con-
tained in the literals of Tra(resp. Lit(Tr2)), i.e. Lit(Tr1) C
Lit(TT‘Q).

The pattern T'ry is prime if there does not exist a pattern
T'r; with which Lit(Try) D Lit(Tr;). Naturally, prime pat-
terns are simplicity-preferred to all other patterns in a given
theory of a cluster.

Using the data set in Figure 6, we see that the patterns
Try = bibs is simplicity-prefered against Tro = b1b3babi1.
Furthermore, we see that T'r; also a prime pattern.

Evidential Preference

DEFINITION 5. A pattern T'ry is evidential-wise preferred
to another pattern Tra (expressed as Tri=_Tr2)) if and only
if the covered observations of Tre (denoted as Cov(Trs))
also exists in the coverage of Tr1 (resp. Cov(Tr1)), i.e.
Cov(Tr1) 2 Cov(T'rs).

A pattern T'ry is called strong if and only if there does not
exist a pattern T'r; with which Tr;= Tr1.

In Figure 6 for instance, if Tr1 = bsb11b14, then Cov(Tr1) =
{e, f, g}. On the other hand, if T'ry = b1 b4, then Cov(Try) =
{e, f}. Thus, Tri=_Trs.

Generally, note that prime patterns are strong patterns, i.e.

TrltUTrg S TrlieTrg.

2.4.2 Spanned Patterns

When we increase the degree of a given pattern, i.e. the
number of literals composing it, the more restrictions we
put on the behavior describing the cluster where this pat-
tern is a member of its theory. This provides us of a finer
characterization of the cluster with respect to other clusters
in the data set. We discuss these type of pattern known as
Spanned Patterns introduced in [6].

Selectivity Preference Let Tr be aterm. A SPAN(Tr) =
{Sp = {X1,X>,...}|Sp C {0, 1}‘SUP| for which Tr covers
X;, Vi)

DEFINITION 6. A pattern T'ry is selective-wise preferred
to a pattern Tra (expressed as Trix=xTra2) if and only if
SPAN(Tr1) C SPAN(Tr2).

We see that the set of minterm patterns, i.e. patterns of
degree SU P, are selective-wise against all other patterns in
the theory of a cluster. However, these may not be useful
in describing the cluster since it is specific to only one ob-
servation in it. One may find this set of patterns helpful in
the detection of exceptions or outliers in the cluster.

Note that if Tr; > oITm2 = Trox=yTry. Selectivity-wise pre-
ferred patterns have been used in combination of other types
of patterns in the literatures of LAD [6] to create another
type of patterns to achieve better characterization of a given
cluster.

To generate the minterm patterns of a cluster in our data
set Ssup|SUP|+1, the process is straightforward. Note that
since this data set is contradiction-free, we do not create a



minterm which covers an observation found in more that 1
cluster. Thus, we still generate a crisp theory set.

We say that the minterm theory 7p,, is the disjunction of
terms T'r; of degree |SUP| covering the i*" observation of
the cluster Py, of the data set Sy, SUFIHL.

We use the selectivity preference in conjunction with the ev-
idential preference to characterize spanned patterns. Notice
that in the succeeding discussions, we discuss the conjunc-
tions and refinements done by the methodologies of LAD to
the set of preferences to produce other types of patterns.

DEFINITION 7. Given preferences € (evidential) and X (se-
lectivity), a pattern Tr1 is preferred to a pattern Tre with
respect to the intersection eAX (expressed as Tr1 =,y Tr2)
if and only if Tr1 »=_ Tra and Try =5, Tra. The patterns
which are Pareto-optimal with respect to € A X are called
spanned patterns.

For our table in Figure 6, let the patterns (for some ob-
servations in Pg1) Tr1 = bibabsbii and Tro = bibs. Here,
Cov(Tr1) = {a,b,c} = Cov(T2) and Lit(Tr1) D Lit(Tr2).

Thus, Tr1 = .5 T7r2. Futhermore, there does not exist a
pattern Trs (covering an observation in Pgi) with which
Trs ie AS Try.

