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ABSTRACT

This paper presents a mechanism for multiple agents
that dynamically load-balance the parallel computation
of quantum trajectories of an one-dimensional free particle
using the quantum trajectory method. The agents are
able to improve the simulation time by dynamically load-
balancing the parallel computation of the trajectories. The
load imbalance introduced by the parallel runtime system
and by the computationally-intensive trajectories of the
pseudoparticles is reduced by the agents at higher number
of processors. Results of experiments on a multi-purpose
message-passing cluster are presented to confirm that the
agents achieve better simulation performance than with
the current load balancing techniques at higher number of
Processors.
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1. INTRODUCTION

Various observable and measurable physical phenomena
in real-world can be described by the time-dependent
Schrédinger equation (TDSE). TDSE simulates the dynamics
of a particle (usually an electron) represented by the tra-
jectories of pseudoparticles that are riding on a quantum
wavepacket. The usual simulation for TDSE includes the
space-time grid methods, the basis sets methods, and their
various combinations. One method that simulates the tra-
jectories of wavepackets is the quantum trajectory method
(QTM) that is based on the hydrodynamic interpretation of
quantum mechanics [3]. QTM is a space-time unstructured
grid method that solves the quantum equations using a
moving weighted least-squares (MWLS) to compute the
underlying differential equations. The solutions to the
equations of motion give the quantum trajectories for pseu-
doparticles. In 1999 [14], QTM was implemented for a
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serial computer. Two years later [4], taking advantage
of MWLS’ high degree of concurrency brought about by
the presence of parallel computation of the trajectories,
a version for a shared-memory parallel machine was also
implemented. A message-passing parallel implementation
with an adaptive MWLS was also reported [6]. In terms
of simulation time, the parallel machine implementations
have obvious simulation performance improvement over
the serial computer implementation. In terms of ease of
utilizing more processors as the simulation size is increased,
the message-passing implementation is more flexible to
use than the shared-memory one. In the message-passing
implementation, the parallel execution time can be further
improved by balancing the loads of participating processors.

In recent years, research advances in dynamic load balancing
at the application level have contributed to improving the
performance of scientific simulations running under a par-
allel system with heterogeneous processors. Dynamic load
balancing schemes based on scheduling of atomic com-
putations such as Factoring (FACT), Fractiling (FRAC),
Weighted Factoring (WFAC), Adaptive Weighted Factoring
(AWF), and Adaptive Factoring (AFAC) have been suc-
cessfully implemented in the simulation of wavepacket
dynamics using the QTM [5, 6]. These schemes are based
on probabilistic analyses that take into consideration other
variabilities that can make the problem complicated when
solved in real time. The variabilities are brought about
by systemic factors such as the variance in processor per-
formance during execution and the variance in network
latency. The performance of the processors might vary
during computation, even when the processing speed is
known. For example, the performance of a processor might
be affected when a server daemon is woken up or when the
processor is interrupted by the hardware.

The above mentioned load balancing schemes greatly
improve the performance of QTM but they do not come
without inherent problems. This is because they are imple-
mented using a master-slave strategy where one processor
acts as a master and balancer. As a balancer, the master
processor dynamically assigns pseudoparticles to slave pro-
cessors following a scheduling policy defined by the scheme.
For example, in FRAC, the scheduling policy is based on
the characteristics of fractals. After being assigned with
a bundle of pseudoparticles, the performance of the slaves



is evaluated by the master. A bundle is some number of
pseudoparticles p such that p << [n/p], where n is the total
number of pseudoparticles and p is the number of partici-
pating processors in the simulation. The future assignment
of new bundles for the slave processor is computed based
on its performance of the previous bundle assignment. The
performance measure is simply the time it took for the
slave to process a given bundle. When a slave is done
with its assigned bundle, the slave communicates with the
master its processing time for the bundle. The master then
communicates to the slave the next bundle of particles that
the slave needs to process. The size of the next bundle is
defined by the scheduling policy being implemented. If all
p pseudoparticles have already been assigned and one slave
processor finishes early than the other, the master asks the
slowest processor to give up some of its pseudoparticles to
the now idle slave processor. The number of pseudoparticles
that is to be given up is again based on the scheduling policy
defined by the scheme.