2.4.3 Strong Spanned Patterns

DEFINITION 8. Given preferences € and X, a pattern Try
is preferred to a pattern Tre with respect to the lexicographic
refinement €|X (expressed as Ty S Tra) if and only if
Try = Tro or (T'r1 =e Tra and Try =5, Tra). The patterns
which are Pareto-optimal with respect to €)X are called strong
spanned patterns.

Note that for any preference x, if a pattern Tr; ¥ Tre and
Try =, Try, then Trl ~y Try. On the other hand, if T'r
=, Traand Try f= Try, then T'ry = Tro.

The definition above tells us that a pattern is strong spanned
if and only if it is both strong and spanned.

3. THE ACTSF ALGORITHM

3.1 Support Set Generation

We first describe the input to the problem of finding the
support set for the binarized data set Spin™ 1. Then, we
present a greedy algorithm geared to provide a solution to
this problem for k-tagged data sets.

1. To generate a contradiction free data set, intuitively,
we decide to include a dimension b; of the data set
Spin™ T1 if there exists an attribute value in this di-
mension which possess a unique behavior describing
the cluster where it belongs with respect to others be-
longing to another cluster. Our original data set S™*?
has been transformed into a binary data set Szn-n”/+1
where n’ >> n, so the possibility of finding these di-
mensions becomes larger. However, if no such dimen-
sion exists, we iteratively attempt to find another di-
mension b;, that, together with our previous choices,

forms a contradiction-free set. This problem is partic-
ularly hard since there are 2" possible solutions to it.

However, [3] has reduced this to the well known NP-
complete set cover problem. Revising the original me-
thod of LAD to accomodate k-tagged data sets, k > 2,
we transform in polynomial time the original input
S™H1 to a data set COMP™ ' whose dimensions
D;,j € {1,2,...,n'} is associated to every binary di-
mension b; of Spin™ 1. We call each D; an indicator
dimension (adopted from [3]) of b;. Every D; “indi-
cates” whether b; is to be included in the support set
(i.e. Dj =1), or not (i.e. D; =0).

Input: Syin™ 1. Let b; be the binary dimensions of

Spin™ 1. Let Po(C Spin™ t),2 < m < k.

Goal: Generate a binary data set COMP™ ! with
indicator dimensions D;,j € {1,2,...,n'}

Let the data set COMP™ 1 contain the observations
X’i = (Dila DiQ, ...,Din/,m), meT.

For each observation Yo = (Ya1,Yass--sYapn/,7) € Pr
(C Spin™ 1), and for all vectors Zy = (2b1, 2b2, -, Zbn’,
8) € Spin™ TT\Py , where s € T\r, let D;; be

1, if ya; # 25, (8.1.1.a)

Dij = { 0, otherwise.

For the example indicated in Figure 5, S’bm"/+1 into
the data set in Figure 7.

Compatisons|Dy| De|Da| Dg |Ds | D | D De| Da | Dy | Dys | Dz | Dia| Deg| Tag
(o {2,330 (o0l jof{ojojojojojo (000|031
(hfG2G3n|o(0f1|ofojojoj0jojo (0|1 0|03l
(c{CG2,G30n|o(0j0jof{ojojojojojo (0|00l |31
(e G133 L (0|0 jo(ofojojojof0 |00 |1 |0 |G2
f4GLGEN (Ljo(0jojojo(of0ojojno (o|0)0|0|G2
(giGlG3yn|o|ojoj1 (1 {ojojojofo |00 |00 |G2
(hiGlLG2p|o(ojojofofojojojofo |1 (0|00 [G3

Figure 7: Data set COMP™ ™! of indicator dimen-
sions D

To be able to solve the set cover problem, we adapt
the following Integer Program (IP) from [3].

’
minimize » 7_, D;
/ .
st >0 Dij > 1,Yi

Then, the set of dimensions D; satisfying the IP will
be a solution SU Py,q4s to the set cover problem. Note
that by solving this IP, we generate the so-called #r-
redundant support set. A support set is called irre-
dundant if no proper subset of it is a support set[3].
The value of the right-hand side of the constraints tells
us the number of dimensions used to discriminate the
clusters (and theory sets) of the data set. With the IP
above, we generate the least number of these dimen-
sions from the original data set. The problem here
lies in the fact that users may want to know more



about the data, thus it would be natural to increase
the right hand side of the IP. If we are to do this,
the more cluster-specific our patterns would be for our
theory set, the better we can discriminate the behavior
among all clusters.

. The greedy algorithm presented below is built on the
idea of iteratively finding a new set of binary indica-
tor dimensions which can form a bigger support set by
starting with the irredundant support set. Implicitly,
we try to increase the right hand side of the constraint
in every iteration. The reason for this is to increase the
degrees of the patterns which will be used to discrim-
inate the clusters from among themselves. Implicitly,
we attempt to lessen the number of false positives when
we evaluate new sets of untagged data. In finding a
new binary dimension to be added to the support set,
we added an evaluation function which measures the
degree of importance of this dimension against other
dimensions. The dimension with the highest contribu-
tion in discriminating the clusters is the one added to
the support set. This assures us that we choose the set
of the most significant binary dimensions in the data
set. We take advantage of the transformation we did
in (3.1.1.a) to accelerate the pace of generating these
dimensions. Apparently, the ACTSF algorithm helps
us in finding high-degree patterns in lesser computa-
tional resources.

Note that we do not include infeasible constraints in
the process of finding the support set of the data set,
i.e. those X] whose components are equal to 0.

Greedy Algorithm:

Input: A binary data set COMP™ ! with indica-

tor dimensions D;,j € {1,2,...,n'}. Let the obser-

vations X'; = (D;1,Dio,.c; Dinrym), m € T, i =

1,2,...,|COMP™*!|.

Output: Generate a support set for Spin™ L.

1Set FC = |COMP™ ' \X',|, X'; € COMP"™*,
X', =(0,0,...,0), i€ {1,2,...,|COMP™ 1|}.

2 Set SUPrpas = 0.
3 Set SUP = 0.
4 Set SUPtemp = 0

5 For all D; ¢ SUPrpgs U SUPiemp do
[comp™ 1|
Set Fj = Z Dz‘jc

i=1

6 For all D; ¢ SUPrpnas U SUPromy do
Set CovConstr(D;) = {i|D;; = 1,i € {1,2,
..., |COMP™ ¥}
Set Vp, = CovConstr(D;)\
(CovConstr(SUPiemp) N CovConstr(Dj)),
D]' ¢ SU Prpgs U SUPf,gmp.

7 Set V'™ = ‘]\/IAXD]'QSUPIndaU SUPtempVDj .
8 Set D;"** = D; where Vp, = V™",

3.2

9 If V™ > 0 then
Set SUPtemp = SURtemp U Djmaz’

D;eSUPiemp
Set SUPrn4s = SUPryqs U SUPtemp.
Go to Step 4.
10 Else
Set SUP = {b7|E|D7 c SUPInds}.
Output SUP.
Stop.

Note that at the end of the greedy algorithm SU P will
contain some binary dimensions b;,j € {1,2,...,n'}
and SU Prpq4s will contain the indicator dimensions D;
corresponding to the binary dimensions in SU P.

For our example in Figure 7, SUPrnqs = {D1,Ds,
D4, D11, D14} with the right hand side of the con-
straints equal to 1 only. Thus SUP = {b1, b3, ba, b11,b14}.