The inherent problem with the master-slave strategy is that
when more processors are required by the simulation, the
number of slaves that a master has to communicate with
increases. The benefits of the dynamic scheduling schemes
are greatly offset by the latency due to communication
bottleneck with the master, compounded with the type
of physical network interconnect the processors are using.
When more slaves communicate to the master, the master
is overwhelmed with communication requests and might not
be able to simulate the trajectories of the psedoparticles
assigned to itself. The assigned bundle of pseudoparticles
to the master will eventually be reassigned to other slaves
requiring more communication. This scenario leaves one
processor doing only balancing rather than doing essential
computation (i.e., computation that would be performed
by the sequential machine for solving the same problem
instance). The communication latency greatly reduces the
performance of the simulation when p is increased.

The problem with master-slave strategy is that only one
processor balances for the rest. The slave processors are
dependent on the master processor, are not responsible for
balancing, are only tasked to process the assigned parti-
cles, and communicate to the master their performance and
status. The master on the other hand is tasked to process its
assigned! bundle of pseudoparticles while it keeps record of
the slaves’ status. The master also runs the load balancing
policy and communicates to p — 1 slaves?. The master-
slave strategy can be seen as a multi-agent system where the
master is an independent agent while the slaves are depen-
dent yet specialized agents®. If all processors will instead
act as independent yet truthful agents that follow the same
scheduling policy, the communication latency brought about
by communicating to only one master will be evenly dis-
tributed to the other p — 1 processors, bringing down the
time latency due to communication. Thus, a multi-agent
approach to load balancing might be a better strategy than

1The master also does some computation and is considered
as its own slave.

2The master does not incur communication latency when it
communicates to itself.

3The slave’s specialization is to only compute the trajecto-
ries of the pseudoparticles.

the master-slave one.

In this effort, the scheduling of pseudoparticles in QTM is
mapped into a multi-agent strategy. Here, processors are
considered autonomous agents with a self-interested goal of
finishing its assigned bundle of pseudoparticles at the ear-
liest time. However, the agents are members of a community
with a social goal of finishing the simulation at the shortest
possible time. The agents are independent in the sense that
it can decide for itself. However, the agents are still depen-
dent on other agents such that the social goal of minimizing
simulation time is obtained. This dependency requires other
agents to communicate with other agents. However, since
agents are now independent, they are required to truthfully
communicate their status and performance such that the
other agents will have a global perspective of the commu-
nity. This global perspective will help the agents come up
with an optimal assignment for themselves such that both
their personal goals and the community goals are achieved.

This paper describes a parallel QTM code for a message-
passing environment with a multi-agent-based pseudopar-
ticle assignment integrated into the code. To improve the
simulation performance, the code incorporates the recom-
mendations of past researchers [4, 5, 6]. The background of
QTM and the lessons learned with the parallel implemen-
tation of the QTM by other researchers are also discussed.
The integration to QTM of parallel agents as a strategy for
load balancing is presented. Timing results on a Gnu/Linux
cluster which confirm the performance improvements of the
QTM from the multi-agent-based load balancing are likewise
presented. The summary of the paper and hints on ongoing
work are given.

2. QUANTUM TRAJECTORY METHOD

The study of many problems in quantum mechanics is based
on finding the solution to the time-dependent Schrodinger
equation (TDSE) shown in Equation 1. TDSE describes
the dynamics of quantum-mechanical systems composed of a
particle of mass m moving in a potential V' (7 is the reduced
Planck’s constant, ¥ is the wave function, and H is the
Hamiltonian).

ih—=H¥, H=-——-V'+V (1)
m

The hydrodynamic formulation of the quantum mechanics is
obtained by substituting the polar form of the system wave-
function (Equation 2) into the TDSE [14]. Here, R(r,t) and
S(r,t) are the real-valued amplitude and phase functions of
space r and time .

U(r,t) = R(r,t) exp(iS(r,t)/h) (2)

Following the work of Lopreore and Wyatt [14], Equation 2
is separated into its real (Equation 3) and imaginary (Equa-



tion 4) parts:
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where p(r,t) = R?*(r,t) is the probability density, v(r,t) =
m~'VS(r,t) is the velocity, and
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is the global quantum potential in logarithmic form. Taking
the gradient of Equation 4 and using the Lagrangian deriva-
tive % = % + v - V leads to the equation of motion

dv
m§=—V(V+Q)=fC+fq, (5)
where f. and f, are the classical and quantum force terms,
respectively. Rewriting Equation 3 as

9 . _dp(r,t) )
(at to V) o) = 20D v,

and integrating yields the density update equation
p(r,t+ dt) = p(r,t) exp(—dtV - v). (6)

A set of n pseudoparticles, each of mass m, is deployed to
represent the physical particle. Each pseudoparticle exe-
cutes a “quantum trajectory” governed by the Lagrangian
equations of motion (Equation 5 and Equation 6) and
the quantum potential Q. Derivatives of p, Q, and v for
updating the equations of motion are obtained by curve-
fitting the numerical values of these variables using the
MWLS method and then differentiating the least squares
curves.