To be able to prove that the output of this algorithm,
i.e. SUP is indeed a support set of the original data set
Spin™ *1, we construct the data set Saup PV whose
dimensions b; € SUP and prove that it is contra-
diction-free. The values for this data set would cor-
respond to the column values in every chosen b; from
Spin™ 1. Note that with the elimination of the infea-
sible constraints in the evaluation of SU P, we also do
not include their corresponding vectors (observations)
in the construction of Sy, Y71,

Let Seup®UFIF1 be the data set whose observations
Xi = (bij,m),b; € SUP, m € T. Note that we do
not include in this data set those vectors in Sbm",*l
corresponds to a zero vector in COMP™ 1,

Let y97m = {D;|D; € SUPr,q. in the ¢'" constraint
corresponding to the comparison of (X,{Y}), X €
P, Y € Spin™ T\ Py Note that |y97m| > 1.

P |P771r‘
Let y'™ = U y9Pm
g=1

Using the transformation 3.1.1.a, we see that AD; €
y97 and D; € y"Ps, Vg, h, and s € T\r. It follows
that

i€{1,2,...,|T[}

Therefore, 3D; € y* for which the 5" component of
the vector X € P, is not equal to the 5" component of
the vector Y € P,, where P,, P, € Sy, *YFIT1. Hence
the data set S.up! U1 is contradiction-free.

Pattern Generation in ACTSF

Let us recall the construction of y97m in Section 3.1. We use
the data set Ssup!*YF1H1 in Figure 6. (Note that the data set

is con:

bia}).

structed from the choice of SUP = {b1, bz, bs, b5, b11, b12,

We extract from Figure 7 the dimensions which correspond
to the elements of SUP as shown in Figure 8. Let this data
set be COM Pg;!5VPrnas1+1,
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Figure 8: COM Pg;5VPinas|+1

DEFINITION 9. A primality dimension set y?Pm is the max-
imum set of indicator dimensions D;, 1 € {1,2, ..., |SU Prnqs|}
of COM PV Prnas ¥l yhose vector X} = (dg,, dgq, .-
dg|sup,, . M), mET have dg; = 1.

Below is the listing of y9Pc1,g € {1,2...,|Pa1]}.

° ylPGL I{Dg} (51)
e y*re1 = {Ds3, D15}
. ySPGl = {D14}

Let y; 7 = {y9"m Vg, h : y?"m Nylrm £ 0}, j € {1,2,...,
[P [}-

ly; Fm |

Let LS; =
h=1
COM Ps; !9V PmasI*1 Let LS) = {b;|Vi 3D; € LS;}.

s, where sp C yjpm, and cluster P, C

For our example (5.1), we see that a common value exists
in y97c1,g € {1,2} such that y17er ={ {D3},{Ds, D12}}.
Then, LS1 = {Ds} and LS] = {b3}. Furthermore, we also
form yo7¢1 = {Dy4}. Here, LS2 = {D14} and LS} = {b14}.

OBSERVATION 1. Let a pattern Tr = Ab;*", Vi 3D, €
|SU Prras|. Tr is strong, if there exists j € {1,2,..., |Pn|}
where Lit(T'r) = LS;.

Below is the pseudocode to generate strong patterns for a

cluster P, C S,I',;;jrl based on the construction of ACTSF
given above.

Pseudocode.

Input: Data set COM Pg;!SYVFinas+1 of indicator dimen-
sions D; derived from the binary data set Spin™ L.
Output: The set of strong patterns for Sz,m"/“.

Set g =1.
For each X; =(D;;,m) € Pn,Vj : 3D; € SUPrpas
For ] =1to |SUP[nds|
If D;; =1 then
Set y9Pm = y9Pm U D;.
Increment g.

For g =1 to |Ppn|
Set yp'm — yP7Yl U ngm .

Set g =1.
Forc=1tog
Set qu”” = y“Pm,
Ford=2tog
If y,"™ N y¥Pm £ 0 AND
y*Pm € yPm then
Set y, "™ =y, Uy,
Set y'm = ¢yPm \yde.
Increment q.
If y°tirm ¢ y™ then
Increment c.

For e=1toq
For each S € y. ™
Set LS. =LS.NS.

Fore=1togq
For each D; € LS.
Set LSlj = LS,]' @] bj.

Fore=1toq
For each b; € LS.
If D;; =1 then
Set Tr.fm =Tr.Pm Ab;.
Else
Set Tr.fm = Tr.fm Ab;.

At the end of the pseudocode, we generate the strong pat-
terns Tre,e > 1 for Pp,.

Suppose we have take the pattern Tr = bs for the cluster
Pgy from Example 5.1, since the Lit(Tr) = LS7, therefore
T'r is strong.

Next, we characterize spanned patterns in the context of our
ACTSF algorithm.

DEFINITION 10. A spanning dimension set z"Pm, h <

218U PInasl _ 1 s the mazimal set of indicator dimensions
Dy,i € {1,2,...,|SUPrnas|} of COM Psy!SVPinas1+1 yyhose
vector components Di;, j € {1,2,...,|Pn|} are equal for
some w. C Py,.

From Figure 8, we see that

L] leGl = {D17D37D47D57D117D14} (52)
- accounting observations {a, b}

) ZQPGI = {Dl, D4, D5, D11, D12}
- accounting observations {a, c}

e 23Pc1 = {Dy, D4, Ds, D11, D14}
- accounting observations {b, c}

e z*fa1 = {Dy, D4, D5, D11}
- accounting observations {a,b, c}

e 2°Pc1 = {Dy, Dy, D3, Dy, Ds, D11, D14}
- accounting observation {a}



° ZGPGl = {Dl, DQ, Dg, D4, D5, D11, D14}
- accounting observation {b}

e 2"Pc1 = {D1, D3, D3, D4, D5, D11, D14}

- accounting observation {c}

Let X; = (bi1, big, -y bijsup|s1,m) € Seup! U EI L.

Let TrElems"Pm = {b;* Vi, 3D; € z"Pm  c; = b;;}.

In example 5.2,

e TrElems'fc1 = {by,bs,ba,bs,b11,b14}

o TrElems®rc1 = {by,bs,bs,b11,b12}

e TrElems®Pc1 = {b1,ba,bs,bi1,b1a}
TrElems*Pe1 = {by, by, bs, b1y }
TrElems®’c1 = {by,bs,bs,bs,b11, b12,b14}

o TrElems®fc1 = {b1,bs,ba,bs,bi1,b12,b14}
TrElems c1 = {b1,bs,ba, bs, b11, b1, bra}

OBSERVATION 2. The set of patterns

\TrElemshPm |
P
Irm = N b,
Jj=1

where b; € TrElems " is spanned.

Below is the pseudocode to generate spanned patterns for
a cluster P,, C S’g;nﬂ based on the construction of ACTSF
given above.

Pseudocode. )
Input: Data set C’OMPSI‘SD Proas|tl of indica}tor dimen-
sions D; derived from the binary data set Spin™ ™.

Output: The set of spanned patterns for Sbm"l“.

Set D = {D;| D; € SUPr,4s}
Set Pow(D) to be the power set of D.
Forc=|D|to 1
For each R € Pow(D) AND |R| =c¢
Set Q = {b;|3D; € R}.
Set @ = {b;|3b; € Q}.
Set @ =QUQ
Set T'RS. be the set of patterns of P, of
degree ¢ with literals from Q’.
If Cov(Tr1) = Cov(Trz), where Try € TRS,,
Tre € TRS4, ¢ < d then
Set TRS. = TRS\Tr1.

For c=|D|to 1
For each S € TRS.
For JE SU Prnas
If b; € Lit(S) OR b; € Lit(S) then
Set z'Pm = z"Pm U D;.

Increment h.

Fore=1toh
For each D; € z°Pm
If D;; =1 in the accounted observation(s) of
z2¢Pm then
Set TrElems®Pm = TrElems®Pm Ub;.
Else
Set TrElems®Pm = TrElems®Pm Ub;.

Fore=1toh
For each b; € TrElems®Pm
If D;; =1 then
Set Tr.m = Tr,fm Ab;.
Else
Set Tr,0m = Tr,m /\b_j.

At the end of the pseudocode, we generate the spanned pat-
terns Tref™ e > 1 for Pp,.