The QTM implementation in a serial computer was applied
to barrier tunneling [14]. The shared-memory parallel
QTM [4] was ported into a message-passing version and
restructured to accommodate the implementation of an
explicit update scheme [6] and the integration of load
balancing. An outline of the code is given in Figure 1.

The MWLS method needed to compute Q[], fq[], and dv]]
solves an overdetermined linear systems of size n, X n,. The
numerical experiment conducted by [4] suggested n, = 6 and
np = npl] = n when computing Q[i], and n, = nye = n/2
when computing f4[] or dv[]. Loops 1 through 3 are com-
putationally bound, consuming the bulk of the CPU time.
Loops 2 through 4 may be combined into a single loop but
were separated to allow the integration of load balancing.

3. DYNAMIC LOAD BALANCING ALGO-
RITHMS

In systems that use heterogeneous processors, the differ-
ence in processor speeds and memory capacities coupled
with the dynamism in processor interconnection can sig-
nificantly impact the performance of scientific applications.
For example, load and resource availability of processors in
a grid is unpredictable, and thus it is difficult to know in
advance what the effective speed of each machine would be.

Initialize positions r[], velocities vI[],
and probability densities pl[]
for time_step=0 to T-1 do
begin
for pseudoparticle i = 1 to n (Loop 1)
begin
MWLS(i, r[l, pll, npl, nb);
compute quantum potential Q[il;
end
for pseudoparticle i = 1 to n (Loop 2)
begin
MWLS(i, r[], pl], np2, nb);
compute quantum force f_q[il;
end
for pseudoparticle i = 1 to n (Loop 3)
begin
MWLS(i, r[l, pll, np2, nb);
compute derivative of velocity dvl[il;
end
for pseudoparticle i = 1 to n (Loop 4)
begin
compute classical potential V[i]
and classical force f_c[il;
end
Output t, r[1, v[1, pll, VI, f_c(],
Qll, £_qll, av[]l;
for pseudoparticle i = 1 to n (Loop 5)
begin
update p[il, r[i], v[il;
end
end

Figure 1: The code for simulating the trajectories
using the QTM.

For effectively load balancing scientific applications, algo-
rithms that derive from theoretical advances in research on
scheduling parallel computations with variable processing
times have extensively been studied [13, 16, 17, 9, 15]. As
a result, dynamic scheduling based on a probabilistic anal-
ysis have been proposed, and successfully implemented in a
cluster environment for a number of scientific applications
[9, 1, 8, 2, 12, 11, 5, 6].

An example of a dynamic scheduling scheme is the one that
uses a scheduling policy based on FACT [9]. In this scheme,
a probabilistic analysis allows the formulation of factoring
rules. Independent computations are assigned to proces-
sors in bundles of variable sizes following the factoring rules.
The selection of bundle sizes requires that they have a high
probability of being completed by the processors before the
optimal time. The bundle sizes are dynamically computed
during the execution of the application. The larger bun-
dles have relatively little overhead, and their unevenness
can be smoothed over by the smaller bundles. Another
scheduling policy that improves FACT is FRAC. It combines
the scheduling technique that balances processor loads with
data locality by exploiting the self-similarity properties of
fractals. This method has successfully been implemented for
many-body simulations on distributed shared address space
and message-passing environments [1, 2].



Other dynamic scheduling schemes that have been success-
fully implemented and found to improve the performance
of FACT are WFAC, AWF, and AFAC. AFAC scheme is a
more general model for scheduling. In specific conditions
of processor speed and computation workloads, AFAC con-
verts into the other schemes. These schemes are described
in details elsewhere [8, 11, 12] and will not be discussed
in this paper. Suffice it to say that all these schemes are
implemented in a cluster environment using a master-slave
strategy which has inherent communication bottleneck for
higher p.

4. MECHANISM DESIGN

The master-slave strategy can be regarded as a special case
of a multi-agent system. The master is an agent that has
total control of the p — 1 slaves. Control here means that
the master has all the decision making responsibilities for
the community composed of itself and the slaves. Since the
master itself is the balancer, it needs to have an updated
global information of the status of the system. This means
that all slaves will have to periodically* communicate to
the master. The overhead due to communication increases
with the number of slaves present in the community. Thus,
at higher values of p, the scheduling schemes with master-
slave strategy tend to reduce the performance of the parallel
application.

In the multi-agent approach, the processors are considered
as autonomous agents that belong to a community. The
community is tasked to process the trajectories of the pseu-
doparticles. Initially, the agents do not know the respective
computing speed of the other agents. However, the number
of agents that belong to the community and the respective
address of each agent are common knowledge. The agents
may use the same addressing scheme as the processors’ (i.e.,
P = {po,p1,...,Ppm—1}). This addressing scheme is arbi-
trary and does not favor any agent. What is important here
is that every agent knows its address in the community as
well as that of the other agents.

4.1 Initial Particle Assignment

The initial job assignment is guided by an assumption that
the processing times of all pseudoparticles {po, p1,.-.,Pn—1}
are the same while processors are assumed to be homoge-
neous. These assumptions are not common knowledge for
the agents but just a simplistic way of initializing the system
with a bundle of pseudoparticles to start with. The n pseu-
doparticles are equally divided to p agents and each agent
receives [n/p| pseudoparticles. A trivial assignment would
be such that agent po is assigned to pseudoparticles po to
Prn/p]—1, agent p1 to pseudoparticles pry/p) 10 Porn/pl—1,
and so on. If the pseudoparticles will originate from a single
processor, then a scatter or one-to-all personalized commu-
nication [10] may be utilized. After initialization, the agents
will perform a task sharing or task passing strategy [7] based
on a prediction to trajectory computation times.

4.2 Profiling of Particle Computation Time
Each agent will compute the pseudoparticles assigned to it
using some statistical sampling order and size. The goal of

“The period here depends on the scheduling policy being
used.

sampling is for the agent to predict the profile of the pro-
cessing time of the [n/p] pseudoparticles assigned to it using
some sample size s << [n/p]. For example, agent po will
process pseudoparticles {p;[i = 0,[n/p]/s,2[n/p]/s,...}.
Based on po’s processing times on the sampled pseudopar-
ticles, the processing times for all the remaining pseudopar-
ticles assigned to it can be predicted via a curve fitting or
interpolation technique (e.g., nonlinear regression, divided
difference, etc.). After some time, all agents will have a
local knowledge of the predicted processing times of the
remaining pseudoparticles assigned to them. If all agents
will truthfully exchange this information to all other agents
(i-e., via an all-to-all broadcast [10]), then each of them will
have a global knowledge of the predicted processing times
of the remaining pseudoparticles assigned to the community.
With this information, the modified bin-packing algorithm
may be employed by each agent to reallocate pseudoparti-
cles to processors taking in consideration the pseudoparticles
that already have been sampled. This information sharing
is what is termed as result sharing by Durfee [7].

4.3 Normalization with Heterogeneous Agents
In the case of parallel systems with heterogeneous proces-
sors, each agent will need to perform a normalization proce-
dure to account for the variability in processor speeds. The
normalization involves sampling a pseudoparticle assigned
to other agents and which already have been sampled by
that agent. For example, if agent po found pseudoparticle
po to have a processing time of ¢o,0, and if agent p; processed
the same pseudoparticle pp and found it to have a processing
time of ¢o,1, then the ratio between to,0 and to,1 provides
the relative speed of p1 to po, and vice versa. If all agents
will perform this normalization procedure and will truthfully
communicate the information from this procedure to other
agents, then all agents will have the global information of
their relative speeds compared to the others. An all-to-all
broadcast may again be utilized to efficiently exchange the
information. Based on this information, the modified bin-
packing algorithm for uneven bins may be utilized by each
agent to come up with a global reallocation of pseudopar-
ticles. Since all agents will have the same solution, when
agent p; asks for a pseudoparticle from agent p;, p; already
knows what pseudoparticle to give and must freely give it.
The agent behavior is guided by a payoff scheme that is a
function of the performance of the community when solving
the assigned pseudoparticles.