Finally, we character strong spanned patterns in the con-
text of our ACTSF algorithm. We use the construction of
TrElems"Pm to arrive at this set of patterns.

Let w; Pm — {TrElemsng |Vg’ h: TrElems?Pm N
TrElems"’m # (}, j < 21SUPrmasl _ 13,

o P

J
Let LSPjP"" = (] Sn, where s, C w; P
h=1

Using the above example, we have w171 as the intersection
of all TrEﬂnshPm ,Yh. Therefore the value of LSP, 761 =
{b1,ba,bs,b11}.

OBSERVATION 3. The set of patterns

|LSP;m |

P,
T'rh mo_ A bjy
=1

Wb, € LSP;"™is strong spanned.

For the data set in Figure 6, we realize that b1bsbsbi1, the
pattern generated using LSP, 741, is strong spanned. Note
that it covers every observation in Pg1.

Below is the pseudocode to generate strong spanned pat-

terns for a cluster P, C SIZ;“ based on the construction of

ACTSF given above.

Pseudocode.
Input: TrElems™Fm . ,
Output: The set of strong spanned patterns for Sy;,,™ 1.

/*We use the value of h in the previous pseudocode.*/
Fore=1toh
Set wi™ = wl™ U TrElems®m .



Set ¢ = 1.
Forc=1toh
Set w, "™ = TrElems®Pm .
Ford=2toh
If w,"™ N TrElems® m #0 AND
TrElems?m € wPm™ then
Set wy"™ = w,"™ U TrElems®rm.
Set wi™ = wPm\TrElems®Pm
Increment q.
If TrElemsctiPm £ wP™ then
Increment c.
Fore=1togq
For each S € we™
Set LSP. = LSP.NS.

Fore=1togq
For each be LSP.
Set Tr.”™ =Tr,m Ab.

At the end of the pseudocode, we generate the strong spanned
patterns Tr.fm™, e > 1 for P,,.

3.3 Extensions to ACTSF

With the construction of the data set of indicator dimen-
sions CO]\/[P”/H, the mapping done in 3.1.1.a. sometimes
introduces vectors of zeros. This happens when there does
not exist a dimension in the data set S;,m”/*'l with which
an ob/servation X € P, differs from other observations Y €
Spin™ "1\ Py. We have mentioned in previous sections of in-

feasible constraints - i.e. an X; = (0) € COMP™ "', Since
we cannot possibly add at least one indicator dimension in
the " constraint, we have disregarded these sets of zero
vectors from the computation of the support set |SU P|. Be-
cause of this, the i*" vector of Ssup‘SUP I may possibly induce
a contradiction to our Sy, Y7l i.e. the same vector would
exist in more than 1 cluster. Thus, it would be natural that
we strike them out when we build our sets of patterns for
each cluster in the data set Ssup! 3V

We refer back to the definition of theory set defined in LAD.
Note that every observation in a cluster of a given space (i.e.
the training set) is covered by at least one pattern in the the-
ory that cluster. Since ACTSF strikes out the observations
with a zero vector in the data set Ssup|SUP‘+1, we have, in
effect, striked out the pattern covering these observations.
This is the rationale why the proposed algorithm was refered
to as an approximation.

It is inevitable then that we increase the number of unclas-
sified observations. However, we may see that it is more
advantageous for us to not conclusively put membership to
a given observation rather than take the opportunity of er-
roneously classifying it to another cluster. To do so, we
increase the number of false positives for new sets of obser-
vations.

To be able to put membership on these unclassified sets of
data, we extend ACTSF to include a discriminant function.
When the behavior of an observation do not fall explicitly
in one of the clusters due to the inherent inseparability of
the observations in the data set, this function became very
helpful in detecting membership for it. This discriminant

function computes for the distance of a given untagged ob-
servation X = (z1, 2, ...,2,) with respect to the theory of
a given cluster.

Let 7, = \/ T'ri, where m € T,i > 1, and T'r; is a pattern
for the cluster m.