4.4 Finite Horizon Game

The QTM code fragment presented in Figure 1 presents
independent loops embedded in a time-stepping loop, which
may be regarded by the p agents as a finite-horizon game
with T horizons. Each loop is a computation of the trajec-
tory of the pseudoparticle at a given time-step.

Each game, the agents will cooperatively process n pseu-
doparticles via normalization, task sharing and result
sharing such that the community goal is achieved. The
game is formalized by a mechanism design such that the
Nash equilibrium is a strategy where agents must truthfully
share information and cooperate with other agents.
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Figure 2: Average parallel cost for wavepacket simulation with 501 pseudoparticles using FAC, AWF, AFAC
and multi-agent-based scheduling at increasing number of processors.

S. PERFORMANCE EVALUATION AND
RESULTS

To assess the performance of the parallel agents for load bal-
ancing, the same QTM code presented in Figure 1 was also
integrated with the three scheduling schemes: FACT, AWF
and AFAC. All runs were conducted on an adhoc general-
purpose cluster at the Institute of Computer Science, Uni-
versity of the Philippines Los Banos. The adhoc cluster is
a 256-node, 256-processor cluster with a combined memory
of 128 GB. The processors are of Pentium III, Pentium IV
and AMD Athlon architectures with processing speeds that
range from 800MHz to 2.4GHz. They are interconnected
through 10 Mbps Ethernet switches that are interconnected
through a 100 Mbps Ethernet uplink. Since this cluster is a
general-purpose, adhoc cluster, the network traffic volume
is not predictable (i.e., other processes maybe running along
with the QTM simulations).

A wavepacket of 501 pseudoparticles was simulated for
10,000 time steps. The performance metrics measured was
the parallel cost Cp = p x T,. Each simulation run was
replicated five times to model the variability in C'p induced
by the underlying computing architecture.

The average Cps for running the QTM using FACT, AWF,
AFAC and the multi-agent-based scheduling are graphed in
Figure 2. The graph indicates that when simulating the
trajectory of an one-dimensional particle represented by 501
pseudoparticles:

1. The agent-based scheme is, on the average, less costly
at lower p. The graph shows that:

(a) FACT is actually cost-effective at p < 28; and
(b) Both AWF and AFAC are less costly at p < 32.

2. The agent-based load balancing has lower average Cp
at higher p. Graph shows that:

(a) At p > 28, the average C, for the agent-based
scheme is lower than that of FACT.

(b) At p > 32, the average parallel cost for multi-
agent-based scheduling is lower than that of AWF
and AFAC.

6. SUMMARY

This paper presents an improve performance of the simu-
lation of one-dimensional pseudoparticle trajectories using
an agent-based load balancing at higher p. The purpose
of load balancing is to improve the simulation performance
of the simulation. The static and offline solution to load
balancing can be optimally obtained using the bin-packing
algorithm for tractable values of n and p. Due to variability
in the parallel system, and because the computation times of
the trajectories are not known a priori, the load balancing
problem can only be solved online. Most known dynamic
load balancing schemes use a master-slave strategy that is
inherently susceptible to communication bottleneck when p
is increased. The multi-agent approach regards processors
as agents. The approach reduces the bottleneck by dis-
tributing the communication to other agents. All agents in
the community must truthfully share information via nor-
malization, task sharing, and result sharing. The informa-
tion exchange may be efficiently performed using the one-
to-all personalized communication and the all-to-all broad-
cast. The behavior of the agents is defined by a payoff func-
tion that forces the agents to cooperate. QTM, as a time-
stepping method, is regarded by agents as a finite-horizon
game. The game formalization has Nash Equilibrium for
cooperation and truthful information sharing. The perfor-
mance of the agent-based QTM is compared to the perfor-
mance of the QTM with FACT, AWF, and AFAC schemes.
When QTM is simulating 501 pseudoparticles, the agent-
based QTM is less costly, on the average, at p > 28 com-
pared to FACT. When compared to both AWF and AFAC,
the agent-based methodology is more cost effective on the
average at p > 32. Thus, at higher p, the agent-based QTM
outperformed the QTM with either FACT, AWF, or AFAC
scheme.

As an extension of this work, effort is already underway
in applying the parallel agents to the two- and three-



dimensional versions of the wavepacket simulation. These
versions involve significantly more computations than the
one treated in this paper. Results of numerical experiments,
as well as significant lessons learned, will be reported in the
future.
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