Let Varr,; be the number of dimensions considered in the
pattern T'r;.

Let Va; Tri — {y|v is a cutpoint appearing in appearing in
the pattern T'r; associated to the dimension z;}.

Let the distance between an observation X and a theory 7,
be defined as

|Varp,. |

MIN z

]\41N{|a:j7v,i|,viEVarTTi,Vi}
j=1
AX,Tm) =Tr; € T, z

[Tm |
|V‘“"T7*i|* '21 |[Cov(Tr;)|
i=

It can be seen that we give preference to patterns possess-
ing higher degrees by dividing the distances with |Varr.,|.
Furthermore, it can be seen that the number of covered ob-
servations of a given theory is a major factor to the determi-
nation of how we classify the data. The larger the number of
evidences for the justification of a behavior (i.e. a pattern)
the set of observations in the cluster, the more likely we are
to group new observations to that cluster.

The membership of X would be the cluster to which 7,,,, m €
T returns the minimum value of A(X, 7,,).

4. EMPIRICAL TESTING

The data set used for testing the effectiveness of ACTSF
was taken from the [5]. It is the famous multivariate Iris
data set created by Fisher in 1988. A number of publica-
tions have already cited this data set and created models to
characterize the clusters in the data set. It is composed of
4 real-valued dimensions namely: (a) sepal length, (b) sepal
width, (c) petal length, and (d) petal width all expressed
in unit centimeters. It contains 50 observations in each of
the 3 classes namely: (1) Iris-setosa, (2) Iris-versicolor, and
(3) Iris-virginica, the first one of which is linearly separable
from the others, and the last two are linearly inseparable
from one another.

We apply 10 10-fold cross validation to get the average per-
formance of the proposed algorithm. This is done by parti-
tioning the data set in 10 equally-sized groups of randomly-
selected observations. We construct a training set from the
union of 9 groups, and the remaining cluster will be the test
set. We then develop a theory set using the training set and
measure its performance on the test set. For the succeeding
experiments, we choose 1 group from the previous training
set to be our new test set. The previous test set will be
merged in the new training set. We do this 10 times (folds).

Using ACTSF only (without the discriminant function), we
an classified the observations of the test sets correctly 87%
of the time. Misclassification reaches 7% and 11% were left
unclassified. We already expected that there would be a
higher rate of unclassification (as compared to the misclas-
sification) since we had left out of consideration some of the



zero vectors in COMP™ *'. This average performances are
detailed out in Figure 9.
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Figure 9: ACTSF Average Performance on Test Set

We achieved a slightly better performance of the algorithm
on the training sets. Correct classification rates was 88%.
Since we modeled our theory set on the training sets, there
were no misclassified observations. Furthermore, unclassi-
fied observations reached to 12%. These results are shown
in Figure 10.

With the incorporation of A(X, 7,) to ACTSF, the classi-
fication rate significantly increased to 96% while misclassi-
fication rate remained at 7% on the test sets. There were
no unclassified observations observed. The average perfor-
mances are detailed out in Figure 11

For the training sets, correct classification improved to 98%.
Still there were no unclassified observations. However, due
to the high level of similiarity of the Iris-versicolor and Iris-
virginica observations, the discriminant function A(X,7p,)
failed to correctly classify 2% of the observations on the
average. The results are shown in Figure 12.

We present a summary of the results from these literatures
and compare it with our algorithm in Table 1.

4.1 Inclusion of Zero Vectors in Finding the
Theory Set
For experimental purposes, we report the effect of the inclu-

’
sion of the vectors in SSW)ISUPH'1 whose vectors in COM P™ 1
contain 0 components. Since these vectors were in effect

Figure 10:
Training Sets
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Figure 11: ACTSF with A(X, 7)) Average Perfor-
mance on Test Sets

Average Performances of ACTSF on
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Figure 12: ACTSF with A(X,7,)) Average Perfor-
mance on Training Sets

Algorithm | Performance % |[ref]
ACTSF 96

ItemRSFit | 83.33 9
UChoo 92 8
C4.5 90 8
PCA-Spikey | 70 10
SMLP 96 11
MLP2LN 97.3 12

Table 1: Performance of Different Algorithms on the
Iris data set

unaccounted for in the computation of the support set of
S’bm"/“, we can expect that contradiction arises in other
clusters with respect to some of these vectors. With this, it
is not surprising that our rate of misclassification shot up
to 13% in the test sets. A decrease with an average of 1%
was reported on the rate of unclassified observations. How-
ever, an improvement in the classification rate was seen at
93%. It is noticeable that along with the increase of the per-
centage of correctly classified observations, the percentage of
misclassification did so too.

We see that the inclusion of the aforementioned vectors
would only increase the chances of incorrectly marking un-
tagged observations at the expense of trying to correctly
classify most of them in the data space.

Note that we compare this performance with ACTSF only,
thus we did not apply the discriminant function in deter-
mining membership of the observations. The details of this
performance is shown in Figure 13.
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Figure 13: ACTSF Average Performance on Test
Sets with inclusion of 0-vectors

S. LIMITS OF APPLICABILITY OF ACTSF

We recall our definition for the linear separability of two sets
taken from [3] discussed in Section 2.

The problem of finding linear separability between two sets
is equivalent to the disjointness of their corresponding con-
vex hulls [3]. We adapt the definition in [6] for the concept
of the convex hull of a binarized data set.

DEFINITION 11. Let I be the set of indices j for which
the j*" component of all vectors X; = (biy,bia, ... bins,m)



€ Pn(C Sbm”/H) have a common value, say b;; € {0,1}.
Then the convex hull of P,,, denoted as

[Pn] = /\ 0%,
jel
where o = by ;.
We recall the first data set in its binarized form which we

had presented in Section 2. To avoid clutter, we show this
data set in Figure 14.

X X3
X by b; by | Tag
(L5) ] (-0.5) | (L5)
A { 1 1 | €kl
B 1 1 0] C2
@ 0 0 @ |E2

Figure 14: Binarized Sample Data Set

Shown in Figure 15 is the data set of indicator dimensions
COMP™ *! built from the data set in Figure 14.

X D i Dz Dg Tﬂg
A 0 0 1{C1
B 1 0 1.| €2
& 0 1 1. | €2
Figure 15: COMP"™'*+!
The convex hull of Po1 and Poo are [Poi] = bibabs and

[Pc2] = bs. The same process applies to Po1 and Pes, etc.

Observe that this process is actually equivalent to the con-
struction of z"#m in ACTSF algorithm. Therefore, ACTSF
can only construct a theory set (which contains strong spanned

patterns) for the data set S™"* if |( |J [Pm])| > |T|, where
meT

Pm (@ Sbinn+1~

6. CONCLUSION

Our overall performance fairs comparably well from the re-
sults of previous literatures [8, 9, 10, 11, 12]. From these
literatures, only [12] reported a maximum (best) of 97.3%
overall accuracy during its cross validation for the Iris data
set. Although [12] has reported of a higher performance
percentage, it was seen that only 4 rules were found. These
rules all had a degree of 1, thus this performance is not un-
expected. Drawbacks on these types of low-degree patterns
have been cited in previous sections.

Furthermore, we conclude that the inclusion of the afore-
mentioned vectors would only increase the chances of in-
correctly marking untagged observations at the expense of

trying to correctly classify most of them in the data space.
The use of the discriminant function to significantly improve
the performance of ACTSF proved to be a better option
compared to this.

By focusing only on dimensions where there exists an ob-
servation having a unique behavior in building our indicator
dimensions, we narrowed down our search space for theory
set formation. In addition to this, we have directly used
these indicator dimensions to generate Pareto-optimal pat-
terns for the theory set of the data set S™*1. Overall, we
therefore have achieved efficiency in describing the inherent
characteristics of each cluster in the data set.
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Figure 16: The Iris Data Set Visualization taken
from Introduction to Data Mining by P. Tan et al.



